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ABSTRACT

Remote-sensed hyperspectral data represents significant
challenges in downlink due to its large data volumes. This
paper describes a research program designed to process
hyperspectral data products onboard spacecraft to (a) reduce
data downlink volumes and (b) decrease latency to provide
key data products (often by enabling use of lower data rate
communications systems). We describe efforts to develop
onboard processing to study volcanoes, floods, and
cryosphere, using the Hyperion hyperspectral imager and
onboard processing for the Earth Observing One (EO-1)
mission as well as preliminary work targeting the
Hyperspectral Infrared Imager (HyspIRI) mission.

Index Terms— onboard spacecraft processing, event
detection, volcanism, surface water detection, cryosphere'
1. INTRODUCTION
We describe onboard processing algorithms for volcano,
flood, and cryosphere analysis deployed onboard the Earth
Observing One (EO-1) spacecraft and applied to Hyperion
hyperspectral data. We also describe ongoing work to
develop oceanographic applications for EO-1 as well as
follow-on work targeting the HyspIRI mission. In each of
these cases we describe the science processing steps as well
as the runtime benchmarks for a range of flight processors.
The motivation for onboard processing is
multifold. First, many space missions are downlink limited.
Onboard processing can dramatically reduce the amount of
data that needs to be returned. Second, onboard processing
can enable more rapid data production. By processing the
data onboard and reducing the data volume it is possible to
downlink alerts or summary products via lower data rate
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engineering downlink — resulting in more rapid notification
(an example of this is the Direct Broadcast system
[Directbroadcast]). Third, onboard processing can enable
onboard response providing more rapid response to science
events. For example, EO-1 onboard science analysis can
drive retasking the spacecraft - enabling response to science
events within hours compared to routine ground-in-the-loop
data processing and response of one week or rush ground
response of several days.

2. THE EARTH OBSERVING ONE MISSION

EO-1 [Ungar et al. 2003]was launched in November
2000 into a 705-km circular orbit with an inclination of 98.7
degrees. This orbit affords global coverage, with exact
ground-repeat tracks every 16 days. EO-1 is a pointable
spacecraft. Observations can be nadir, one path to the east or
west, and two paths to the east or west. A target may
therefore be imaged up to 10 times in any 16-day period,
with five day and five night observations. For polar targets,
where orbital paths converge, imaging up to five paths away
from the nadir is theoretically possible.

On board EO-1 are three instruments: the Advanced
Land Imager (ALI), the LEISA Atmospheric Corrector
(LAC) and the Hyperion imaging spectrometer. ASE uses
data from the Hyperion instrument although an effort is
underway to enable onboard access to ALI data.

The Hyperion imaging spectrometer is a hyperspectral
imager with 220 discrete bands covering a wavelength range
of 0.4-2.5 wm. This spectral range makes Hyperion an
excellent instrument for tracking many science phenomena
that can be distinguished with these spectra. Hyperion has a
spatial resolution of 30 m/pixel. A typical Hyperion
observation is 7.7 km (256 pixels) wide by 95km (3176
pixels) long.

3. THE AUTONOMOUS SCIENCECRAFT
The Autonomous Sciencecraft Experiment (ASE) [Chien et
al. 2005] is flight software that has been the primary means
of operating the EO-1 mission since 2004. ASE has science
processing, mission planning, and onboard execution



components. The science processing component enables
onboard analysis of Hyperion imagery to develop smaller
products for rapid downlink, downlink of alerts, and to drive
onboard decision-making. The onboard mission planning
component enables EO-1 to change future observations
based on detected events. The onboard execution
component executes the mission plans and enables the
overall system to be robust to run-time variances.

The ASE software has been operating the EO-1
spacecraft since 2004 and has successfully acquired over
20,000 images under software control.  For further
information on ASE see [Chien et al. 2005]. This paper
focuses on the onboard science element of ASE because the
onboard science element processes Hyperion hyperspectral
data onboard EO-1.

4. ONBOARD PROCESSING OF HYPERSPECTRAL
HYPERION DATA ON EO-1

As part of the ASE software we do onboard processing of 3
event types: thermal detection and summarization to enable
volcano science; flood classification of surface water to
enable flood science; and snow water ice land (SWIL)
classification to enable cryosphere science. The onboard
science algorithm can extract 12 selectable bands of the 220
Hyperion bands for a patch of 256 wide by 1024 long pixels.
In the following sections we describe these hyperspectral
data analysis algorithms in greater detail.

