
Hardware Implementation of Lossless Adaptive and Scalable
Hyperspectral Data Compression for Space

Nazeeh Aranki1, Didier Keymeulen1, Alireza Bakhshi2 and, Matthew Klimesh1

1Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
2 B&A Engineering Inc., 440 South Cataract Ave #H, San Dimas, CA 91773

818-354-4285
nazeeh.aranki@jpl.nasa.gov

Abstract
On-board lossless hyperspectral data compression
reduces data volume in order to meet NASA and DoD
limited downlink capabilities. The technique also
improves signature extraction, object recognition and
feature classification capabilities by providing exact
reconstructed data on constrained downlink resources. At
JPL a novel, adaptive and predictive technique for
lossless compression of hyperspectral data was recently
developed. This technique uses an adaptive filtering
method and achieves a combination of low complexity
and compression effectiveness that far exceeds state-of-
the-art techniques currently in use. The JPL-developed
‘Fast Lossless’ algorithm requires no training data or
other specific information about the nature of the spectral
bands for a fixed instrument dynamic range. It is of low
computational complexity and thus well-suited for
implementation in hardware. A modified form of the
algorithm that is better suited for data from pushbroom
instruments is generally appropriate for flight
implementation. A scalable field programmable gate
array (FPGA) hardware implementation was developed.
The FPGA implementation achieves a throughput
performance of 58 Msamples/sec, which can be increased
to over 100 Msamples/sec in a parallel implementation
that uses twice the hardware resources This paper
describes the hardware implementation of the ‘Modified
Fast Lossless’ compression algorithm on an FPGA. The
FPGA implementation targets the current state-of-the-art
FPGAs (Xilinx Virtex IV and V families) and compresses
one sample every clock cycle to provide a fast and
practical real-time solution for space applications.
1. Introduction

Hyperspectral images are three-dimensional data sets,
where two of the dimensions are spatial and the third is
spectral. A hyperspectral image can be regarded as a stack
of individual images of the same spatial scene, with each
such image representing the scene viewed in a narrow
portion of the electromagnetic spectrum. These individual
images are referred to as spectral bands. Hyperspectral
images typically consist of hundreds of spectral bands;
the voluminous amount of data comprising hyperspectral
images makes them appealing candidates for data

compression [19]. An example of a hyperspectral data
cube is shown in Figure 1. It was taken by the Airborne
Visible and Infrared Imaging Spectrometer (AVIRIS),
which uses diffraction gratings for band separation with
two sets of CCD arrays, one with silicon chips to sense in
the visible range and the other with Indium-Antimony
(InSb) chips for wavelengths in the Near-IR to Short-
Wave-IR range. AVIRIS has 224 detectors (channels) in
the spectral dimension, extending over a range of 0.38 to
2.50 µm. This arrangement leads to a spectral resolution
for each chip of 0.01 µm. The spatial resolution derived
from this depends on the platform height. A typical
mission, mounting AVIRIS on a NASA aircraft (ER-2),
produces a spatial resolution of about 20 meters, but this
can be improved to five meters by flying at lower
altitudes, which, of course, narrows the width of the
ground coverage [1].

Figure 1: An example of a hyperspectral data cube

for Pearl Harbor, Hawaii taken by the AVIRIS instrument

Current NASA hyperspectral instruments either avoid
compression or make use of only limited lossless image
compression techniques during transmission. For
example, the current state-of-the-practice is to use the
Universal Source Encoder for Space (USES) chip [2].
USES implements the standard lossless compression
proposed by the consultative committee for space data
systems (CCSDS), which is based on the Rice algorithm
[3], and has a multispectral mode, extending its operation
to 3D data sets. The USES chip performance achieves
limited compression effectiveness compared to other
existing techniques, but has the advantage of being
currently available in a radiation resistant form. The main

mailto:nazeeh.aranki@jpl.nasa.gov

reasons for utilization of such devices by NASA are: the
limited downlink bandwidth, the need to reduce the risk
of corrupting the data-stream needed for accurate science
processing, and the lack of a viable on-board platform to
perform significant image processing and compression.
Future instruments with more sensors and a much larger
number of spectral bands will collect enormous volumes
of data that will far outstrip the current ability to transmit
it back to Earth (data rates for some instruments can go to
several hundreds of Gbits/s). This gives rise to the need
for efficient on-board hyperspectral data compression.
Software solutions have limited throughput performance
and are power hungry. Dedicated hardware solutions are
highly desirable, taking load off the main processor while
providing a power efficient solution at the same time.
VLSI ASIC implementations are power- and area-
efficient, but they lack flexibility for post-launch
modifications and repair, they are not scalable and cannot
be configured to efficiently match specific mission needs
and requirements. FPGAs are programmable and offer a
low cost and flexible solution compared to traditional
Application-Specific Integrated Circuit (ASICs).

