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Abstract 
On-board lossless hyperspectral data compression 
reduces data volume in order to meet NASA and DoD 
limited downlink capabilities. The technique also 
improves signature extraction, object recognition and 
feature classification capabilities by providing exact 
reconstructed data on constrained downlink resources. At 
JPL a novel, adaptive and predictive technique for 
lossless compression of hyperspectral data was recently 
developed. This technique uses an adaptive filtering 
method and achieves a combination of low complexity 
and compression effectiveness that far exceeds state-of-
the-art techniques currently in use. The JPL-developed 
‘Fast Lossless’ algorithm requires no training data or 
other specific information about the nature of the spectral 
bands for a fixed instrument dynamic range. It is of low 
computational complexity and thus well-suited for 
implementation in hardware. A modified form of the 
algorithm that is better suited for data from pushbroom 
instruments is generally appropriate for flight 
implementation. A scalable field programmable gate 
array (FPGA) hardware implementation was developed. 
The FPGA implementation achieves a throughput 
performance of 58 Msamples/sec, which can be increased 
to over 100 Msamples/sec in a parallel implementation 
that uses twice the hardware resources  This paper 
describes the hardware implementation of the ‘Modified 
Fast Lossless’ compression algorithm on an FPGA. The 
FPGA implementation targets the current state-of-the-art 
FPGAs (Xilinx Virtex IV and V families) and compresses 
one sample every clock cycle to provide a fast and 
practical real-time solution for space applications. 
1. Introduction 

Hyperspectral images are three-dimensional data sets, 
where two of the dimensions are spatial and the third is 
spectral. A hyperspectral image can be regarded as a stack 
of individual images of the same spatial scene, with each 
such image representing the scene viewed in a narrow 
portion of the electromagnetic spectrum. These individual 
images are referred to as spectral bands. Hyperspectral 
images typically consist of hundreds of spectral bands; 
the voluminous amount of data comprising hyperspectral 
images makes them appealing candidates for data 

compression [19]. An example of a hyperspectral data 
cube is shown in Figure 1. It was taken by the Airborne 
Visible and Infrared Imaging Spectrometer (AVIRIS), 
which uses diffraction gratings for band separation with 
two sets of CCD arrays, one with silicon chips to sense in 
the visible range and the other with Indium-Antimony 
(InSb) chips for wavelengths in the Near-IR to Short-
Wave-IR range. AVIRIS has 224 detectors (channels) in 
the spectral dimension, extending over a range of 0.38 to 
2.50 µm. This arrangement leads to a spectral resolution 
for each chip of 0.01 µm. The spatial resolution derived 
from this depends on the platform height. A typical 
mission, mounting AVIRIS on a NASA aircraft (ER-2), 
produces a spatial resolution of about 20 meters, but this 
can be improved to five meters by flying at lower 
altitudes, which, of course, narrows the width of the 
ground coverage [1]. 

 

 
Figure 1: An example of a hyperspectral data cube  

for Pearl Harbor, Hawaii taken by the AVIRIS instrument 
 

Current NASA hyperspectral instruments either avoid 
compression or make use of only limited lossless image 
compression techniques during transmission. For 
example, the current state-of-the-practice is to use the 
Universal Source Encoder for Space (USES) chip [2]. 
USES implements the standard lossless compression 
proposed by the consultative committee for space data 
systems (CCSDS), which is based on the Rice algorithm 
[3], and has a multispectral mode, extending its operation 
to 3D data sets. The USES chip performance achieves 
limited compression effectiveness compared to other 
existing techniques, but has the advantage of being 
currently available in a radiation resistant form. The main 
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reasons for utilization of such devices by NASA are: the 
limited downlink bandwidth, the need to reduce the risk 
of corrupting the data-stream needed for accurate science 
processing, and the lack of a viable on-board platform to 
perform significant image processing and compression. 
Future instruments with more sensors and a much larger 
number of spectral bands will collect enormous volumes 
of data that will far outstrip the current ability to transmit 
it back to Earth (data rates for some instruments can go to 
several hundreds of Gbits/s). This gives rise to the need 
for efficient on-board hyperspectral data compression. 
Software solutions have limited throughput performance 
and are power hungry. Dedicated hardware solutions are 
highly desirable, taking load off the main processor while 
providing a power efficient solution at the same time. 
VLSI ASIC implementations are power- and area-
efficient, but they lack flexibility for post-launch 
modifications and repair, they are not scalable and cannot 
be configured to efficiently match specific mission needs 
and requirements. FPGAs are programmable and offer a 
low cost and flexible solution compared to traditional 
Application-Specific Integrated Circuit (ASICs). 

