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ABSTRACT

We derive an approximation to the intensity covariance function of two scanning pinhole detectors, facing a
distant source (e.g., a star) being occluded partially by an absorptive object (e.g., a planet). We focus on using
this technique to identify or image an object that is in the line-of-sight between a well-characterized source and
the detectors. We derive the observed perturbation to the intensity covariance map due to the object, showing
that under some reasonable approximations it is proportional to the real part of the Fourier transform of the
source’s photon-flux density times the Fourier transform of the object’s intensity absorption. We highlight the
key parameters impacting its visibility and discuss the requirements for estimating object-related parameters,
e.g., its size, velocity or shape. We consider an application of this result to determining the orbit inclination
of an exoplanet orbiting a distant star. Finally, motivated by the intrinsically weak nature of the signature, we
study its signal-to-noise ratio and determine the impact of system parameters.

1. INTRODUCTION

Intensity interferometry is a well-known and widely utilized technique in both classical and quantum optics,
as well as in astronomy. Conventional intensity interferometry correlates the photocurrents from two pinhole
detectors facing an extended thermal source, for different transverse displacements of the two detectors, obtaining
an estimate of the magnitude-square of its mutual coherence function at the measurement plane. This allows
one to estimate features of the source such as its diameter, or to form an image of its photon-flux density (with
some regularity conditions). The earliest demonstrations of using intensity interferometry in astronomy date to
Hanbury Brown and Twiss’s experiments.1 Because intensity inteferometry relies on a fourth-order field moment,
the limited signature of interest has intrinsically low signal-to-noise ratio, which has limited its wide application
in this field. However, with recent advances in photodetector technologies, as well as image processing techniques
and capabilities, there has been a recent resurgence of interest in utilizing this technique.2–6

Intensity interferometry measures the fourth-order coherence properties of the fields incident on the pho-
todetectors, from which the coherence properties of the source can be estimated provided that the propagation
through the intermediate medium is understood. In this paper, our focus is on using intensity interferometry to
identify a set of features of an object—for example, its size, velocity, shape, or a fully-resolved 2D image—that
is in the line-of-sight between a well-characterized source and the detectors. As such, our focus is not on the
intensity covariance map per se, but on the perturbations to the intensity covariance map of the source alone,
when an object of interest enters the path between the source and the detectors. Although we have strived to
provide an exposition that is general, our specific focus in this report is a planet that is partially occluding a
star.

This paper is organized as follows. In Section 2 we formulate the problem of a distant source being partially
occluded by an absorptive object, using optical coherence theory and the pertinent subset of photodetection
theory.7 Next, in Section 3 we concentrate on the intensity covariance estimate obtained by correlating the
photocurrents from the two detectors, as a function of their location on the measurement plane. We show how
this covariance is modified as a result of the object, and determine the key parameters that impact the signature.
We introduce a differential measurement technique—i.e., taking the difference between one baseline measurement
not containing the object and one with the object—that eliminates the prominent coherence signature of the
source alone, so that the weak object-induced perturbation can be observed. We apply our general results to
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Figure 1. Block diagram of setup that measures the intensity covariance at the detector plane due to a known source and
an object that is along the propagation path.

two operational scenarios: a disc-shaped source and object in (a) a typical laboratory imaging scenario, and (b)
a typical stellar imaging scenario. Motivated by the intrinsically weak nature of the perturbation signal, we next
focus on its signal-to-noise ratio in Section 4, highlighting various noise contributions. Finally, in Section 5 we
conclude this report with some discussion of the results.

2. PROBLEM FORMULATION

Consider the scenario depicted in Fig. 1. A spatially-incoherent extended source (representing a star) is located at
the z = 0 plane. Most natural sources emit radiation that is spatially isotropic and spectrally broadband, however,
in this report our volume of interest shall be restricted to a small solid angle centered on the propagation axis z,
and a small fraction of the emission spectrum centered around the wavelength λS . Consequently, the radiation
is well modeled as a z-propagating paraxial and quasimonochromatic field arising from an extended source. We

denote the scalar positive-frequency component of the source field, normalized to have units

√
photons/m2s, as

ES(ρρρ, t)e
−iωSt, where ωS ≡ 2πc/λS is the center frequency, and c is the speed of light in vacuum.