4.1. Thermal Classification and Summarization

EO-1 is flying an onboard thermal detection and
summarization algorithm [Davies et al. 2006].  This
algorithm wuses the infra-red bands of the Hyperion
instrument to evaluate images for very hot (over 400
Kelvin) signatures. The thermal processing algorithms use a
spectral gradient measure’ G = (2.28 um - 1.65 um)/(2.28 —
1.65) as well as a number of other thermally sensitive bands
as shown below.

Description Measure

H1: Hot radiance minimum
and pixel not noisy

0.625 < 1.65 um, 2.25 um,
& 2.28 um < 750

H2: Min. slope for trigger? Slope G > 0.13558

G=1.4 for DNs

H3/E3: No 2.28um spike (2.28wm+1.65um)/2<2.25u

m*1.2

El: Extreme radiance min.? | 0.625 < 1.25 wm, 1.65 um,

& 2.28 um <750

E2: Spectrum shape 2.28 um > 1.65 um/2

The onboard thermal classification algorithm finds all pixels
matching conditions H1, H2, & H3 listed above and labels

! Throughout this paper we use x.yy um the shorthand for
the intensity at x.yy um.

them as “HOT”. All remaining pixels that satisfy conditions
El, E2, and E3 are labeled as “EXTREME”. The thermal
algorithm downlinks a map of the hot and extreme pixels as
well as the extracted 12 spectral bands of the hot and
extreme pixels (of requested). Because the data allocation
for the summary algorithms is limited if there are too many
hot and extreme pixels only the first N will be downlinked.
Figure 1 shows sample thermal products.
7 May 2004: ASE
Thermal Classifier
Thumbnail -
(Erebus Night) &)

7 May 2004: ASE
Thermal Classifier
(Erebus Day)

Figure 1: Hot and extreme pixel classification maps as
well as Level One full data for EO-1/ASE trigger and
autonomous response data acquired of the Mount Erebus
volcano 7" May 2004 on two overflights. Figure courtesy
[Davies et al. 2006].

4.2. Flood Classification

The onboard flood classification algorithm is intended
to enable onboard recognition of major flooding events [Ip
et al. 2006]. Through iterative analysis of data from test
sites two algorithms were developed for a range of sediment
loads. The first of these flood detection algorithms uses the
ratio of 0.55 um / 0.86 um Hyperion data. The second
utilizes the ratio between the 0.99 um / 0.86 um data. One
complication in utilizing the flood classifier is accurate
estimation of cloud cover for masking the flood scene as
clouds are also H,O and thus likely to be classified as
surface water. In order to address this issue prior to flood
detection the images are screened for clouds using a cloud
classifier developed by MIT Lincoln Laboratory [Griffin et



Figure 2: Diamantina flooding sequence. False color and classified scenes of prime sites (256x1024
pixels/7.7kmx30km center subset of a Hyperion scene) along the Diamantina River, Australia (1/5/04,
1/30/04,2/6/04,2/13/04, 2/15,04,2/22/04 and 2/29/04). This figure demonstrates the EO-1's 16-
day-repeat cycle is sufficient to capture the onset and retreat of a flood event such as this one. Figure
courtesy [Ip et al. 2006]

al. 2003]. Figure 2 shows a sequence of Hyperion flood
scenes with the corresponding derived classification maps.

4.3. Cryosphere Classification

EO-1 and ASE also demonstrated onboard
classification of Snow, Water, Ice, and Land (SWIL). A
classifier was manually derived [Doggett et al. 2006] and
later a Support Vector Machine (SVM) algorithms was
automatically learned by training on expert labeled data.
The manual algorithm is shown below - Figure 3 shows the
details of the algorithm, and Figure 4 shows a sequence of
Hyperion images and derived classification. The cryosphere
algorithm uses the Normalized Difference Snow Index
(NSDI)  defined as  NSDI (0.56um
1.65um)/(0.56um+1.65um). Another cryosphere classifier
was developed using Support Vector Machine (SVM)
learning techniques and is described in [Castano et al.
2006].

5. WORK IN PROGRESS
Ongoing work includes development of products for marine
applications and benchmarking algorithms on current and
future flight processors.

Decription of cryosphes clssifior sieps in ASE release 3

Snow on

Sea Ice

= fv,m Figure 4: Sequence of false color and classified images as developed onboard
E . EO-1 tracking sea ice breakup at Prudhoe Bay, Alaska, 29 February 2004 - 27
- cssified  June 2004,

5.1. Marine applications

Ongoing work includes development of rapid products
for a range of marine applications. Ground-based
processing of marine data for an October 2008 experiment
in Monterey Bay [Chien et al. 2009] included acquisition of
Hyperion data and delivery of with two derivative science
products Fluorescence Line Height (FLH) and Maximum
Chlorophyll Index (MCI) linear baseline data products
[Gower and Borstad 2004, Gower et al. 2005]. For
Hyperion data the FLH and MCI measures were adapted
from MODIS definitions: FLH = 681um — 660um — 0.4 *
(711um — 660 um) and MCI = (711um — 681um — 0.422 *
(752 um — 660 um). Figure 5 shows a sample MCI product
produced as part of the October 2008 deployment.
Development of FLH and MCI products onboard would
enable more rapid dissemination of science results for quick
response activities (such as issuing alerts or deployment of
sensors  for  further
acquisitions).