Exploiting dependencies in all three dimensions of 
hyperspectral data sets promises substantially more 
effective compression than two-dimensional approaches 
such as applying conventional image compression to each 
spectral band independently. With that in mind, the JPL 
Fast Lossless hyperspectral compressor was developed. It 
is a predictive technique that uses an adaptive filtering 
method and achieves a combination of low complexity 
and compression effectiveness that far exceeds state-of-
the-art techniques currently in use. It will be referred to in 
this paper as the “Fast Lossless” algorithm [4]. 

We have previously described an algorithm for 
lossless data compression of multispectral imagery 
(including hyperspectral imagery) [22]. Our previous 
paper [22] presents in details the “Fast Lossless” 
algorithm for “whisk broom”-type instrument such as the 
Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS) instrument and its implementation and 
performance on a FPGA Virtex LX-160. In this paper, we 
consider the application of compression algorithm for 
“push broom”-type multispectral imagers. These imagers 
produce data that is less well-suited to the “Fast Lossless” 
compressor than data produced by other types of imagers, 
such as the “whisk broom”-type AVIRIS instrument. In 
this paper we present briefly the “Fast Lossless” 
compression algorithm and describe in details the 
modification to the algorithm and its implementation on a 
FPGA Virtex LX-25. It results in improved compression 
effectiveness (i.e., smaller compressed sizes) when the 
algorithm is applied to raw (uncalibrated) data from a 
“push broom”-type multispectral imager [23].  

Section 2 of this paper describes the compression 
algorithms and equivalent hardware implementation; 

Section 3 describes the hardware platform. Section 4 
describes the results of our initial experiments, and 
Section 5 summarizes our results. 
 
2. Adaptive Filtering 
Pushbroom-type Instruments 

Pushbroom-type multispectral imagers use a detector 
array to acquire data in spatial-spectral slices. Thus each 
detector element corresponds to a specific spectral band 
and cross-track position. Because the characteristics of 
detector elements generally vary somewhat from element 
to element, cross-track adjacent samples in a given 
spectral band will not be as similar as they would be in an 
instrument that uses the same detector element for all 
samples in a given spectral band (e.g., in a whisk-broom-
type instrument). On the other hand, along-track adjacent 
samples will tend to be very similar. As a side effect of 
the variation within spectral bands, the correlation 
between samples at the same spatial location in different 
spectral bands varies with cross-track position. As such it 
appears that purely spectral prediction will not work well 
with this type of data. Pushbroom-type instruments are 
generally the multispectral imagers of choice for space 
applications (as opposed to whisk-broom-type 
instruments). In the following sections we describe both 
the Fast Lossless compressor and its modified version.  
 
Algorithm Background 

The Fast Lossless compressor encodes data samples 
one-at-a-time, typically in raster scan order within a given 
spectral band. It uses a form of predictive compression, 
i.e. sample values are estimated by linear prediction, and 
the differences between the estimates and the actual 
sample values are encoded into the compressed bitstream. 
Only previously encoded samples are used to predict a 
given sample in order that the prediction operation can be 
duplicated by the decoder. Estimation of sample values 
by linear prediction is a natural strategy for lossless 
compression of hyperspectral images. This is a form of 
predictive compression, or, more specifically, a form of 
differential pulse code modulation (DPCM).  