When ES(ρρρ, t) corresponds to spatially-incoherent thermal radiation, it is a zero-mean Gaussian random
process with a nonzero phase-insensitive correlation function8, 9

〈E∗
S(ρρρ1, t1)ES(ρρρ2, t2)〉 = R(t2 − t1)IS(ρρρ1)λ

2
Sδ(ρρρ2 − ρρρ1) , (1)

but no phase-sensitive correlation (i.e., 〈ES(ρρρ1, t1)ES(ρρρ2, t2)〉 = 0). In Eq. (1) above, ρρρm for m = 1, 2 are two
transverse coordinates on the z = 0 plane, IS(ρρρ) is the photon flux density in photons/m2 s, R(t2 − t1) is the
dimensionless temporal correlation function with R(0) = 1, and δ(ρρρ) is a two-dimensional Dirac delta function.
Here, the λ2

Sδ(ρρρ2−ρρρ1) term arises from our employing a delta-function approximation to the spatially-incoherent
field’s transverse correlation profile, which is appreciable only when |ρρρ2 − ρρρ1| is on the order of a wavelength.†

Suppose that an opaque object (representing a planet) with finite transverse extent and negligible longitudinal
extent is LS m away from this source’s transverse plane along the propagation path. We represent its photon-flux
absorption density as A(ρρρ− ρρρO) where ρρρO is the displacement of the center of the object on the z = LS plane.‡

†We have assumed in Eq. (1) that the correlation function is separable into the product of a function that only depends
on the spatial variables, and one that only depends on the temporal variables. This separability need not hold in general—
in particular, the spatial correlation could be a function of the frequency of monochromatic field components—but it is
employed here as a simplification without significant loss in applicability, due to our assumption that the regime of interest
is in a narrow band around ωS.

‡We will carry the displacement term explicitly throughout our derivation, because it will be relevant to do so in
several of the approximations we employ to arrive at our final result.



Then, the field emerging from the z = LS plane after interacting with the object is given by

EO(ρρρ, t) =

√
1−A(ρρρ− ρρρ0)e

iφ(ρρρ)

iλSLS

∫
dρρρ′ ES(ρρρ

′, t− LS/c)e
ikSLS+ikS |ρρρ−ρρρ′|2/(2LS) (2)

where φ(ρρρ) is the phase profile of the object, included for completeness, but otherwise unimportant for the
analysis that follows.

We assume that the observations are performed on the z = LS+L plane, wherein two pinhole photodetectors
are placed at the transverse coordinates ρρρ1 and ρρρ2, respectively. The stochastic photocurrents, i1(t) and i2(t),
generated by these detectors as a result of the incident field ED(ρρρ, t) have the following first and second-order
(conditional) moments:

〈im(t)|ED(·)〉 = ηmAm

∫
dτ |ED(ρρρm, τ)|2hm(t− τ) (3)

and for ρρρ1 �= ρρρ2,

〈Δim(t)Δik(u)|ED(·)〉 = δm,kηmAm

∫
dτ |ED(ρρρm, τ)|2hm(t− τ)hm(u− τ) , (4)

where we have normalized by the electron charge such that im(t) for m = 1, 2 are in photoelectrons/s (pe/s). In
these expressions, Δim(t) ≡ im(t)−〈im(t)|ED(·)〉 are the photocurrent fluctuations around the mean, ηm are the
quantum efficiencies of the two detectors, Am are the areas of their photosensitive surface, and hm(t) are their
baseband impulse responses, which includes any filtering that follows them prior to the correlation measurement.
In order to eliminate a featureless background, we assume that a DC notch filter is included in hm(t), such that∫
dt hm(t) = 0.§ In addition, to simplify our results we have assumed that the incident fields vary negligibly over

the photosensitive area of the detectors.

The correlation between the intensity fluctuations observed by the two detectors is estimated by multiplying
the two photocurrents and time-averaging the product, i.e.,

c(ρρρ1, ρρρ2) ≡ T−1

∫ T/2

−T/2

dt i1(t)i2(t), (5)

which is repeated at different position pairs (ρρρ1, ρρρ2), ρρρ1 �= ρρρ2 on the z = LS + L transverse plane. This
photocurrent correlation measurement converges to its ensemble average, given by

C(ρρρ1, ρρρ2) = 〈c(ρρρ1, ρρρ2)〉 = η1η2A1A2

∫
dτ1

∫
dτ2〈|ED(ρρρ1, τ1)|2|ED(ρρρ2, τ2)|2〉h1(t− τ1)h2(t− τ2) (6)

= η1η2A1A2

∫
dτ1

∫
dτ2|〈E∗

D(ρρρ1, τ1)ED(ρρρ2, τ2)〉|2h1(t− τ1)h2(t− τ2) (7)

for ρρρ1 �= ρρρ2. The second line follows from the Gaussian moment factoring of the fourth-order moment of ED(ρρρ, t),8

combined with the fact that we have assumed that hm(t) blocks DC. Thus, the correlation signature of interest
depends on the phase-insensitive correlation function of the detected field ED(ρρρ, t).