Exploiting dependencies in all three dimensions of
hyperspectral data sets promises substantially more
effective compression than two-dimensional approaches
such as applying conventional image compression to each
spectral band independently. With that in mind, the JPL
Fast Lossless hyperspectral compressor was developed. It
is a predictive technique that uses an adaptive filtering
method and achieves a combination of low complexity
and compression effectiveness that far exceeds state-of-
the-art techniques currently in use. It will be referred to in
this paper as the “Fast Lossless” algorithm [4].

We have previously described an algorithm for
lossless data compression of multispectral imagery
(including hyperspectral imagery) [22]. Our previous
paper [22] presents in details the “Fast Lossless”
algorithm for “whisk broom”-type instrument such as the
Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) instrument and its implementation and
performance on a FPGA Virtex LX-160. In this paper, we
consider the application of compression algorithm for
“push broom”-type multispectral imagers. These imagers
produce data that is less well-suited to the “Fast Lossless”
compressor than data produced by other types of imagers,
such as the “whisk broom”-type AVIRIS instrument. In
this paper we present briefly the “Fast Lossless”
compression algorithm and describe in details the
modification to the algorithm and its implementation on a
FPGA Virtex LX-25. It results in improved compression
effectiveness (i.e., smaller compressed sizes) when the
algorithm is applied to raw (uncalibrated) data from a
“push broom”-type multispectral imager [23].

Section 2 of this paper describes the compression
algorithms and equivalent hardware implementation;

Section 3 describes the hardware platform. Section 4
describes the results of our initial experiments, and
Section 5 summarizes our results.

2. Adaptive Filtering
Pushbroom-type Instruments

Pushbroom-type multispectral imagers use a detector
array to acquire data in spatial-spectral slices. Thus each
detector element corresponds to a specific spectral band
and cross-track position. Because the characteristics of
detector elements generally vary somewhat from element
to element, cross-track adjacent samples in a given
spectral band will not be as similar as they would be in an
instrument that uses the same detector element for all
samples in a given spectral band (e.g., in a whisk-broom-
type instrument). On the other hand, along-track adjacent
samples will tend to be very similar. As a side effect of
the variation within spectral bands, the correlation
between samples at the same spatial location in different
spectral bands varies with cross-track position. As such it
appears that purely spectral prediction will not work well
with this type of data. Pushbroom-type instruments are
generally the multispectral imagers of choice for space
applications (as opposed to whisk-broom-type
instruments). In the following sections we describe both
the Fast Lossless compressor and its modified version.

Algorithm Background

The Fast Lossless compressor encodes data samples
one-at-a-time, typically in raster scan order within a given
spectral band. It uses a form of predictive compression,
i.e. sample values are estimated by linear prediction, and
the differences between the estimates and the actual
sample values are encoded into the compressed bitstream.
Only previously encoded samples are used to predict a
given sample in order that the prediction operation can be
duplicated by the decoder. Estimation of sample values
by linear prediction is a natural strategy for lossless
compression of hyperspectral images. This is a form of
predictive compression, or, more specifically, a form of
differential pulse code modulation (DPCM).

The Fast Lossless compressor uses the sign algorithm
[5], which is a variation of the Least Mean Square (LMS)
algorithm [6], a well-known low-complexity adaptive
filtering algorithm. The sign algorithm and the LMS
algorithm are members of a family of low complexity
adaptive linear filtering techniques, which are used
extensively in signal processing applications such as
audio data compression. However they have not been
well studied for image or hyperspectral data compression.
A straightforward extension of the LMS algorithm to
two-dimensional (2-D) images is well documented in the
literature with applications to image processing and
application to filtering magnetic resonance imaging
(MRI) data. In a few cases researchers have been directly

interested in applying the LMS algorithm to image
compression. An early example describes a fixed rate,
lossy, predictive compression of (2-D) images. There has
been a fair amount of work on lossless predictive
compression of hyperspectral images that does not
involve the LMS algorithm or its relatives. In particular,
the methods used by Rizzo et al. [7] have low complexity
and yield compression effectiveness similar to that of our
method. Good compression effectiveness results are also
reported in the literature by Aiazzi et al. [8], but those
results are obtained with methods of moderately high
complexity.