Sep  Alprthm Chssificaion Nodes

1 If pnaalposa Water Inverse of the standard ratio vegetation index (Tucker, 1979)
2 Posa/pasm> 383 Water

3 Pass/powm< (8 Land

4 Lyan =625 or Ly s <0 Unclessified Filter for mstnament nose, petched m ASE Releme 3

5 NDSI<0.176 Unclassified  Cloud not picked up by Gaiffin et al (2003 ), and shadow
[ Pasa!Pass< 091 Unclessified Pliya and ofher bright land lacking vegetation

7 NDSI=0.56 and g /Poas <111

78 Pamifesit! Snow

b Pam i m™> 16 Unclssified Cloud not picked up by Gnfin et al (2003)

Te P lprm< 5S4 Unclassified Cloud not picked up by Griffin ot al. (2003)

7d Paesi o> 12 Tee Remuining pixels Fom step 7 are damified s snow

L NDSI<0.56 and po s /poss <1068 Unclssfied Choud not picked up hy(m\lin ot al (2003)

el NDSI<047 and pose/pose>1.76  Water

10 pua/Pasw<137

I  pye/pre™14 lce Madi fied by patch in ASE Release 2 (see text)

1 po/pow™ 265 Wader Remuining pixels fom step 10 ame left as unclassified (douds not picked up by Griffin et ol (2000
1 NDS1<027 Clowd

12 (pose~ pras)/ (poset pras)>0.71 Unclssified Cloud not picked up by Gaffin et al (20, and shadow
13 Pawiposs> 13% Wader

14 o ipas™ 173 Unclessified Shadows, all remuining pixcls axe classified a0 water

Figure 5: False color Maximum Chlorophyl|

Figure 3: Cryosphere Snow Water Ice Land (SWIL) manually derived classification algorithm

(courtesy [Doggett et al. 2006]).

Index derived from Hyperion imagery of
Monterey Bay acquired 21 October 2008.
[courtesy MBARI)



5.2. HyspIRI

Ongoing experiments and analysis of onboard processing
are targeted at evaluating onboard processing for potential
use in the HyspIRI mission — a future mission under
evaluation by NASA with hyperspectral imaging capability
[Green et al. 2008]. These studies include testing the above
algorithms as well as algorithms aimed at tracking drought
and plant stress on a range of flight processors including the
Mongoose M5 (currently flying on EO-1), Electra, Rad 750,
as well as more powerful FPGA based platforms. Currently
the thermal algorithm takes 5 minutes, cloud takes 5-10,
SWIL 40-50 minutes, and flood 30-40 minutes onboard EO-
1 running on the M5 (with onboard science processing
getting ~ 40% of the CPU due to other FSW).

6. RELATED WORK AND CONCLUSIONS
Other work has studied the use of Support Vector Machine
(SVM) learning techniques to onboard detection of active
sulfur springs [Mandrake et al, 2009]. This work includes
analysis of linear, polynomial, and gaussian kernel SVM’s
to detection of sulfur in Hyperion images — a very
challenging task due to the slight sulfur signature (sub pixel)
and limited onboard computing on EO-1. Onboard data
analysis algorithms have also been developed for the
THEMIS instrument onboard Mars Odyssey [Castano et al.
2007] but as of yet have not been integrated with the flight
software or uploaded and used. The Mars Exploration
Rovers now have the ability to analyze onboard imagery to
detect dust devils and clouds [Castano et al. 2008, Chien et
al. 2008] and a further upload is under way to enable
autonomous targeting of remote science instruments
onboard MER [Estlin et al. 2009].

We have described a number of algorithms
intended for classification of hyperspectral images onboard
spacecraft. The thermal event detection and summarization,
surface water/flood detection, and snow/water/ice/land
cryosphere tracking have been operational onboard the EO-
1 spacecraft processing Hyperion data since 2004. We then
described ongoing work towards onboard algorithms
including marine science products. Onboard production of
these science products enables: (1) more rapid delivery of
science products and (2) more rapid response to acquire
further imagery, issue alerts, or other actions.
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