In the upcoming sections we shall find that the image signature of the object is weak and embedded in a strong
baseline signature generated by the source. Thus, we will also consider the signature obtained by differencing a
scan obtained with the object present and one that is obtained without the object present. We formally express
this measurement as c1(ρρρ1, ρρρ2) − c0(ρρρ1, ρρρ2), where c1 is the Eq. (5) measurement with the object and c0 is the
same measurement without the object. We denote its mean value as

ΔC(ρρρ1, ρρρ2) ≡ 〈c1(ρρρ1, ρρρ2)− c0(ρρρ1, ρρρ2)〉, (8)

§This DC photocurrent component provides information regarding the total photon flux blocked by the object, which is
at the heart of the detection methodology used in the on-going Kepler mission.10 Kepler tracks slow intensity variations in
a bright object, e.g., a star, to detect Earth-sized exoplanets orbiting the star and to estimate their orbital characteristics.
Here we focus our analysis on the additional information garnered via the utilization of intensity correlations, but this
does not preclude one from also using the mean photon flux registered by each detector.



which can also be expressed in terms of the difference of ED’s magnitude-squared phase-insensitive correla-
tion function in the two cases, namely, by replacing |〈E∗

D(ρρρ1, τ1)ED(ρρρ2, τ2)〉|2 in the integrand of Eq. (7) with
|〈E∗

D,1(ρρρ1, τ1)ED,1(ρρρ2, τ2)〉|2 − |〈E∗
D,0(ρρρ1, τ1)ED,0(ρρρ2, τ2)〉|2. Here ED,m for m = 0, 1 refers to the indicent field

when the measurement is cm.

2.1 Phase-insensitive coherence propagation

In order to derive the phase-insensitive correlation function of ED(ρρρ, t), we first return to Eq. (2), and write

〈E∗
O(ρρρ1, t1)EO(ρρρ2, t2)〉 ≈ [1−A(ρρρs − ρρρO)] e

ikSρρρs·ρρρd/LSK
(n)
O (ρρρd;LS)R(td), (9)

where ρρρs ≡ (ρρρ1 + ρρρ2)/2, ρρρd ≡ ρρρ2 − ρρρ1, td ≡ t2 − t1, and

K
(n)
O (ρρρ;L) ≡ 1

L2

∫
dρρρ′ IS(ρρρ′)−ikSρρρ·ρρρ′/L. (10)

The Fourier transform relation between IS and K
(n)
O implies that the latter’s width is ∼ λSLS/DS, where

DS is defined as the diameter over which the star photon-flux density IS(ρρρ) is appreciably greater than zero.
Therefore, the validity of the approximation in Eq. (9) rests on the φ(·) and A(·) terms having negligible variation
for (ρρρ1, ρρρ2) pairs that satisfy |ρρρd| < λSLS/DS, such that they can be approximated by their value at ρρρs.

8 This
approximation notably simplifies our results for propagating the object-plane coherence to the detector plane,
located at z = L+ LS, as we shall see shortly. Similar to Eq. (2) above, the detection-plane field is given by

ED(ρρρ, t) =
1

iλSL

∫
dρρρ′ EO(ρρρ

′, t− L/c)eikSL+ikS |ρρρ−ρρρ′|2/(2L) . (11)

Consequently, using Eq. (9), its phase-insensitive correlation function is

〈E∗
D(ρρρ1, t1)ED(ρρρ2, t2)〉 = R(td)

[
eikSρρρs·ρρρd/(L+LS)K

(n)
O (ρρρd;L+ LS)−K

(n)
D (ρρρs, ρρρd)

]
(12)

where the first term is the source’s correlation signature in the absence of any object (i.e., vacuum propagation
for L+ LS), and

K
(n)
D (ρρρs, ρρρd) ≡

eikSρρρs·ρρρd/L−ikSρρρd·ρρρO/L

λ2
SL

2

×
∫

dρρρ′s

∫
dρρρ′d A(ρρρ

′
s)K

(n)
O (ρρρ′d;LS)e

ikSρρρO·ρρρ′
d/LeeikSρρρ

′
s·ρρρ′

d/Lee−ikSρρρs·ρρρ′
d/Le−ikSρρρd·ρρρ′

s/L (13)

is the modification resulting from the the object of interest. Here L−1
e ≡ L−1

S + L−1. In evaluating the Eq. (13)
integral we make our second critical approximation. For most objects of interest in this report we have that