Fast Lossless Algorithm Description

The essence of the Fast Lossless hyperspectral
compression algorithm is adaptive linear predictive
compression using the sign algorithm for filter adaptation,
with local mean estimation and subtraction. We start with
a brief description of the LMS algorithm and the sign
algorithm. For both of these algorithms a desired signal

td is to be estimated from an input (column) vector ,t ku ,
where t is an index which increases sequentially and
represents the time index in the hardware implementation.
The desired signal td is the sample value at spatial
location (x, y) in spectral band z (referred to as Zt in
Figure 4). The estimate ˆ

td is a linear function of ,t ku ;

specifically, , ,
ˆ T

t t k t kd w u , where .t kw is the filter

weight vector at index t. The components of

,t ku represent the sample values at spatial location (x, y)
in spectral band z-k, (referred to as Zt-k Figure 4) with
k=1,2 and 3, as well as the sample values at neighborhood
location (y-1,x-1), (y-1,x), (y,x-1) in spectral band z
(referred to as B2 for (y-1,x-1), B1 for (y-1,x) in Figure 4).

After an estimate ˆ
td is computed (referred to as EC

in Figure 4), the error between the estimate ˆ
td and the

desired signal td is computed, specifically, ˆ
t t te d d

(referred to as in Figure 3).
This error value is used to update the filter weights.

For the LMS algorithm,

, 1 , ,t k t k t k tw w u e
For the sign algorithm illustrated in Figure 3,

, 1 , , sgn()t k t k t k tw w u e
In each case µ is a positive, scalar parameter (the step

size parameter) that controls the trade-off between
convergence speed and average steady-state error [5].

To overcome problems of poor combinations of
convergence speed and steady-state performance, a local
mean subtraction method was used, motivated by [9]. In

our local mean subtraction method, for each sample we
compute a preliminary estimate using a fixed, causal,
linear predictor involving only samples from the same
band (purple cells in Figure 2). The preliminary estimate
of sample s(x, y, z) is denoted by (, ,)s x y z which is the
local mean (LMt in Figure 4) of sample values at (y-1,x-
1,z), (y-1,x,z), (y,x-1,z) and (y-1,x+1,z), noted respectively
as B2 for (y-1,x,z), B1 for (y-1,x+1,z) and BZ_previous
for (y,x-1,z) in Figure 4.

Figure 2: 3D neighborhood prediction for Fast Lossless
(1 to 19) and Modified Fast Lossless (3,5,8,10,13,15,18)

For our implementation we use a six-sample
prediction neighborhood with three samples from the
same band as the sample to be predicted, and one sample
each from the three preceding bands (blue cells in Figure
2). All samples are corrected using the local mean
subtraction method so that

,

(1, 1,) (, ,) 3
(, 1,) (, ,) 2
(1, ,) (, ,) 1

(, , 1) (, , 1) 4
(, , 2) (, , 2) 5
(, , 3) (, , 3) 6

t k

s x y z s x y z Diff
s x y z s x y z Diff
s x y z s x y z Diff

u s x y z s x y z Diff
s x y z s x y z Diff
s x y z s x y z Diff

is the corresponding input vector. The general rule is to
adjust each sample in the prediction neighborhood by the
preliminary estimate in the same band as the sample but at
the spatial location of the sample being predicted.

Modified Fast Lossless Algorithm Description

As explained above, in the fast lossless algorithm, a
local mean is computed for each sample as the average
sample value in a causal neighborhood of four adjacent
samples within the spectral band [23]. However, for data
from pushbroom-type multispectral imagers we found
that letting the local mean be equal to the previous sample

 2 3 4

 1 0

 7 8 9

 6 5

 12 13 14

 11 10

 17 18 19

 16 15

in the same cross-track position (and in the same spectral
band) gives significantly better results.