The Fast Lossless compressor uses the sign algorithm 
[5], which is a variation of the Least Mean Square (LMS) 
algorithm [6], a well-known low-complexity adaptive 
filtering algorithm. The sign algorithm and the LMS 
algorithm are members of a family of low complexity 
adaptive linear filtering techniques, which are used 
extensively in signal processing applications such as 
audio data compression. However they have not been 
well studied for image or hyperspectral data compression. 
A straightforward extension of the LMS algorithm to 
two-dimensional (2-D) images is well documented in the 
literature with applications to image processing and 
application to filtering magnetic resonance imaging 
(MRI) data. In a few cases researchers have been directly 



interested in applying the LMS algorithm to image 
compression. An early example describes a fixed rate, 
lossy, predictive compression of (2-D) images. There has 
been a fair amount of work on lossless predictive 
compression of hyperspectral images that does not 
involve the LMS algorithm or its relatives. In particular, 
the methods used by Rizzo et al. [7] have low complexity 
and yield compression effectiveness similar to that of our 
method. Good compression effectiveness results are also 
reported in the literature by Aiazzi et al. [8], but those 
results are obtained with methods of moderately high 
complexity. 

 
Fast Lossless Algorithm Description  

The essence of the Fast Lossless hyperspectral 
compression algorithm is adaptive linear predictive 
compression using the sign algorithm for filter adaptation, 
with local mean estimation and subtraction. We start with 
a brief description of the LMS algorithm and the sign 
algorithm. For both of these algorithms a desired signal 

td  is to be estimated from an input (column) vector ,t ku , 
where t is an index which increases sequentially and 
represents the time index in the hardware implementation. 
The desired signal td  is the sample value at spatial 
location (x, y) in spectral band z (referred to as Zt in 
Figure 4). The estimate ˆ

td  is a linear function of ,t ku ; 

specifically, , ,
ˆ T

t t k t kd w u , where .t kw  is the filter 

weight vector at index t. The components of 

,t ku represent the sample values at spatial location (x, y) 
in spectral band z-k, (referred to as Zt-k Figure 4) with 
k=1,2 and 3, as well as the sample values at neighborhood 
location (y-1,x-1), (y-1,x), (y,x-1) in spectral band z 
(referred to as B2 for (y-1,x-1), B1 for (y-1,x) in Figure 4). 

After an estimate ˆ
td  is computed (referred to as EC 

in Figure 4), the error between the estimate ˆ
td  and the 

desired signal td  is computed, specifically, ˆ
t t te d d  

(referred to as  in Figure 3). 
This error value is used to update the filter weights. 

For the LMS algorithm, 

, 1 , ,t k t k t k tw w u e  
For the sign algorithm illustrated in Figure 3, 

, 1 , , sgn( )t k t k t k tw w u e  
In each case µ is a positive, scalar parameter (the step 

size parameter) that controls the trade-off between 
convergence speed and average steady-state error [5]. 

To overcome problems of poor combinations of 
convergence speed and steady-state performance, a local 
mean subtraction method was used, motivated by [9]. In 

our local mean subtraction method, for each sample we 
compute a preliminary estimate using a fixed, causal, 
linear predictor involving only samples from the same 
band (purple cells in Figure 2). The preliminary estimate 
of sample s(x, y, z) is denoted by ( , , )s x y z  which is the 
local mean (LMt in Figure 4) of sample values at (y-1,x-
1,z), (y-1,x,z), (y,x-1,z) and (y-1,x+1,z), noted respectively 
as B2 for (y-1,x,z), B1 for (y-1,x+1,z) and BZ_previous 
for (y,x-1,z) in Figure 4.  