DO

DS

(
1 +

LS

L

)
� 1 , (14)

where DO is the diameter over which the centered object’s absorption profile A(ρρρ) is appreciable. When this
condition holds we can neglect the second phase term in the integrand of Eq. (13), thereby decoupling the
integrals over ρρρ′s and ρρρ′d. Hence, in scenarios wherein Eq. (14) holds we find that

K
(n)
D (ρρρs, ρρρd) ≈

eikSρρρs·ρρρd/L−ikSρρρO·ρρρd/L

L2
IS

(
−LS

L
ρρρs +

LS

Le
ρρρO

)
A
(
kS
L
ρρρd

)
, (15)

where

A(k) ≡
∫

dρρρA(ρρρ)e−ik·ρρρ. (16)

Substituting Eq. (15) into Eq. (12), and substituting that into Eq. (7), yields the photocurrent correlation

C(ρρρs, ρρρd) ≈ C
I2S(0)

L4β4

∣∣∣∣TS
(
kSρρρd
Lβ

)
− β2e

i
LSkS
L2β

ρρρs·ρρρdTS

(
−LS

L
ρρρs + βρρρO

)
A
(
kS
L
ρρρd

)
e−i

kS
L ρρρd·ρρρO

∣∣∣∣
2

(17)

where β ≡ 1+LS/L, TS(ρρρ) ≡ IS(ρρρ)/IS(0), TS(k) ≡
∫
dρρρTS(ρρρ)e

−ik·ρρρ, and C ≡ η1η2A1A2[|R(t)|2 � h1 �
←−
h2](t). In

the last expression we have used � to denote convolution and
←−
h2 to denote time reversal.



Variable Lab demo Stellar imaging

λS [m] 1× 10−6 1× 10−6

LS [m] 0.5 1.496× 1011 (1 a.u.)
L [m] 0.5 8.948× 1018 (290 pc)
rS [m] 0.01 6.955× 108

rO [m] 0.001 6.371× 106

β 2 1 + 1.67× 10−8

γ 0.1 9.16× 10−3

λSL/(2rS) [m] 2.5× 10−5 6.433× 103

Table 1. Two sets of parameters that will be used throughout our paper. The second column denotes a representative set
of parameters that could be demonstrated in a laboratory setting. The third column denotes a parameter set consistent
with imaging an exoplanet.

3. IMAGE SIGNATURES OF SCANS

To derive further insight into the image signature, let us consider the case when ρρρs = 0, i.e., the two detectors
are always symmetrically opposite about the optical axis. In this case, Eq. (17) simplifies to

C(ρρρd) ≈ C
I2S(0)

L4β4

∣∣∣∣TS
(
kSρρρd
Lβ

)
− β2TS (βρρρO)A

(
kS
L
ρρρd

)
e−i

kS
L ρρρd·ρρρO

∣∣∣∣
2

(18)

where we have dropped ρρρs from the left-hand side to simplify the notation. Recall that the first term inside the
square-magnitude expression is due to the source alone, thus, the second term is the object-induced modification
to the correlation signature that we seek to identify.

In the following we will consider disc-shaped objects as an analytically-tractable example and derive the
resultant image signature. Suppose,

TS(ρρρ) = circ(|ρρρ|/rS) ≡
{
1 for |ρρρ| ≤ rS

0 otherwise,
(19)

and

A(ρρρ) =

{
1 for |ρρρ| ≤ rO

0 otherwise,
(20)

where rO � rS . Substituting these into Eq. (18), we can write our observed signature in terms of normalized
parameters as

C(x, θ) =
CP 2

L4β4

∣∣∣∣2J1(πx/β)πx/β
− β2γ2circ(βxO)

2J1(πγx)

πγx
e−iπxxO cos(θ)

∣∣∣∣
2

, (21)

where we have x ≡ 2|ρρρd|rS/(λSL) as the normalized displacement of the detectors, xO ≡ |ρρρO|/rS as the fractional
displacement of the object relative to the source radius, θ ≡ ∠ρρρd − ∠ρρρO as the angular separation between the
vector that connects the two detectors and the object displacement vector, P ≡ IS(0)πr

2
S as the mean photon

flux of the source, and γ ≡ rO/rS as the object-to-source diameter ratio.

The mean signature in Eq. (21) indicates that the modification to the coherence measurements due to the
object is proportional to γ2 and therefore it constitutes a rather weak signature. Thus, we also consider the
image signature from the difference measurement introduced in Eq. (8), wherein a scan with the object present
and one without is differenced to detect the perturbation due to the object (assuming everything else remains
stationary). Employing Eq. (18) we find that Eq. (8) can be expressed as

ΔC(x, θ) =
CP 2

L4β2
γ2circ(βxO)

2J1(πγx)

πγx

[
−22J1(πx/β)

πx/β
cos
(
πxxO cos(θ)

)
+ γ2β2 2J1(πγx)

πγx

]
, (22)



where we have used the normalized variables introduced earlier.