Specifically, for all rows (along-track positions)
except the first row in a segment, we let the local mean
equal the previous sample in the same cross-track
position, specifically position (y-1, x, z); this corresponds
to B2 in Figure 4. For the first row in a segment, no such
sample is available, so we let the local mean equal the
causal cross-track adjacent sample, specifically position
(y, x-1, z); this corresponds to BZ_previous in Figure 4. In
addition, the prediction neighborhood of a sample is
changed. In the original algorithm described above, this
neighborhood contained three samples from the same
band as the given sample and one sample from each of
the three preceding spectral bands; under the modified
algorithm, only the three samples from three preceding
spectral bands are used. These are denoted LMt-3, LMt-2
and LMt-1.
Golomb Encoder and Decompressor

The difference ˆ
t t te d d is encoded in the

compressed bit stream using Golomb codes [10] with
parameters that are powers of 2. The decompressor
decodes this difference te from the bitstream, and can

compute ˆ
td and (, ,)s y x z from previously decoded

samples, and therefore can reconstruct the value s(y, x, z).
Further details of the algorithm can be found in [4] and
[23]

W1-B
(480X1)

wi numbers are
stored as 16-bits

2'complement
format.

wi

W1

To Fig 4

IDLE

z_cntr=128 SET_Uyes

SET_U:
µ_st= µ_st+1
µ_st+1= Read from

RAM block

IDLE:
µ_st = Read from

RAM block
µ_st+1= Read from

RAM block
w_shift= 14
s= (µ_shift - w_shift) + 1
z_cntr= 0

no

DIFF1_P=
(Δ[12]==1) ?

DIFF1 : (DIFF1*-1)

Note: Same logic is used to calculate W2-W6

DIFF1

DIFF1_P

DIFF1_P>> s

+ 1'b1

s

((DIFF1_P >> s) >> 1)

(DIFF1_P >> s) + 1'b1

+

Δ

WAIT

if(wi(temp)>17'h1ffff)
 wi+1= 17'h1ffff

else if(wi+1<-17'h1ffff)
 wi+1= -17'h1ffff

else
 wi+1= wi(temp)

wi(temp)

wi+1

Width spec’s
Δ= 15 bits
DIFF1_P= 15 bits
(DIFF1_P>>s)= 15 bits
((DIFF1_P>>s)+1'b1)= 15 bits
((DIFF1_P>>s)>>1)= 15 bits
wi= 17 bits
wi(temp) = 17 bits
wi+1= 17 bits

Figure 3: Block diagram of the digital implementation
that illustrates the filter weights updates,

, 1 , , sgn()t k t k t k tw w u e as a function of ,t ku
(referred to as DIFF1), the sign of the error between the

estimate and the desired signal te (referred to as), and
the step size parameter (referred to as s).
Performance

The Fast Lossless algorithm provides outstanding
compression effectiveness. JPL’s tests with uncalibrated
AVIRIS data sets demonstrate compression results of
about 40% lower bit rate than state-of-the-art 2D
approaches (approximately 4:1 compression ratio) as
shown in Figure 5. In addition to making use of
correlations in all three dimensions, the algorithm also
performs well compared to more complicated 3-D
algorithms such as ICER-3D [11][12][13][14]. For the
modified lossless algorithm, we obtained compression
results on datasets from a pushbroom-type airborne
testbed multispectral imaging instrument that produces
12-bit samples with 664 spectral bands and 640 cross-
track samples. In general, the modified algorithm reduces
compressed sizes by 15–25% compared to the original
fast lossless compressor and decreases the overall
complexity of the algorithm by a small amount.

2.40

2.80

3.20

3.60

4.00

4.40

4.80

0 2 4 6 8 10 12 14 16 18 20
data set index

ra
te

 (b
its

/p
ix

el
/b

an
d)

2D Compression (ICER)
(State of the
art)

Fast Lossless

3D Compression
(ICER-3D)

Compression gain

Figure 5: Compression performance average over 19
uncalibrated AVIRIS hyperspectral test data sets. ICER
and ICER-3D are state-of-the-art 2D image and 3D
hyperspectral compressors developed at JPL.

3. FPGA Implementation

The modified Fast Lossless algorithm illustrated
above was implemented and integrated into a
reconfigurable system for a spacecraft payload requiring
high communication throughput. The reconfigurable
system takes advantage of high-density SRAM-based
FPGAs to accommodate the on-board computer resulting
in an efficient hardware architecture in terms of power,
area, and speed.
Background

FPGA and ASIC hardware implementations for
lossless hyperspectral data compression have been
proposed by other researchers. At JPL, Scalable and
Embedded FPGA implementation of the ICER-3D
hyperspectral data compressor, a lossless and lossy
wavelet based compressor, was developed. The
implementation targets the Xilinx Virtex-II Pro

architecture and it takes advantage of the FPGA
embedded PowerPC core and the on-chip bus
architecture. Such platforms allow efficient partitioning
of the algorithm into software and hardware modules to
take full advantage of the available hardware resources

and provide a system on a chip (SoC) solution for the
hyperspectral data compression problem.

