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Abstract— Efficient on-board lossless hyperspectral data 
compression reduces the data volume necessary to meet 
NASA and DoD limited downlink capabilities. The 
techniques also improves signature extraction, object 
recognition and feature classification capabilities by 
providing exact reconstructed data on constrained downlink 
resources. At JPL a novel, adaptive and predictive technique 
for lossless compression of hyperspectral data was recently 
developed. This technique uses an adaptive filtering method 
and achieves a combination of low complexity and 
compression effectiveness that far exceeds state-of-the-art 
techniques currently in use. The JPL-developed ‘Fast 
Lossless’ algorithm requires no training data or other 
specific information about the nature of the spectral bands 
for a fixed instrument dynamic range. It is of low 
computational complexity and thus well-suited for 
implementation in hardware, which makes it practical for 
flight implementations of pushbroom instruments. A 
prototype of the compressor (and decompressor) of the 
algorithm is available in software, but this implementation 
may not meet speed and real-time requirements of some 
space applications. Hardware acceleration provides 
performance improvements of 10x-100x vs. the software 
implementation (about 1M samples/sec on a Pentium IV 
machine). This paper describes a hardware implementation 
of the JPL-developed ‘Fast Lossless’ compression algorithm 
on a Field Programmable Gate Array (FPGA). The FPGA 
implementation targets the current state of the art FPGAs 
(Xilinx Virtex IV and V families) and compresses one 
sample every clock cycle to provide a fast and practical real-
time solution for Space applications. 1,2 
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1. INTRODUCTION  
Hyperspectral images are three-dimensional data sets, 
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where two of the dimensions are spatial and the third is 
spectral. A hyperspectral image can be regarded as a stack 
of individual images of the same spatial scene, with each 
such image representing the scene viewed in a narrow 
portion of the electromagnetic spectrum. These individual 
images are referred to as spectral bands. Hyperspectral 
images typically consist of hundreds of spectral bands; the 
voluminous amount of data comprising hyperspectral images 
makes them appealing candidates for data compression. An 
example of a hyperspectral data cube is shown in Figure 1. It 
was taken by the Airborne Visible and Infrared Imaging 
Spectrometer (AVIRIS), which uses diffraction gratings for 
band separation with two sets of CCD arrays, one with 
silicon chips to sense in the visible range and the other with 
Indium-Antimony (InSb) chips for wavelengths in the Near-
IR to Short-Wave-IR range. AVIRIS has 224 detectors 
(channels) in the spectral dimension, extending over a range 
of 0.38 to 2.50 µm. This arrangement leads to a spectral 
resolution for each chip of 0.01 µm. The spatial resolution 
derived from this depends on the platform height. A typical 
mission, mounting AVIRIS on a NASA aircraft (ER-2), 
produces a spatial resolution of about 20 meters, but we can 
improve that to five meters by flying at lower altitudes, 
which, of course, narrows the width of the ground coverage 
[22]. 

 
Figure 1: An example of a hyperspectral data cube  for 
Pearl Harbor, Hawaii taken by the AVIRIS instrument 
Current NASA hyperspectral instruments either avoid 

compression or make use of only limited lossless image 
compression techniques during transmission. For example, 
the current state-of-the-practice is to use the Universal 
Source Encoder for Space (USES) chip [24]. USES 
implements the standard lossless compression proposed by 
the consultative committee for space data systems (CCSDS), 
which is based on the Rice algorithm [11], and has a 
multispectral mode, extending its operation to 3D data sets. 
The USES chip performance has low compression 
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effectiveness as compared to other existing techniques and 
lacks the flexibility to be efficiently tailored to specific 
instrument needs, but has the advantage of being currently 
available in a radiation resistant form. The main reasons for 
utilization of such devices by NASA are: the limited 
downlink bandwidth, the need to reduce the risk of 
corrupting the data-stream needed for accurate science 
processing, and the lack of a viable on-board platform to 
perform significant image processing and compression. 
Future instruments with more sensors and much larger 
number of spectral bands will collect enormous volumes of 
data that will far outstrip the current ability to transmit it 
back to Earth (data rates for some instruments can go to 
several hundreds of Gbits/s). This gives rise to the need for 
efficient on-board hyperspectral data compression. Software 
solutions have limited throughput performance and are 
power hungry. Dedicated hardware solutions are highly 
desirable, taking load off the main processor while 
providing a power efficient solution at the same time. VLSI 
ASIC implementations are power and area efficient, but they 
lack flexibility for post-launch modifications and repair, they 
are not scalable and cannot be configured to efficiently 
match specific mission needs and requirements. FPGAs are 
programmable and offer a low cost and flexible solution 
compared to traditional Application-Specific Integrated 
Circuit (ASICs). 