 
Figure 2: 3D neighborhood prediction for Fast Lossless 
(1 to 19) and Modified Fast Lossless (3,5,8,10,13,15,18) 

For our implementation we use a six-sample 
prediction neighborhood with three samples from the 
same band as the sample to be predicted, and one sample 
each from the three preceding bands (blue cells in Figure 
2). All samples are corrected using the local mean 
subtraction method so that  
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is the corresponding input vector. The general rule is to 
adjust each sample in the prediction neighborhood by the 
preliminary estimate in the same band as the sample but at 
the spatial location of the sample being predicted. 
 
Modified Fast Lossless Algorithm Description  

As explained above, in the fast lossless algorithm, a 
local mean is computed for each sample as the average 
sample value in a causal neighborhood of four adjacent 
samples within the spectral band [23]. However, for data 
from pushbroom-type multispectral imagers we found 
that letting the local mean be equal to the previous sample 
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in the same cross-track position (and in the same spectral 
band) gives significantly better results.  

Specifically, for all rows (along-track positions) 
except the first row in a segment, we let the local mean 
equal the previous sample in the same cross-track 
position, specifically position (y-1, x, z); this corresponds 
to B2 in Figure 4. For the first row in a segment, no such 
sample is available, so we let the local mean equal the 
causal cross-track adjacent sample, specifically position 
(y, x-1, z); this corresponds to BZ_previous in Figure 4. In 
addition, the prediction neighborhood of a sample is 
changed. In the original algorithm described above, this 
neighborhood contained three samples from the same 
band as the given sample and one sample from each of 
the three preceding spectral bands; under the modified 
algorithm, only the three samples from three preceding 
spectral bands are used. These are denoted LMt-3, LMt-2 
and LMt-1. 
Golomb Encoder and Decompressor  

The difference ˆ
t t te d d  is encoded in the 

compressed bit stream using Golomb codes [10] with 
parameters that are powers of 2. The decompressor 
decodes this difference te from the bitstream, and can 

compute ˆ
td and ( , , )s y x z  from previously decoded 

samples, and therefore can reconstruct the value s(y, x, z).  
Further details of the algorithm can be found in [4] and 
[23]  

W1-B
(480X1)

wi numbers are 
stored as 16-bits 

2'complement 
format.

wi

W1

To Fig 4

IDLE

z_cntr=128 SET_Uyes

SET_U:
µ_st= µ_st+1
µ_st+1= Read from 

RAM block

IDLE:
µ_st    = Read from 

RAM block
µ_st+1= Read from 

RAM block
w_shift= 14
s= (µ_shift - w_shift) + 1
z_cntr= 0

no

DIFF1_P= 
(Δ[12]==1) ? 

DIFF1 : (DIFF1*-1)

Note: Same logic is used to calculate W2-W6 

DIFF1

DIFF1_P

DIFF1_P>> s

+ 1'b1

s

((DIFF1_P >> s) >> 1)

(DIFF1_P >> s) + 1'b1

+

Δ

WAIT

if(wi(temp)>17'h1ffff)
   wi+1= 17'h1ffff

else if(wi+1<-17'h1ffff)
  wi+1= -17'h1ffff

else
  wi+1= wi(temp)

wi(temp)

wi+1

Width spec’s
Δ= 15 bits
DIFF1_P= 15 bits
(DIFF1_P>>s)= 15 bits
((DIFF1_P>>s)+1'b1)= 15 bits
((DIFF1_P>>s)>>1)= 15 bits
wi= 17 bits
wi(temp) = 17 bits
wi+1= 17 bits

Figure 3: Block diagram of the digital implementation  
that illustrates  the filter weights updates, 

, 1 , , sgn( )t k t k t k tw w u e  as a function of ,t ku  
(referred to as DIFF1), the sign of the error between the 

estimate and the desired signal te  (referred to as ), and 
the step size parameter  (referred to as s). 
Performance  