In stellar interferometry it is typically the case that LS � L, hence, β ≈ 1. In addition, we have that γ � 1.
Thus, we can further simplify Eq. (21) to

C(x, θ) ≈ CP
2

L4

[(
2J1(πx)

πx

)2

− 2γ2circ(xO)
2J1(πx)

πx

2J1(πγx)

πγx
cos
(
πxxO cos(θ)

)]
, (23)

in which we have dropped the weak term proportional to γ4. With the same set of assumptions, the differential
measurement signature from Eq. (22) simplifies to

ΔC(x, θ) ≈ −2CP
2

L4
γ2circ(xO)

2J1(πx)

πx

2J1(πγx)

πγx
cos
(
πxxO cos(θ)

)
. (24)

We summarize a set of typical parameter values in Table 1 for two scenarios. A feasible set of parameters for
a table-top laboratory demonstration of the concept (see the column labeled lab demo), and a set of parameters
that correspond to a Sun-size source being occluded by an Earth-size planet, and being observed from a distance
equivalent to that of Kepler 20f (see the column labeled stellar imaging).10 In Fig. 2 we show the results
pertaining to the C(x, θ) and ΔC(x, θ) measurements for the laboratory demonstration case, and in Fig. 3 we
show the same results for the stellar imaging case. In particular, subfigure (a) in both figures corresponds to
C(x, θ) plotted as a function of x for different θ, whereas subfigure (b) plots the same for ΔC. Subfigure (c)
corresponds to the fractional variation of the half-width half-maximum (HWHM) of C(x, θ)—when viewed as
function of x at different θ values—as a function of the object displacement x0. Finally subfigure (d) is the same
for ΔC(x, θ).¶ Qualitatively, we immediately observe that the variation between different curves (corresponding
to different θ values) is much more prominent for ΔC. This is an expected result, because as we have derived
above, the object-dependent signature is notably weaker than the signature from the source alone, and subtracting
out this dominant term highlights the variations caused by the planet.‖ This observation is reinforced by the
half-width-half-maximum estimates of the covariance functions. It is clear that the variation of this width is
much more significant in the differential-measurement case.

The weakness of the object-induced signature becomes apparent in the Fig. 3 results, which show the same
results as before, but for the parameters in the second column of Table 1. Now, in Fig. 3(a) the covariance
functions are practically indistinguishable, which is also seen in Fig. 3(c) as a very minor variation in the
HWHM as a function of xO. All hope is not lost, however, as the differential measurement still has appreciable
distinguishability in the HWHM as a function of θ as well as xO.

4. SIGNAL-TO-NOISE RATIO

We concluded in Section 3 that, under nominal conditions applicable to a small object obscuring an extended
source (γ � 1), the perturbation signature due to the object is weak relative to the baseline signature from the
source alone. While a differential measurement can eliminate the source’s baseline and improve the visibility of
the object’s perturbation, it will not eliminate the noise contributed by the source. In this section we derive
the signal-to-noise ratio (SNR) of the differential measurement in order to develop a better appreciation for the
sensitivity of this measurement.

Recall from Section 2 that the differential measurement can be expressed as c1(ρρρ1, ρρρ2) − c0(ρρρ1, ρρρ2), where
c1 is the Eq. (5) measurement with the object of interest present, and c0 is the same measurement without the
object present. As typically these two measurements are separated by a duration significantly longer than the
coherence time of the photocurrent fluctuations, it can be assumed with practically no loss of generality that the
two measurements are statistically uncorrelated. Thus, the variance of the measurement is,

Var(c1 − c0) = Var(c1) + Var(c0) ≈ 2Var(c0) (25)

¶In particular, we plot the ratio of the change in the HWHM of C(x, θ) and ΔC(x, θ) and their respective HWHMs at
xO = 0.

‖While this subtraction will improve the visibility of the measurement signature, it will not change its signal-to-noise
ratio.
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Figure 2. Image signature plots, explained in Section 3. The plots use the set corresponding to lab parameters, listed in
Table 1.
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Figure 3. Image signature plots, explained in Section 3. The plots use the set corresponding to stellar parameters, listed
in Table 1. In (c) and (d), the squares denote the results obtained with the approximate analytic expressions, which show
excellent agreement with the results obtained from exact expressions (shown as crosses).



where the last approximation stems from our earlier observation that the object’s perturbation signature is
significantly weaker than that of the source when γ � 1. Consequently, in this regime it can be assumed that
the variance of either measurement will be dominated by the source-induced shot- and excess-noise fluctuations.