B1

(480X1)

B2

(480X1)

BZ_Previous

(Previous Z)

(480X1)

External DDR SDRAM MPMC Interface

BZ

Current Z

(483X1)

Zt

Zt-1

Zt-2

Zt-3

B2 [y-1,x,z]

SUM

DIFF4= ((Zt-1<<2) - LMt-1)

X

DIFF5=((Zt-2<<2) – LMt-2)

X

DIFF6=((Zt-3<<2) – LMt-3)

X

W4

W5

W6

R6=(W6*DIFF6)

R5=(W5*DIFF5)

R4=(W4*DIFF4)

BE

(Estimate)

(480X1)

Each pixel is

processed at 33

MHz (30.30 nsec)

B1-Next

(1024B)

From

Page 2

BZ_Next

(1024B)

Estimate Array

Zt

Shift Z continuously into

BZ_Previous Buffer while

processing current Z.

0-Copy without

compression data for

y=1, x=1 and z=1 to 481

1- B1 contents are

shifted out and shifted

into B2.

2- Read B1_NEXT from

the external DDR RAM

while curent B1 is being

processed.

From

Page 2

From

Page 2

LMt= SUM<<2

LMt-3

LMt-2

LMt-1

LMt

LMt

EC

LMt << 14 +

EC >> 15

e

if(E<0) e=0

else if (E>((2**15)-3) e= (2**15-3)

else NOP

E

E>>1

IE

B1

Width requiremts
DIFFx = 15 bits

Wx = 17 bits

Rx = 32 bits

LMx = 14 bits

Bx = 14 bits

(Bx<<2) = 14 bits

LMt<<14= 28 bits

EC= 30 bits

e= 15 bits

E= 13 bits

IE= 12 bits

BZ_Previous= [y,x-1,z]

SUM= (y_cntr=1) ? BZ_Previous : B2

Figure 4. Modified Fast Lossless Compression: Block diagram of the digital implementation for the computation of the
estimate ˆ

td (referred to as EC) using a five sample neighborhood with two samples from the same band as the sample to
be predicted (B2, BZ) and one sample each from the three preceding bands (Zt-1, Zt-2, Zt-3). The computation of the
estimate for each sample uses a local mean subtraction method involving only samples from the same band (LMt, LMt-1,
LMt-2, LMt-3). The estimate ˆ

td is computed by multiplying and adding respectively the weights (W4 to W6) by the
inputs (DIFF4 to DIFF6) and is calculated within one clock cycle. The external link can be a Ring Bus that brings in the
sensor data at a speed up to 800 Mbits/sec.

The implementation was prototyped on a Virtex II

pro platform, and tested with a clock of 50 Mhz resulting
in an end-to-end throughput of 8 Msample/sec.

Surrey Space Center developed a reconfigurable
Intellectual Property (IP) cores using the Xilinx
AccelDSP tool [15]. Their IP core implemented a design
based on an extended Rice algorithm [3] proposed by the
CCSDS with a combination of 2-D prediction and
independency coding and utilizing a pre-scanning

scheme. This approach achieved better compression
performance than JPEG-LS. Their implementation was
tested on a ZestSC2 FPGA prototyping board with a
clock of 48 MHz and demonstrated a power consumption
of 625 mW.

The team lead by Bristol University proposed a
universal algorithm and hardware architecture for
context-based statistical lossless compression of multiple
types of data using FPGA devices that support partial and

dynamic reconfiguration [16][17]. Their proposed
compression system uses a dynamically reconfigurable
modeling stage followed by statically configured
probability estimation and arithmetic coding stages.
Dynamic modeling is specialized to each data type and
uses a combination of context modeling, predictive
coding and motion estimation depending on the data type
being processed: 1-D general data, 2-D image data or 3-D
multispectral images or video. The throughput
performance, of the proposed system is 100Mbits/sec on a
Xilinx Virtex-4 SX35 FPGA.