Exploiting dependencies in all three dimensions of 
hyperspectral data sets promises substantially more effective 
compression than two-dimensional approaches such as 
applying conventional image compression to each spectral 
band independently. With that in mind, the JPL Fast 
Lossless hyperspectral compressor was developed. It is a 
predictive technique that uses an adaptive filtering method 
and achieves a combination of low complexity and 
compression effectiveness that far exceeds state-of-the-art 
techniques currently in use. It will be referred to in this 
paper as the “Fast Lossless” algorithm. 

Fast Lossless algorithm uses an adaptive filtering 
method and achieves a combination of low complexity and 
compression effectiveness that is competitive with the best 
results from literature. Although we are primarily interested 
in application to hyperspectral imagery, the technique is also 
generally applicable to any sort of multispectral imagery. 
The algorithm described in this paper represents a 
particularly effective way of using adaptive filtering for 
predictive compression of hyperspectral images. It requires 
no training data or other specific information about the 
nature of the spectral bands for a fixed instrument dynamic 
range. It is of low computational complexity and well-suited 
for implementation in hardware. This makes it practical for 
flight implementations of pushbroom instruments. 

Section 2 of this paperdescribes the compression 
algorithms and equivalent hardware implementation; Section 
3 describes the hardware platform. Section 4 describes the 
results of our initial experiments, and Section 5 summarizes 
the project results.  

2. ADAPTIVE FILTERING 
Algorithm Background 

The JPL’s Fast Lossless encodes data samples one-at-a-
time, typically in raster scan order. It uses a form of 
predictive compression, i.e. sample values are estimated by 
linear prediction, and the differences between the estimates 
and the actual sample values are encoded into the 
compressed bitstream. Only previously encoded samples are 
used to predict a given sample in order that the prediction 
operation can be duplicated by the decoder. Estimation of 
sample values by linear prediction is a natural strategy for 
lossless compression of hyperspectral images. This is a form 
of predictive compression, or, more specifically, a form of 
differential pulse code modulation (DPCM).  

Fast Lossless compressor uses the sign algorithm [1], 
which is a variation of the Least Mean Square (LMS) 
algorithm[2], a well-known low-complexity adaptive 
filtering algorithm. The sign algorithm and the LMS 
algorithm are members of a family of low complexity 
adaptive linear filtering techniques, which are used 
extensively in signal processing applications such as audio 
data compression. However they have not been well studied 
for image or hyperspectral data compression. A 
straightforward extension of the LMS algorithm to two-
dimensional (2-D) images is well documented in the 
literature with applications to image processing and 
application to filtering magnetic resonance imaging (MRI) 
data. In a few cases researchers have been directly interested 
in applying the LMS algorithm to image compression. An 
early example describes a fixed rate, lossy, predictive 
compression of (2-D) images. There has been a fair amount 
of work on lossless predictive compression of hyperspectral 
images that does not involve the LMS algorithm or its 
relatives. In particular, the methods used by Rizzo et al. [7] 
have low complexity and yield the compression 
effectiveness similar to that of our method. Good 
compression effectiveness results are also reported in the 
literature by Aiazzi et al. [8], but those results are obtained 
with methods of moderately high complexity. 
Algorithm Description and Digital Implementation 

The essence of the Fast Lossless hyperspectral 
compression algorithm is adaptive linear predictive 
compression using the sign algorithm for filter adaptation, 
with local mean estimation and subtraction. We start with a 
brief description of the LMS algorithm and the sign 
algorithm. For both of these algorithms a desired signal td  

is to be estimated from an input (column) vector ,t ku , where 
t is an index which increases sequentially and represents the 
time index in the hardware implementation. The desired 
signal td  is the sample value at spatial location (x, y) in 
spectral band z noted (referred to as Zt in Figure 4 of the 

digital representation). The estimate ˆ
td is a linear function 

of ,t ku ; specifically, , ,
ˆ T

t t k t kd w u= , where .t kw  is the filter 
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Figure 4.  Block diagram of the digital implementation for the computation of the estimate ˆ

td  (referred to as EC) using a six 
sample neighborhood with four samples from the same band as the sample to be predicted (B1, B2, B3, B4) and one sample 
each from the three preceding bands (Zt-1, Zt-2, Zt-3). The computation of the estimate uses a local mean subtraction method: 
for each sample an estimate is computed using fixed, causal, linear predictor involving only samples from the same band 

