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Information optimal subsampling 

• Find subset that provides the most information 
about the science content of unreturned images 

• Mutual Information Criterion  

• Gaussian process model 

• Closed-form analytical expression 

• Does not require that the robot know the hidden 
science content! 
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A Gaussian Process Primer 

• Bayesian Nonparametric Regression 

  

• Posterior probability of observations is a 
multivariate Gaussian 

• Entries of covariance matrix are given by a 
covariance function: 
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Mutual Information Objective 

• Maximize mutual information between returned and 
unreturned data. 

 

 

 

 

 

• Stationary covariance function: mutual information objective is 
independent of images’ contents! 

• Use explorer’s observations as latent inputs, and learn how they 
correlate with changes in science content. 
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Synthetic example observing only 
location 
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Synthetic example observing location 
and one noisy feature 
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Synthetic example observing location 
and one clean feature 
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Gaussian process model 
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Time, robot’s 
observations 

Hidden 
content 

Labels 

1. Learn θ from training data 
2. Predict how new images differ in science content based on 

their separation in observable features  



Amboy Crater 
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Texton image features 

• Discrete classification of each pixel into texture 
classes learned from a universal training set 

• Here, PCA-project class histogram to a scalar 
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Example 
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Performance by image budget (lower 
is better) 
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adaptive 

periodic 



Performance by trial (lower is better) 
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adaptive periodic 



Effect of varying image budgets 
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Conclusions: Information-theoretic 
formulation of selective image return 

• Information-theory formulation of selective 
image return 
• Principled 
• Intuitive, reasonable results 
• Can leverage training data 

• Stationary GPs 
• Elegant solution for Mutual Information Objective 
• Must describe content of interest as real-valued 

scalar (for now) 
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Thanks! 
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