The Fast Lossless algorithm provides outstanding 
compression effectiveness. JPL’s tests with uncalibrated 
AVIRIS data sets demonstrate compression results of 
about 40% lower bit rate than state-of-the-art 2D 
approaches (approximately 4:1 compression ratio) as 
shown in Figure 5. In addition to making use of 
correlations in all three dimensions, the algorithm also 
performs well compared to more complicated 3-D 
algorithms such as ICER-3D [11][12][13][14]. For the 
modified lossless algorithm, we obtained compression 
results on datasets from a pushbroom-type airborne 
testbed multispectral imaging instrument that produces 
12-bit samples with 664 spectral bands and 640 cross-
track samples. In general, the modified algorithm reduces 
compressed sizes by 15–25% compared to the original 
fast lossless compressor and decreases the overall 
complexity of the algorithm by a small amount.  
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Figure 5: Compression performance average over 19 
uncalibrated AVIRIS hyperspectral test data sets. ICER 
and ICER-3D are state-of-the-art 2D image and 3D 
hyperspectral compressors developed at JPL. 
 
3. FPGA Implementation 

The modified Fast Lossless algorithm illustrated 
above was implemented and integrated into a 
reconfigurable system for a spacecraft payload requiring 
high communication throughput. The reconfigurable 
system takes advantage of high-density SRAM-based 
FPGAs to accommodate the on-board computer resulting 
in an efficient hardware architecture in terms of power, 
area, and speed. 
Background 

FPGA and ASIC hardware implementations for 
lossless hyperspectral data compression have been 
proposed by other researchers. At JPL, Scalable and 
Embedded FPGA implementation of the ICER-3D 
hyperspectral data compressor, a lossless and lossy 
wavelet based compressor, was developed. The 
implementation targets the Xilinx Virtex-II Pro 



architecture and it takes advantage of the FPGA 
embedded PowerPC core and the on-chip bus 
architecture. Such platforms allow efficient partitioning 
of the algorithm into software and hardware modules to 
take full advantage of the available hardware resources 

and provide a system on a chip (SoC) solution for the 
hyperspectral data compression problem.  
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Figure 4.  Modified Fast Lossless Compression: Block diagram of the digital implementation for the computation of the 
estimate ˆ

td  (referred to as EC) using a five sample neighborhood with two samples from the same band as the sample to 
be predicted (B2, BZ) and one sample each from the three preceding bands (Zt-1, Zt-2, Zt-3). The computation of the 
estimate for each sample uses a local mean subtraction method involving only samples from the same band (LMt, LMt-1, 
LMt-2, LMt-3). The estimate ˆ

td  is computed by multiplying and adding respectively the weights (W4 to W6) by the 
inputs (DIFF4 to DIFF6) and is calculated within one clock cycle. The external link can be a Ring Bus that brings in the 
sensor data at a speed up to 800 Mbits/sec. 

 
The implementation was prototyped on a Virtex II 

pro platform, and tested with a clock of 50 Mhz resulting 
in an end-to-end throughput of 8 Msample/sec. 

Surrey Space Center developed a reconfigurable 
Intellectual Property (IP) cores using the Xilinx 
AccelDSP tool [15]. Their IP core implemented a design 
based on an extended Rice algorithm [3] proposed by the 
CCSDS with a combination of 2-D prediction and 
independency coding and utilizing a pre-scanning 

scheme. This approach achieved better compression 
performance than JPEG-LS. Their implementation was 
tested on a ZestSC2 FPGA prototyping board with a 
clock of 48 MHz and demonstrated a power consumption 
of 625 mW.  

The team lead by Bristol University proposed a 
universal algorithm and hardware architecture for 
context-based statistical lossless compression of multiple 
types of data using FPGA devices that support partial and 



dynamic reconfiguration [16][17]. Their proposed 
compression system uses a dynamically reconfigurable 
modeling stage followed by statically configured 
probability estimation and arithmetic coding stages. 
Dynamic modeling is specialized to each data type and 
uses a combination of context modeling, predictive 
coding and motion estimation depending on the data type 
being processed: 1-D general data, 2-D image data or 3-D 
multispectral images or video. The throughput 
performance, of the proposed system is 100Mbits/sec on a 
Xilinx Virtex-4 SX35 FPGA. 