(LMt, LMt-1, LMt-2, LMt-3). The estimate ˆ
td  is computed by multiplying and adding respectively the weights (W1 to W6) by 

the inputs (DIFF1 to DIFF6) and is calculated within one clock cycle (33MHz for the Virtex IV LX160 device). The external 
Ring Bus provides the sensor data  at a speed up to 800 Mbits/sec.  
 

The Fast Lossless algorithm provides outstanding 
compression effectiveness. JPL’s tests with uncalibrated 
AVIRIS data sets demonstrate compression results of about 
40% lower bit rate than state-of-the-art 2D approaches 
(approximately 4:1 compression ratio) as shown in Figure 5. 
In addition to making use of correlations in all three 
dimensions, the algorithm also performs well compared to 
more complicated 3-D algorithms recently developed by 
other researchers, such as the ICER-3D [5][6][7]. 
 2.40

2.80

3.20

3.60

4.00

4.40

4.80

0 2 4 6 8 10 12 14 16 18 20
data set index

ra
te

 (b
its

/p
ix

el
/b

an
d)

2D Compression (ICER) 
(State of the 

 

Fast Lossless 

3D Compression 
(ICER-3D) 

Compression gain 

 

 
Figure 5: Compression performance average over 19 
uncalibrated AVIRIS hyperspectral test data sets. ICER and 
ICER-3D are state-of-the-art 2D image and 3D 
hyperspectral compressors developed at JPL. 
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3. FPGA IMPLEMENTATION  
The Fast Lossless algorithm illustrated above was 

implemented and integrated into a reconfigurable system for 
a spacecraft payload requiring high communication 
throughput. The reconfigurable system takes advantage of 
high-density SRAM-based FPGAs to accommodate the on-
board computer resulting in an efficient hardware 
architecture in terms of power, area, and speed.  
Background 

FPGA and ASIC hardware implementations for lossless 
hyperspectral data compression have been proposed by other 
researchers. At JPL, Scalable and Embedded FPGA 
implementation of the ICER-3D hyperspectral data 
compressor, a lossless and lossy wavelet based compressor, 
was developed. The implementation targetes the Xilinx 
Virtex-II Pro architecture and it takes advantage of the 
FPGA embedded PowerPC core and the on-chip bus 
architecture. Such platforms allow efficient partitioning of 
the algorithm into software and hardware modules to take 
full advantage of the available hardware resources and 
provide a system on a chip (SoC) solution for the 
hyperspectral data compression problem. The 
implementation was prototyped on a Virtex II pro platform, 
and tested with a clock of 50Mhz resulting in a throughput 
of 8 Msample/sec . 

Surrey Space Center developed a reconfigurable 
Intellectual Property (IP) cores using the Xilinx AccelDSP 
tool [10]. Their IP core implemented a design based on an 
extended Rice algorithm [11] proposed by the CCSDS with 
a combination of 2-D prediction and independency coding 
and utilizing  a pre-scanning scheme. This approach 
achieved better compression performance than JPEG-LS. 
Their implementation was tested on a ZestSC2 FPGA 
prototyping board with a clock at 48 MHz and demonstrated 
a power consumption of 625mW.  

The team lead by Bristol University proposed a 
universal algorithm and hardware architecture for context-
based statistical lossless compression of multiple types of 
data using FPGA devices that support partial and dynamic 
reconfiguration [12][13]. Their proposed compression 
system uses a dynamically reconfigurable modeling stage 
followed by statically configured probability estimation and 
arithmetic coding stages. Dynamic modeling is specialized 
to each data type and uses a combination of context 
modeling, predictive coding and motion estimation 
depending on the data type being processed: 1-D general 
data, 2-D image data or 3-D multispectral images or video. 
The throughput performance, of the proposed system is 
100Mbits/sec on a Xilinx Virtex-4 SX35 FPGA. 