The team lead by GSFC developed an ASIC
implementation of a new CCSDS 2D Image Compression
Recommendation [18] [24]. The algorithm adopted in the
recommendation consists of a two-dimensional discrete
wavelet transform of the image, followed by progressive
bit-plane coding of the transformed data. The algorithm
provides lossless compression and is suitable for both
frame-based image data and scan-based sensor data, and
has applications for near-Earth and deep-space missions.
This hardware implementation separates the Discrete
Wavelet Transform (DWT) and Bit-Plane-Encoder (BPE)
into two ASICs. The chips are expected to process over
20 Msamples/sec at lower than 0.15 watts/Msamples/sec.
The throughput rate is limited by currently available rad-
hard RAM chip that would serve as the external RAM for
the BPE processing [20]

Other current hardware developments of lossless
image compression algorithms are based on several
lossless compression hardware devices for universal data
such as files (tapes, hard disk drives, file servers) and
communication data (LAN, WAN, wireless) that are
currently commercially available. Their performance has
been compared for throughputs up to 1.6Gbit/s
compression [21].
FPGA implementation – Architecture and Data Flow

The architecture of Fast Lossless compression
algorithm is shown in Figure 6. The implementation
works on 32 frames of hyperspectral data at a time. Raw
imagery data is stored as three dimensional cube (for
example Y=32, X=640, Z=480,). Each pixel of the
hyperspectral cube can accommodate up to 14 bits
depending on the resolution of the sensory data.

The current implementation targets the Xilinx Virtex
IV, LX25 FPGA, and assumes a BIP (Byte interleaved by
Pixel) format. The basic blocks of the implementation are:
LOCAL MEAN is an Accumulator and 4x16 bits Shift

Register that is used to store the sum of three upper
spatial pixels from the previous line and the previous
spectral pixel from the previous band Shift Register
is used to store and shift the last four accumulator
results.

DIFFERENCE block consists of six identical subtract
modules that are used to subtract the local mean
values from the previous spatial and spectral pixels

WEIGHT block is made up of six, of length Z (number of
spectral bands) by up to 14 bits FIFOs that is used to
adjust the input to the multiplier. Values of weight
are re-calculated for every new spectral row (Z). On
power up all the weight are initialized to a default
value.

MULTIPLIER block includes six Virtex IV/LX25, 18x18
multiplier primitives. Multipliers are used to multiply
the output of Difference block with their adjusted
Weight values.

ESTIMATE block consists of an Accumulator and a
Comparator. The Accumulator is used to sum the
multiplier values. The Estimate is adjusted and
clipped depending on the accumulated result.

DELTA block subtracts the value of current pixel data
from the Estimate to adjust the WEIGHT and also
used as an input to the ENCODER.

ENCODER is made up of a Comparator, of length Z
(number of spectral bands) by up to 14 bits FIFO, a
Look Up Table and miscellaneous circuitry. Output
of the Encoder is used to determine the width of data
to be packed.

PACKER includes Virtex IV distributed RAM and
multiplexers. Distributed RAM is used for Look Up
Table to adjust the compressed data into the final
packed data word. Compressed data is packed and
outputted as 32-bits words using the using Golomb
codes [10]. It is used to interface to 32bits cPCI bus.
The basic concept of the data flow for the FPGA

implementation (Fig. 6) is as follows. Initially raw
imagery data of each spectral (Z) row is streamed one row
at a time into the “CURRENT Z DOUBLE BUFFER”.
This buffer is configured as 2Z by up to 14 bits wide shift
register. Two rows of length Z are stored in “CURRENT
Z DOUBLE BUFFER”. New data is shifted in as pixel
data is compressed.

Three upper spatial pixels (X-1,Y-1),(X,Y-1) and
X+1,Y-1) and previous spatial pixel (X-1,Y) are needed to
compress the current pixel data. For the first pixel (x=0,
y=0) of each band, actual values are fed through the
compressor and packed without compression. Current
pixel data being compressed is also shifted out in parallel
to the external RAM to produce an efficient pipeline. This
data is inputted back to the “THREE UPPER Y AND
PREVIOUS Y” internal FPGA pixel buffers for
subsequent pixel processing.
Compression of one pixel of the data happens once every
FPGA clock cycle. Compressed data is fed to the
PACKER module which packs the compressed data into
32 bits data words. Each 32 bits data word may contain
several pixels of data. Also, a compressed pixel may fall
into two 32-bit data words boundaries, which in turn will
be decoded by the decompression algorithm accordingly.
The implementation assumes an external fast link to bring

the raw data to the FPGA such as a ring bus (of up to 800
Mbits/sec).