The team lead by GSFC developed an ASIC 
implementation of a new CCSDS 2D Image Compression 
Recommendation [18] [24]. The algorithm adopted in the 
recommendation consists of a two-dimensional discrete 
wavelet transform of the image, followed by progressive 
bit-plane coding of the transformed data. The algorithm 
provides lossless compression and is suitable for both 
frame-based image data and scan-based sensor data, and 
has applications for near-Earth and deep-space missions. 
This hardware implementation separates the Discrete 
Wavelet Transform (DWT) and Bit-Plane-Encoder (BPE) 
into two ASICs. The chips are expected to process over 
20 Msamples/sec at lower than 0.15 watts/Msamples/sec. 
The throughput rate is limited by currently available rad-
hard RAM chip that would serve as the external RAM for 
the BPE processing [20] 

Other current hardware developments of lossless 
image compression algorithms are based on several 
lossless compression hardware devices for universal data 
such as files (tapes, hard disk drives, file servers) and 
communication data (LAN, WAN, wireless) that are 
currently commercially available. Their performance has 
been compared for throughputs up to 1.6Gbit/s 
compression [21].  
FPGA implementation – Architecture and Data Flow 

The architecture of Fast Lossless compression 
algorithm is shown in Figure 6. The implementation 
works on 32 frames of hyperspectral data at a time. Raw 
imagery data is stored as three dimensional cube (for 
example Y=32, X=640, Z=480,). Each pixel of the 
hyperspectral cube can accommodate up to 14 bits 
depending on the resolution of the sensory data. 

The current implementation targets the Xilinx Virtex 
IV, LX25 FPGA, and assumes a BIP (Byte interleaved by 
Pixel) format. The basic blocks of the implementation are: 
LOCAL MEAN is an Accumulator and 4x16 bits Shift 

Register that is used to store the sum of three upper 
spatial pixels from the previous line and the previous 
spectral pixel from the previous band Shift Register 
is used to store and shift the last four accumulator 
results. 

DIFFERENCE block consists of six identical subtract 
modules that are used to subtract the local mean 
values from the previous spatial and spectral pixels  

WEIGHT block is made up of six, of length Z (number of 
spectral bands) by up to 14 bits FIFOs that is used to 
adjust the input to the multiplier. Values of weight 
are re-calculated for every new spectral row (Z). On 
power up all the weight are initialized to a default 
value. 

MULTIPLIER block includes six Virtex IV/LX25, 18x18 
multiplier primitives. Multipliers are used to multiply 
the output of Difference block with their adjusted 
Weight values. 

ESTIMATE block consists of an Accumulator and a 
Comparator. The Accumulator is used to sum the 
multiplier values. The Estimate is adjusted and 
clipped depending on the accumulated result. 

DELTA block subtracts the value of current pixel data 
from the Estimate to adjust the WEIGHT and also 
used as an input to the ENCODER. 

ENCODER is made up of a Comparator, of length Z 
(number of spectral bands) by up to 14 bits FIFO, a 
Look Up Table and miscellaneous circuitry. Output 
of the Encoder is used to determine the width of data 
to be packed. 

PACKER includes Virtex IV distributed RAM and 
multiplexers. Distributed RAM is used for Look Up 
Table to adjust the compressed data into the final 
packed data word. Compressed data is packed and 
outputted as 32-bits words using the using Golomb 
codes [10]. It is used to interface to 32bits cPCI bus. 
The basic concept of the data flow for the FPGA 

implementation (Fig. 6) is as follows. Initially raw 
imagery data of each spectral (Z) row is streamed one row 
at a time into the “CURRENT Z DOUBLE BUFFER”. 
This buffer is configured as 2Z by up to 14 bits wide shift 
register. Two rows of length Z are stored in “CURRENT 
Z DOUBLE BUFFER”. New data is shifted in as pixel 
data is compressed.  