The team lead by GSFC developed an ASIC 
implementation of a new CCSDS 2D Image Compression 
Recommendation [14] [15]. The algorithm adopted in the 
recommendation consists of a two-dimensional discrete 
wavelet transform of the image, followed by progressive bit-
plane coding of the transformed data. The algorithm 
provides lossless compression and is suitable for both frame-
based image data and scan-based sensor data, and has 

applications for near-Earth and deep-space missions. This 
hardware implementation separates the Discrete Wavelet 
Transform (DWT) and Bit-Plane-Encoder (BPE) into two 
ASICs. The chips are expected to process over 20 
Msamples/sec at lower than 0.15 watts/Msamples/sec. The 
throughput rate is limited by currently available rad-hard 
RAM chip that would serve as the external RAM for the 
BPE processing [16] 

Other current hardware developments of lossless image 
compression algorithms are based on several lossless 
compression hardware devices for universal data such as 
files (tapes, hard disk drives, file servers) and 
communication data (LAN, WAN, wireless) that are 
currently commercially available. Their performance has 
been compared for throughputs up to 1.6Gbit/s compression 
[17]. These ASIC compressors are the ALDC1-40S [18] 
(IBM) and the AHA3521 [19] that implements the adaptive 
lossless data compression (ALDC) (LZ1) algorithm, the 
AHA3211 [20] that implements the DCLZ (LZ2) algorithm 
and the Hi/fn 9600 [21] that implements the Lempel-Ziv 
Stac (LZS) (LZ1) algorithm. Due to the limitations of the 
above devices, we have decided to investigate a new 
approach using FPGA for our particular lossless 
hyperspectral data compression. 
FPGA implementation – Architecture and Data Flow 

The architecture of Fast Lossless compression algorithm 
is shown in Figure 6. The implementation works on 32 
frames of hyperspectral data at a time. Raw imagery data is 
stored as three dimensional cube (for example X=640, 
Z=480, Y=32). Each pixel of the hyperspectral cube can 
accommodate up to 14 bits depending on the resolution of 
the sensory data. 

The current implementation targets the Xilinx Virtex 
IV, LX160 FPGA, and assumes a BIP (Byte interleaved by 
Pixel) format. The basic blocks of the implementation are: 
LOCAL MEAN is an Accumulator and 4x16 bits Shift 

Register that is used to store the sum of three upper 
spatial pixels from the previous line and the previous 
spectral pixel from the previous band Shift Register is 
used to store and shift the last four (4) accumulator 
results. 

DIFFERENCE block consists of six (6) identical subtract 
modules that are used to subtract the local mean values 
from the previous spatial and spectral pixels  

WEIGHT block is made up of six (6), of length Z (number 
of spectral bands) by up to 14 bits FIFOs that is used to 
adjust the input to the multiplier.  Values of weight are 
re-calculated for every new Z row.  On power up all the 
weight values are initialized. 

MULTIPLIER block includes six (6) Virtex IV/LX160, 
18x18 multiplier primitives.  Multipliers are used to 
multiply the output of Difference block with their 
adjusted Weight values. 
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33MHz. It compresses one sample every clock cycle, which 
 results in a speed of 33MSample/sec or 33 times faster than 
the software implementation running on a Pentium IV 
machine.  

The implementation has a rather low device utilization 
of the Xilinx Virtex IV LX160 as shown in the table 1 
making the total power consumption of the implementation 
about 1.27 watts out of which 0.576 watts is consumed by 
384mA of internal quiescent current at 1.5V internal voltage 
on the LX160. 
 

 
Figure 7:  FPGA Development Board 

 
Table 1: LX160 Device Utilization 

 Available[#] Used[#] Used[%] 
BUFGs 32 2 6% 
DSP48s  96 6 6% 
FIFO16s 288 1 1% 
External IOBs 768 79 10% 
OLOGICs 960 21 2% 
RAMB16s 288 8 2% 
Slices 67584 3577 5% 

 
Our FPGA implementation is easily portable to other 

FPGA platforms and to an ASIC implementation.  It can 
also be scaled for faster processing. 

5. SUMMARY 
We presented in this paper an FPGA implementation of 

a novel hyperspectral data compression algorithm, the JPL 
adaptive Fast Lossless compressor. The implementation 
targets the Xilinx Virtex IV FPGAs and provides an 
acceleration of at least 33 times the software 
implementation, making the use of this compressor practical 
for satellites and planet orbiting missions with hyperspectral 
instruments. Future development will provide multiple 
implementations and options to deploy various versions of 
the algorithm to accommodate data from different 
instrument types. 
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