The SNR can, therefore, be expressed as

SNR =
|〈c1 − c0〉|2
Var(c1 − c0)

≈ |ΔC|2
2Var(c0)

. (26)

We have derived the numerator of this expression in Section 3, thus here we concentrate on the denominator.
Using the photocurrent moments given in Eqs. (3) and (4), as well as iterated expectations, it is straightforward—
albeit somewhat tedious—to show that the variance can be expressed as

Var(c0) =

∫
dτ1

∫
dτ2

∫
dv1

∫
dv2 Kh(τ1, τ2)Kh(v1, v2)Ki(τ1, τ2, v1, v2) , (27)

where

Kh(τ1, τ2) = T−1

∫
dt h1(t− τ1)h2(t− τ2) , (28)

and

Ki(τ1, τ2, v1, v2) = η1A1η2A2

[
〈|E1(τ1)|2|E2(τ2)|2〉δ(τ1 − v1)δ(τ2 − v2)

+ η1A1〈|E1(τ1)|2|E1(v1)|2|E2(τ2)|2〉δ(τ2 − v2) + η2A2〈|E1(τ1)|2|E2(τ2)|2|E2(v2)|2〉δ(τ1 − v1)

+ η1A1η2A2

{
〈|E1(τ1)|2|E1(v1)|2|E2(τ2)|2|E2(v2)|2〉 − 〈|E1(τ1)|2|E2(τ2)|2〉〈|E1(v1)|2|E2(v2)|2〉

}]
. (29)

Here, we have used the short-hand notation Em(τ) ≡ ED(ρρρm, τ) for m = 1, 2, and all ensemble averages are over
the detected field ED(ρρρ, t). The terms in Eq. (29) have intuitive physical origins: the first term is the covariance
of common-mode fluctuations in the shot-noise (i.e., the conditional variance) from the two detectors, the term
on the third line is the covariance between the signal fluctuations (i.e., the conditional mean-square) from the
two detectors, and the two terms on the second line are the covariances between the shot-noise fluctuations in
one detector and the signal fluctuations in the other detector.

In order to evaluate Eq. (27), we first perform Gaussian moment factoring8 on each term in Eq. (29). This

yields expressions for every term in Eq. (29) in terms of K
(n)
D (ρρρ1, ρρρ2), which is given in Eq. (15). Next, we assume

that the ac-coupled photodetector impulse responses h1(t) and h2(t) are identical and Gaussian-shaped with
e−2-bandwidth ΩB, namely,

hm(t) =

√
πΩ2

B

2
e−t2Ω2

B/8 −
√

πΩ2
N

2
e−t2Ω2

N/8. (30)

The second term represents the dc notch with bandwidth ΩN . Henceforth, we assume that ΩB � ΩN , which
allows to us to effectively neglect the notch’s contribution to any nonzero-frequency terms. Our final assumption
in evaluating the Eq. (27) is that TΩB � 1 and T/T0 � 1, such that we may approximate Eq. (28) as

Kh(τ1, τ2) = T−1rect

(
|τ1 + τ2|

T

)
[h1 �

←−
h2](τ2 − τ1) , (31)

where � denotes convolution and
←−
h2 denotes time reversal, as before.

For brevity, we shall opt to be content with skipping the steps of evaluating each term in the variance
expression that results from following through the aforementioned steps, and state that the resultant SNR
expression is given by

SNR =
cos2(θd)α

σ2
ss + σ2

se + σ2
ee

, (32)

where we have defined the terms in this expression as follows. In the most general case

θd ≡ ∠
{
e−ikSρρρs·ρρρd/(L+LS)

[
K

(n)
O (ρρρd;L+ LS)

]∗
K

(n)
D (ρρρs, ρρρd)

}
(33)
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which simplifies to
θd = πxxO cos(θ) (34)

when the scenario is specialized to that discussed in Section 3. The numerator also includes

α ≡
∣∣∣∣ K

(n)
D (ρρρs, ρρρd)

KO(0;L+ LS)

∣∣∣∣
2

= β4γ4circ(βxO)

(
2J1(πγx)

πγx

)2

, (35)

which, when γx� 1, β ≈ 1, and βxO < 1 (as in the stellar imaging case), simplifies to α ≈ γ4. The three terms
in the denominator of the SNR expression are given by

σ2
ss ≡

√
2√

πTΩBΓN2

⎡
⎣1 + T0ΩBΓ

√
8

√
1 +

Ω2
BT 2

0

8

⎤
⎦ , (36)