Three upper spatial pixels (X-1,Y-1),(X,Y-1) and 
X+1,Y-1) and previous spatial pixel (X-1,Y) are needed to 
compress the current pixel data. For the first pixel (x=0, 
y=0) of each band, actual values are fed through the 
compressor and packed without compression. Current 
pixel data being compressed is also shifted out in parallel 
to the external RAM to produce an efficient pipeline. This 
data is inputted back to the “THREE UPPER Y AND 
PREVIOUS Y” internal FPGA pixel buffers for 
subsequent pixel processing. 
Compression of one pixel of the data happens once every 
FPGA clock cycle. Compressed data is fed to the 
PACKER module which packs the compressed data into 
32 bits data words. Each 32 bits data word may contain 
several pixels of data. Also, a compressed pixel may fall 
into two 32-bit data words boundaries, which in turn will 
be decoded by the decompression algorithm accordingly. 
The implementation assumes an external fast link to bring 



the raw data to the FPGA such as a ring bus (of up to 800 
Mbits/sec). 
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Figure 6 Block diagram of the FPGA implementation of Modified Fast Lossless Compressor 

 
4. Performance 

Our FPGA implementation was benchmarked on the 
Xilinx Virtex IV LX25 device and ported to a Xilinx 
prototype board (Figure 7). The current implementation 
excluding the packer has a critical path of 17.5 nsec 
which dictated a clock speed of 58MHz. The critical path 
delay is and-to-end measurement between the 
uncompressed input data and the output compressed data 
stream as shown in Figure 6. The implementation 
compresses one sample every clock cycle, which results 
in a speed of 58 MSample/sec or 58 times faster than the 
software implementation running on a Pentium IV 
machine. The implementation has a rather low device 
utilization of the Xilinx Virtex IV LX25 as shown in the 
Table 1 making the total power consumption of the 
implementation about 1.27 watts. 

 
Figure 7:  FPGA Development Board 

Table 1: LX25 Device Utilization Compression 
 Available[#] Used[#] Used[%] 
Slice 10752 4712 43% 
Slice F/F 21504 810 3% 
4-input LUT 21504 8986 41% 
FIFO/RAM16 72 9 12% 
DSP48 48 6 12% 

 

Table 2: LX25 Device Utilization Encoder 
 Available[#] Used[#] Used[%] 
Slice 10752 129 1% 
Slice F/F 21504 12 <1% 
4-input LUT 21504 240 1% 
FIFO/RAMB16 72 1 1% 
 
Table 3: LX25 Device Utilization Packer 
 Available[#] Used[#] Used[%] 
Slice 10752 4606 42% 
Slice F/F 21504 170 <1% 
4-input LUT 21504 8812 40% 

 
The following table reports the timing for the 
compression and the Encoder. 

Table 4: LX25 Timing for each blocks 

 Time [nsec] 
Compression / Estimate ~2 
Encoder 15.5 
Total ~17.5 (58 MHz) 

 
Our architecture and its FPGA implementation can 

be modified easily to process two samples in parallel 
which will increase the speed to over 100 MSamples/sec 
while increasing the resource utilization by a factor of 
two. Our FPGA implementation is easily portable to other 
FPGA platforms and to an ASIC implementation. It can 
also be scaled for faster processing. 
5. Summary 

We presented in this paper an FPGA implementation 
of a novel hyperspectral data compression algorithm, the 
JPL adaptive modified Fast Lossless compressor for 
pushbroom instruments. The implementation targets the 
Xilinx Virtex IV FPGAs and provides an acceleration of 



at least 58 times the software implementation, making the 
use of this compressor practical for satellites and planet 
orbiting missions with hyperspectral instruments. Future 
development will provide multiple implementations and 
options to deploy various versions of the algorithm to 
accommodate data from different instrument types. 
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