MODIFIED LOSSLESS

COMPRESSION

ALGORITHM

CURRENT Z

DOUBLE

BUFFER

(Zx1x2)

 FPGA

UNCOMPRESSED

DATA IN

EXTERNAL RAM

THREE UPPER Y AND

PREVIOUS Z

 PIXEL BUFFER(S)

(Zx1X4)

LOCAL

MEAN

DIFFERENCE

CURRENT Z

PREVIOUS y and z ROWS

WEIGHT

MULTIPLIER

DELTA

ESTIMATE

ENCODE PACKER
LOSSLESS

COMPRESSED

DATA

Figure 6 Block diagram of the FPGA implementation of Modified Fast Lossless Compressor

4. Performance

Our FPGA implementation was benchmarked on the
Xilinx Virtex IV LX25 device and ported to a Xilinx
prototype board (Figure 7). The current implementation
excluding the packer has a critical path of 17.5 nsec
which dictated a clock speed of 58MHz. The critical path
delay is and-to-end measurement between the
uncompressed input data and the output compressed data
stream as shown in Figure 6. The implementation
compresses one sample every clock cycle, which results
in a speed of 58 MSample/sec or 58 times faster than the
software implementation running on a Pentium IV
machine. The implementation has a rather low device
utilization of the Xilinx Virtex IV LX25 as shown in the
Table 1 making the total power consumption of the
implementation about 1.27 watts.

Figure 7: FPGA Development Board

Table 1: LX25 Device Utilization Compression
 Available[#] Used[#] Used[%]
Slice 10752 4712 43%
Slice F/F 21504 810 3%
4-input LUT 21504 8986 41%
FIFO/RAM16 72 9 12%
DSP48 48 6 12%

Table 2: LX25 Device Utilization Encoder
 Available[#] Used[#] Used[%]
Slice 10752 129 1%
Slice F/F 21504 12 <1%
4-input LUT 21504 240 1%
FIFO/RAMB16 72 1 1%

Table 3: LX25 Device Utilization Packer
 Available[#] Used[#] Used[%]
Slice 10752 4606 42%
Slice F/F 21504 170 <1%
4-input LUT 21504 8812 40%

The following table reports the timing for the
compression and the Encoder.

Table 4: LX25 Timing for each blocks

 Time [nsec]
Compression / Estimate ~2
Encoder 15.5
Total ~17.5 (58 MHz)

Our architecture and its FPGA implementation can

be modified easily to process two samples in parallel
which will increase the speed to over 100 MSamples/sec
while increasing the resource utilization by a factor of
two. Our FPGA implementation is easily portable to other
FPGA platforms and to an ASIC implementation. It can
also be scaled for faster processing.
5. Summary

We presented in this paper an FPGA implementation
of a novel hyperspectral data compression algorithm, the
JPL adaptive modified Fast Lossless compressor for
pushbroom instruments. The implementation targets the
Xilinx Virtex IV FPGAs and provides an acceleration of

at least 58 times the software implementation, making the
use of this compressor practical for satellites and planet
orbiting missions with hyperspectral instruments. Future
development will provide multiple implementations and
options to deploy various versions of the algorithm to
accommodate data from different instrument types.
Acknowledgement

The work described in this publication was carried out
at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration. This work was
funded by Air Force Research Laboratory through the
grant entitled “Fast Lossless On-Board Hyperspectral
Data Compression”. Special thanks to Randy Odle,
program manager, who also supported this research at
JPL, and to Ian Ferguson for his technical support to this
research

References
 [1] W. Campbell, N. M. Short, “Remote Sensing Tutorial”,

2004
http://www.fas.org/irp/imint/docs/rst/Sect13/Sect13_9.html

[2] J. Venbrux, J. Gambles, D. Wiseman, G. Zweigle, W. H.
Miller, and P.-S. Yeh, “AVLSI Chip Set Development for
Lossless Data Compression,” Ninth AIAA Computing in
Aerospace Conference, San Diego, California, October 19–
21, 1993.

[3] CCSDS, Lossless Data Compression, Recommendation for
space data system standards vol. 121.0-B-1: CCSDS, 1997.
(http://public.ccsds.org)

[4] M. Klimesh, “Low-Complexity Lossless Compression of
Hyperspectral Imagery via Adaptive Filtering,” The
Interplanetary Network Progress Report, vol. 42-163, Jet
Propulsion Laboratory, Pasadena, California, pp.1–10,
November 15, 2005.

[5] A. Gersho. “Adaptive filtering with binary reinforcement”.
IEEE Transactions on Information Theory, IT-30(2):191–
199, March 1984.

[6] B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S.
Williams, R. C. Goodlin, J. R. Zeidler, R. H. Hearn, and E.
Dong. “Adaptive Noise Cancelling: Principles and
Applications”. The Proceedings of the IEEE, 63(12):1692-
1716, December 1975.