σ2
se ≡

2
√
2

TΩBΓN

1 +
T 2
0 Ω2

B

16√
1 +

T 2
0 Ω2

B

32

⎡
⎣1 +

√
2T0ΩBΓ√

3

√
1 +

T 2
0 Ω2

B

32√
1 +

T 2
0 Ω2

B

8

√
1 +

T 2
0 Ω2

B

24

⎤
⎦ , (37)

σ2
ee ≡

√
2π

TΩBΓ

√
1 +

T 2
0Ω

2
B

16

⎡
⎣1 + Γ2 +

T0ΩBΓ√
1 +

Ω2
BT 2

0

8

⎛
⎝1 + Γ +

√
1 +

T 2
0 Ω

2
B

16√
1 +

T 2
0 Ω

2
B

8

⎞
⎠
⎤
⎦ . (38)

Here, we have defined N ≡ ηAT0PS/(L+LS)
2 as the mean photoelectron count registered per source coherence

time, given that the mean photon flux of the source is PS ≡
∫
dρρρIS(ρρρ), and

Γ ≡
∣∣∣∣∣K

(n)
O (ρρρd;L+ Ls)

K
(n)
O (0;L+ Ls)

∣∣∣∣∣
2

∈ [0, 1], (39)

as the equal-time correlation coefficient between the photocurrents registered at the two detectors, given in terms
of KO defined in Eq. (10). We have also assumed here, for convenience, that the photodetectors are identical in
specification, i.e., that η1 = η2 = η and A1 = A2 = A.

It is useful to consider two limiting cases of this expression based on whether the incident light is broadband
relative to the photodetector (ΩBT0 � 1), or whether the incident light is narrowband relative to the photode-
tector (ΩBT0 � 1). Because naturally-occurring light sources are nominally broadband and are filtered optically
at the measurement plane, typically the former limit will hold. However, when pseudothermal light sources are
generated in the laboratory it is possible that the latter limit is true. Hence, here we report on both limits.

In the ΩBT0 � 1 (broadband) limit, the Eq. (32) expression simplifies to

SNR(bb) ≈ cos2(θd)αTΩBΓ

[ √
2√

πN2
+

2
√
2

N
+
√
2π(1 + Γ2)

]−1

. (40)

The photodetector currents decorrelate over approximately Ω−1
B intervals, thus the SNR is proportional to the

product TΩB. For N � 1, the signature is photon starved and the SNR has a quadratic dependence on mean
photon flux. As N increases, the SNR approaches its maximum value

SNR(bb)
max = cos2(θd)αTΩB

Γ√
2π(1 + Γ2)

. (41)

Figure 4(a) plots the transition of the normalized SNR from the photon-starved region to its maximum, as a
function of N .

In the ΩBT0 � 1 (narrowband) limit, on the other hand, the Eq. (32) expression is

SNR(nb) ≈ cos2(θd)αΓ
T

T0

[ √
2(1 + Γ)√
πN2T0ΩB

+
(1 + 2Γ)

N
+

√
π

2
√
2

(
1 + 2(

√
2 + 1)Γ + (1 + 2

√
2)Γ2

)]−1

. (42)



10−3 10−2 10−1 100 101 102 103
10−6

10−5

10−4

10−3

10−2

10−1

100

mean photoelectrons in T0, N

SN
R

/( (T
Ω

B
)c

os
2
(θ

d
)α

)

 

 

ΩBT0 = 0.001
ΩBT0 = 0.01
ΩBT0 = 0.1

(a)

10−3 10−2 10−1 100 101 102 103

10−4

10−3

10−2

10−1

100

mean photoelectrons in T0, N

SN
R

/( (T
/
T

0
)c

os
2
(θ

d
)α

)

 

 

ΩBT0 = 10
ΩBT0 = 100
ΩBT0 = 1000

(b)

Figure 4. The normalized signal to noise ratio (SNR) of the differential intensity covariance measurement is plotted as a
function of N . Γ = 1 is assumed. (a) When the incident optical field is broadband relative to the detector bandwidth
(i.e., T0ΩB � 1). In this case the normalized SNR has little dependence on the T0ΩB product. (b) When the incident
optical field is narrowband relative to the detector bandwidth (i.e., T0ΩB � 1). In this case the normalized SNR in the
N � 1 regime has a dependence on the T0ΩB product, but the maximum (attained when N � 1 is independent of this
product.

