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ABSTRACT   

Masks for high contrast internal and external coronagraphic imaging require a variety of masks depending on 
different architectures to suppress star light. Various fabrication technologies are required to address a wide range of 
needs including gradient amplitude transmission, tunable phase profiles, ultra-low reflectivity, precise small scale 
features, and low-chromaticity. We present the approaches employed at JPL to produce pupil plane and image plane 
coronagraph masks, and lab-scale external occulter type masks by various techniques including electron beam, ion 
beam, deep reactive ion etching, and black silicon technologies with illustrative examples of each. Further 
development is in progress to produce circular masks of various kinds for obscured aperture telescopes.  
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1. INTRODUCTION  
Detection and characterization of faint exoplanets require an efficient coronagraph to suppress the star light and 
allow planet light to get through to the final image plane of the telescope. Various coronagraph architectures are 
being studied for this purpose. Central to all coronagraphs are star light suppressing masks to function either in the 
focal plane or pupil plane or both. Modified Band Limited Coronagraph (BLC, Trauger1,2),  Shaped Pupil 
Coronagraph (SPC, Belikov3), Vector Vortex Coronagraph (VVC, Mawet4), and Phase Induced Amplitude 
Apodization Complex Mask Coronagraph (PIAACMC, Guyon5,21) are chief among these architectures. Different 
kinds of masks are needed for each of these architectures and hence different technologies are needed to produce 
them.  In addition, with the availability of the 2.4 m Astrophysics Focused Telescope Assets (AFTA) to NASA, the 
need has arisen for advanced coronagraphs that function with an obscured aperture. This further stresses the 
importance of high-quality circularly symmetric masks with accurate amplitude and phase profiles to perform 
apodization and achromatization at high levels of contrast for exoplanet detection. We present here illustrative 
examples of masks produced by various techniques at JPL. 

2. BACKGROUND AND CURRENT EXPERIENCE 
Two major categories of masks are needed for different types of coronagraph architectures: (1) achromatic focal 
plane mask, and (2) reflective or transmissive binary apodizers and pupil plane masks. To fabricate such masks, 
different complementary techniques have been explored at JPL for development and advancement: (1) electron 
beam evaporation through a scanning slit, (2) electron beam lithography, (3) deep reactive ion etching, (4) focused 
ion beam deposition, and (5) cryogenic black silicon processing. 
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masks requires finer control of the processes to produce ideally defect-free masks with no contamination. New and 
improved techniques to fabricate circular masks are now under investigation. 

  
 

 

 

 
 
 
 
 
 
 
Figure 4. Micro dot patterned focal plane mask fabricated at JPL for JWST NIRCam coronagraph 
Left: Macro image of the mask showing the inner core and a ring; Right: Micro dots in detail 

Gray scale focal plane masks with binary micro dots  
Employing electron beam lithography, the JPL team fabricated and delivered focal plane masks for JWST NIRCam 
coronagraph system15 with micro dots of aluminum on sapphire substrates as shown in Figure 4 to produce a gray 
scale mask to function in the near IR spectrum (Krist, et al., 2010). Micro dot sizes and distribution are chosen based 
on model predictions considering optical interactions in wavelength scale features. These devices are currently being 
installed and integrated on NIRCam at Lockheed Martin Space Systems Company in Palo Alto, CA.  

 
Focal plane mask for Low Order Wavefront Sensor (LOWFS) 
Another important mask that is needed for wavefront sensing in the coronagraph is an occulter to allow the light in 
the dark hole region to go to the science camera while reflecting the rest of the light to a sensing camera on another 
folded path. To accommodate the dynamic range of the camera, the brightest part of the psf is reflected significantly 
less (~ 0.1%) with an appropriately sized black silicon dot as shown in figure 5.   

Figure 5. Low Order Wavefront Sensor (LOWFS)16 mask on silicon with a black silicon dot at the image center. The 
light reflected off this occulter goes to the sensing camera.  The punched hole region allows light in the dark hole to 
go to the science camera. Metallization of the backside ensures high optical density in the opaque regions.  

Such a LOWFS mask has been employed in the PIAA testbed at JPL (Kern et al., 2013)17. The mask was fabricated 
with a combination of lithographic patterning, deep reactive ion etching and a cryogenic etching process on silicon 
to produce the black dot.  
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