[7] F. Rizzo, B. Carpentieri, G. Motta, and J. A. Storer. “Low-
complexity lossless compression of hyperspectral imagery
via linear prediction”. IEEE Signal Processing Letters,
12(2):138–141, February 2005.

[8] B. Aiazzi, L. Alparone, and S. Baronti. “Near-lossless
compression of 3-D optical data”. IEEE Transactions on
Geoscience and Remote Sensing, 39(11):2547–2557,
November 2001.

[9] J. N. Lin, X. Nie, and R. Unbehauen, “Two-Dimensional
LMS Adaptive Filter Incorporating a Local-Mean Estimator
for Image Processing,” IEEE Transactions on Circuits and
Systems—II: Analog and Digital Signal Processing, vol. 40,
no. 7, pp. 417–428, July 1993

[10] R.G. Gallager and D.C. Van Voorhis. “Optimal source
codes for geometrically distributed integer alphabets”. IEEE
Transactions on Information Theory, IT-21 (2): 228-230,
March 1975.

[11] A. Kiely, "Simpler Adaptive Selection of Golomb Power-
of-Two Codes" NASA Tech Briefs, November 1, 2007:
NPO-41336.

[12] A. Kiely, M. Klimesh, "Fast Lossless Compression of
Multispectral-Image Data" NASA Tech Briefs, July, 2002:
NPO-21101.

[13] M. Klimesh, "A Bit-Wise Adaptable Entropy Coding
Technique" NASA Tech Briefs, August, 2006: NPO-42517.

[14] M. Klimesh, A. Kiely, H. Xie, and N. Aranki, Spectral
ringing Artifacts in Hyperspectral Image Data Compression
in Hyperspectral Data Compression, G. Motta, F. Rizzo and
J. Storer eds., pp:379-400, June 2005 :Springer Verlag.

[15] G. Yu, T.Vladimirova and M. N. Sweeting. Image
Compression Systems on Board Satellites In Journal of the
International Academy of Astronautics (Acta Astronautica),
vol. 64, n. 9-10, May-June 2009, pp. 988-1005. Elsevier
Press.

[16] J.L. Nunez-Yanez; X. Chen; N. Canagarajah; R. Vitulli,
“Statistical Lossless Compression of Space Imagery and
General Data in a Reconfigurable Architecture” In
NASA/ESA Conference on Adaptive Hardware and
Systems, 2008. AHS '08. 22-25 June 2008, pp 172-177.
IEEE Computer Society.

[17] J.L. Nunez-Yanez, V.A. Chouliaras, V.A, “A configurable
statistical lossless compression core based on variable order
Markov modeling and arithmetic coding”, In IEEE
Transactions on Computers. Volume 54, Issue 11, Nov. 2005
pp.1345 – 1359.

[18] Pen-Shu Yeh, P. Armbruster, A. Kiely, B. Masschelein, G.
Moury, C. Schaefer, C. Thiebaut, “The New CCSDS Image
Compression Recommendation”, In IEEE Aerospace
Conference 2005, 5-12 March 2005 pp.4138 – 4145. IEEE

[19] C. Hartzell, L. Graham, T. Tao, H. Goldberg, J. Carpena-
Nunez, D. Racek, C. Taylor, C. Norton “Data System Design
for a Hyperspectral Imaging Mission Concept”, In IEEE
Aerospace Conference 2009, 9-13 March 2009. IEEE

[20] PS Yeh, J Venbrux, “A High Performance Image Data
Compression Technique for Space Applications”, In NASA
Earth Science Technology Conference, 2003.

[21] J.L. Nunez, S. Jones. “Gbit/s lossless data compression
hardware”, In IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Volume: 11, Issue: 3, pp. 499-
510, June 2003.

[22] N. Aranki, D. Keymeulen, A. Bakhshi and, M. Klimesh.
“Fast and Adaptive Lossless on-board Hyperspectral Data
Compression System for Space Applications”, In IEEE
Aerospace Conference. 9-13 March 2009.

[23] M. Klimesh “Lossless, Multi-Spectral Data Compressor for
Improved Compression for Pushbroom-Type Instruments”,
NASA Tech Briefs, July, 2008: NPO 45473.

[24] G.W. Donohoe, D.M. Buehler, K.J. Hass, W. Walker, Y.
Pen-Shu, “Field Programmable Processor Array:
Reconfigurable Computing for Space”, IEEE Aerospace
Conference 2007, 3-10 March 2007, pp:1 – 6. IEEE

http://www.fas.org/irp/imint/docs/rst/Sect13/Sect13_9.html
http://public.ccsds.org/