When the source is narrowband relative to the detectors, the photocurrent correlation time is approximately T0,
so the SNR is now proportional T/T0. For N2T0ΩB � 1, the signature is photon starved and the SNR has a
quadratic dependence on mean photon flux. As N increases, if N

√
T0ΩB � 1 and N � 1 simultaneously hold,

then the SNR becomes linear in N . For N � 1 it saturates to its maximum value,

SNR(nb)
max = cos2(θd)α

T

T0

2
√
2Γ

√
π
(
1 + 2(

√
2 + 1)Γ + (1 + 2

√
2)Γ2

) . (43)

Figure 4(b) illustrates the variation of the normalized SNR as a function of N in the narrowband case.

5. CONCLUSIONS

Motivated by the recent resurgence of interest in intensity interferometry, in this paper we have analyzed the
perturbative intensity-correlation signature due to small objects passing between a known source and the mea-
surement detectors. In particular, we have derived an analytic approximation to the intensity covariance of an
extended source partially-occluded by an absorptive object, such as a planet. We have applied the results to both
a parameter set that could represent a table-top demonstration, and a parameter set that would be applicable
to a stellar imaging scenario. We showed that a differential measurement—which subtracts the baseline covari-
ance of the source alone from the covariance measured with the object present—yields a fluctuation that arises
from the presence of the object. We then derived this interferometric signature explicitly assuming disc-shaped
objects. Finally, we evaluated tractable analytic expressions for the SNR, showing that at low signal flux values
the SNR has a quadratic scaling with incident photon number (per coherence duration of the source), but that
as this quantity increases the scaling saturates to a constant.

There are several conclusions to draw from our analysis. First, returning to Eq. (18), we conclude that
the intensity covariance measurement is the magnitude-square of the difference between the spatial Fourier
transforms of the source and the absorptive object. Thus, using reasonable assumptions on the nonzero domain
of this expression’s inverse Fourier transform, it is feasible that iterative phase-retrieval algorithms, such as



the Gerchberg-Saxton algorithm, can reconstruct images of arbitrary objects that are partially occluding the
source.11, 12 Phase-retrieval techniques have found wide application in optical imaging, including in intensity
interferometry. A second conclusion that can be drawn from our exposition in Section 3 is that the intensity
covariance has an imprint of the displacement of the object relative to the axis along which the measurements
are being performed. Thus, if several consecutive snapshots of the intensity correlation are obtained it is feasible
to estimate the axis of motion for a (dynamic) object, such as a planet orbiting a distant star.

Historically stellar intensity interferometry has been challenged by its low SNR. Our derivations of the SNR
are consistent with this conclusion. Due to our assumption that the object of interest is small relative to the
source, the mean signature (i.e., the intensity covariance perturbation due to the object) is proportional to γ2,
where γ is the ratio of the object’s diameter to that of the source. Consequently, we find that the SNR of this
measurement scales with γ4. Furthermore, because the intensity correlation measurement relies on common-
mode fluctuations of photocurrents from the two detectors, it is often photon starved. For example, consider
the parameter set in Table 1 corresponding to imaging an Earth-size planet orbiting our sun, from a distance
commensurate with Kepler 20f. Assuming, for convenience, that we are imaging at 1μm center wavelength with
1 nm optical bandwidth, that we have a photodetector with ΩB/2π = 10GHz electrical bandwidth and quantum
efficiency 0.9, and that we have large-aperture telescopes with A = 4.5m2, we find that N ≈ 1.5× 10−8. Thus,
the SNR is well into the regime in which it is proportional to N2, so, even with a generous 10-hour integration
time the SNR is impractically low. Nonetheless, shortening the distance between the source and the measurement
planes improves the SNR by the fourth power (until N ≈ 1), so a reduction by a factor of 100 would be sufficient
to approach the maximum SNR scaling found in Eq. (41). Consequently, while our analysis predicts somewhat
negative results for stellar imaging at distances comparable to those in current missions, it does imply that
intensity interferometry would be feasible at moderate distances. On the other hand, the parameter set we
have used for a laboratory experiment has more forgiving results. Here, we find that N ≈ 550 with a 1mW
pseudothermal source having T0 ≈ 0.02ms, a 10MHz photodetector having quantum efficiency 0.7, and two
100μm-diameter pinhole apertures for the detectors. This predicts SNR≈ 1.5 with T = 2 s.

In summary, we have analyzed the perturbations in the intensity covariance signature of a source when a
small object partially occludes it. We have derived the mean signature as well as the SNR of this measurement,
showing that the Fourier transformation of its absorptivity can be determined provided that the source intensity
covariance and the propagation medium are known. When the SNR results are applied to stellar imaging
applications of current interest, we have found that it is likely too low due to the paucity of common-mode
photons at the two detectors. However, we have shown that for shorter distances intensity interferometry may
facilitate the estimation of some object feastures that would otherwise not be discernable from the fluctuations
in the observed brightness.
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