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Background of NASA SCaN Integrated Network JPL
Schematics

« NASA communication infrastructure consists of three distinct networks
— Space Network (SN), Near-Earth Network (NEN), Deep Space Network (DSN)

« The three NASA networks will be re-architected into a single network
that is interoperable with international/commercial agencies
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Background of NASA SCaN Integrated NetworkaL
ISE Allocation of Functions

« The Space Communication and Navigation (SCaN) Program of NASA
conducted a trade-study on the Integrated Network Architecture (INA)
— Focus on Integrated Network Management and Integrated Service Execution

— Four Integrated Service Execution (ISE) architecture options are identified based
on the allocation of network signal processing and data delivery functions between
the ground station sites and the integrated network operation center
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« Key discriminator of ISE options is wide area network (WAN) bandwidth
for data flow among SCaN ground assets, and from SCaN to missions

— Substantial recurring cost and technical risks
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ISE Architecture Option ISE-4
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Scope and Assumptions JPL

 The SCaN Integrated Network has a star-like topology that does not
require routing mechanism and flow control

— Only need to model the Store-and Forward mechanism of the ground nodes
- Data traffic flows are driven by spacecraft downlinks, and are offered and
serviced as constant bit rate flows over a pre-determined time intervals
- Different mission data types have different latency requirements:
— Audio/video data: 2 seconds
— Engineering telemetry: 5 seconds
— Quick-look science: 30 minutes
— Bulk science: 1 hour or 8 hours
 The Space Communication Mission Model (SCMM) is used to derive the
mission traffic for the 31-day period in July 2018
— Based on NASA's Agency Mission Planning Mission Manifest (AMPM)
— Consider “base” case, “high” case, and “low” case
 The SCaN Integrated Network has an aggregated data rate in the order of
a few Gbps, and a daily data volume of a few terabytes per day

— COTS network and routing analysis tools, which provide high-fidelity protocol,
routing, and flow control simulation, are not well-suited for the SCaN large-scale
network



Problem Setup JPL

* Find the integrated Network bandwidths that meet the latency requirements

* ForISE-3 and ISE-4, the GSS-INOC links are bit-streams with no store-and-
forward rate buffering (quantized coded symbols and RF/IF samples)

« All other ground links are store-and-forward, and link sizes are driven by the
combined effects of mission data rates, data types, and different latency

requirements
Mission Traffic Model End-to-End Network Traffic Model
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Store-and-Forward Modeling
Using Leveling Schemes 10



Straight-Forward Leveling Scheme

S0

“Straight-forward” way to spread the data of each data types along the
timeline in a way to meet the latency requirement

The beginning of a communication pass can be unnecessarily penalized
with higher aggregate data rate
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2-State Markov Modeling Scheme JRPL
Observation

« Smaller aggregated bandwidth can be achieved by back-filling the vacant
timeline between L+L, and L+L, with Type 2 data (Greedy Algorithm)
 Example: For L=1 hour, L,=5 second, L,=8 hours, R,=20 kbps, R,=180 kbps
— “Straight-Forward” scheme yields 40 Kbps
— “Back-filling” scheme vyields 20.3 Kbps

« “Back-filling” amounts to modeling the interaction between data types
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N(A\-;?ﬁ 2-State Markov Modeling Scheme JRPL
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Bandwidth Estimation Results of the Integrated Net\AJPL

« Validity of the Model: Comparing Leveling Scheme with Qualnet for DSN

Base Case Goldstone Canberra
(Mbps)

Leveling Scheme 136.4 102.0 120.9
Qualnet 139.5 99.6 121.9

« Aggregated WAN bandwidths (Gbps) for bulk science latency of 1 hour,
straight-forward scheme

e e e
1 hr

Base Case 182.444 15.742 3.514 2,352
High Case 207.353 43.612 8.209 6.021
- Ag i ience latency of 8 hour
Latency = | Option 4 Option 2a | Option 1
8 hr
Base Case 182.157 15.456 2.259 1.712

High Case 206.606 42.865 5.847 4.145




Bandwidth Estimation Results for

« Aggregated WAN bandwidths (Gbps) for bulk science latency of 1 hour,
2-State Markov scheme

e e ] e e
1 hr

Base Case 182.207 15.505 2.664 1.938

High Case 206.809 43.068 7.116 4.708

« Aggregated WAN bandwidths (Gbps) for bulk science latency of 8 hour,
2-State Markov scheme

o R e e
8 hr

Base Case 182.010 15.308 1.789 1.444

High Case 206.211 42.470 4.644 3.210




Concluding Remarks and Future Work JPL

* In this paper, we describe new leveling schemes to model the traffic flow
and rate buffering mechanism of a large-scale store-and-forward network

«  We apply these techniques to estimate the WAN bandwidths of the
ground links for different ISE architecture options

* Future work and possible improvements

— Instead of sizing the bandwidth based on the “min-max” approach, a better approach
to quantize the link sizes is to use the statistics from traffic simulations

— Instead of making blanket assumptions on mission data types across all mission, one
can provide data type modeling for each individual mission

— Instead of just considering the store-and-forward latency, which accounts for the
majority of the end-to-end latency, one can improve the accuracy by including other
latency contributions like code-word buffering delay, frame buffering delay, and
ground transmission delay

— The authors believe that the leveling scheme can be extended for use in more
complex WAN scenarios that share diverse network resources among diverse users
and have a complex topology that requires rounting mechanism and flow control

« A companion paper that provides a general overview of the SCaN
Integrated Network traffic flow modeling can be found in reference [3]
Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not constitute or imply its endorsement by the United State Government or the Jet Propulsion Laboratory, California Institute of
Technoloav
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