
 1

THE MARS SCIENCE LABORATORY ENTRY, DESCENT, AND
LANDING FLIGHT SOFTWARE†

Kim P. Gostelow‡

This paper describes the design, development, and testing of the EDL program
from the perspective of the software engineer. We briefly cover the overall MSL
flight software organization, and then the organization of EDL itself. We dis-
cuss the timeline, the structure of the GNC code (but not the algorithms as they
are covered elsewhere in this conference) and the command and telemetry inter-
faces. Finally, we cover testing and the influence that testability had on the EDL
flight software design.

INTRODUCTION

Edl is an autonomous control program for the Entry, Descent, and Landing phase of the Mars
Science Laboratory (MSL) mission. The design of the Edl program inherits many characteristics
from its predecessor mission, the Mars Exploration Rovers (MER), but was nevertheless a new
development. This paper describes the design, development, and testing of parts of the Edl pro-
gram from the perspective of the software engineer. Guidance, Navigation, and Control (GNC)
algorithms are covered elsewhere1, 2.

MSL COMPUTING HARDWARE AND SOFTWARE

The MSL avionics computing system comprises two RAD750 processors with 256 MB of
RAM each, and various flavors of non-volatile memory of several gigabytes. Some time before
Edl, one of the two computers is designated prime and the other backup. There is no off-loading
of work onto the backup computer; the backup exists solely in case the prime machine fails. The
basic design has the software on both machines the same, but the prime machine runs the “prime”
software, while the backup runs a different set of functions. The backup machine does useful
work only if the prime fails, and only if we are in a certain sub-phase of Edl. In an alternative
formulation, called Second Chance, the backup machine runs different software than the prime
machine. Some days before Edl, it was decided to allow Second Chance to be used, if needed.
Second Chance is described briefly later.

The RAD750 connects to two 1553 busses, one running at 8 hz and the other at 64 hz. The
busses connect to a large number of peripheral devices including radar, power, telecom, pyro,
science instruments, and others. The inertial measurement units (imu) had a special connection to
the processors so the 200 hz measurements could be processed with as little delay as possible.

† © 2013 California Institute of Technology. Government sponsorship acknowledged.
‡ Principle Software Engineer, Jet Propulsion Laboratory – California Institute of Technology, 4800 Oak Grove Drive,
Pasadena, CA 91009.

(Preprint) AAS 13-426

 2

Virtually all other device communication was over the 1553. Many devices were redundant as
were their cross-coupled controllers/drivers. However, due to switching delay and the need for
concurrent data paths and computation, there are few opportunities in the Edl system to utilize the
redundancy in real time in case of problems.

The software is written in ANSI C and runs under the VxWorks real-time operating system.
Lines of code is the usual measure given for the size of a program, but it can be difficult to gauge
just what a line is, and which software you count. There are approximately 1 million lines of
handwritten C code in the MSL flight software, and an additional 2.5 million lines were produced
by an autocode system. The autocode is generated from domain-specific languages including
general finite-state machine, telemetry, commands, parameter handling, and other areas. The in-
puts to the autocode generators are specifications, coded in XML by the programmer, of what is
needed. The generators, written in python, read XML and C “.h” files, and produce C code as
output. Some of the domain-specific code was also used to generate information for the ground
telemetry and real-time display system.

The MSL flight software is partitioned into some 150 modules, each module containing zero
or more (usually one) threads. The architecture of the flight software is communicating threads
(or tasks in VxWorks parlance) all running in a single address space. Communication among
threads is by messages (with some exceptions). Interrupt handlers convert interrupts to messages
as soon as possible in the interrupt decode process. A clock tick is also a message sent to those
threads that wish to receive it. The 150 threads include all device controllers, and all other mis-
sion activity for all of cruise, Edl, and landed spacecraft configurations.

THE FLIGHT SOFTWARE PRINCIPLES

The MSL Flight Software Principles were written early in the project. These principles came
from approaches and lessons learned from Mars Pathfinder and the Mars Exploration Rover pro-
jects. The Edl modules are indistinguishable from any other module in the system and receive no
special treatment in any way. Thus these Principles apply to Edl and were important to its devel-
opment. These principles are:

1. A module communicates with another module through messages containing only data –
no pointers may appear in a message.

2. Each task executes an event loop that processes arriving messages. A task waits only on
message arrival and at only one point in the code.

3. There is a single manager or point of contact for any given decision.
4. Message sending is by void return functions (and not functions that return a communica-

tion success or failure indicator).
5. Wherever possible, memory is allocated statically, including stack space. The remaining

area is dynamic memory, which is allocated only during initialization, before any tasks
have started.

6. Task priorities are assigned according to Deadline-Monotonic scheduling theory. All
messages for a given task should result in approximately the same computation time.

7. A module is a collection of software with high cohesion, low coupling, and singular pur-
pose. It is the responsibility of, and is owned by, a single developer.

We would like to point out some implications of the principles. MSL modules might be de-
scribed as behavior-oriented; this would be especially the case for the higher-level modules, such
as Edl. A module contains all state and functions needed to carry out some aspect of flight soft-
ware, and is the basic unit of software organization, personnel assignment, and unit test.

 3

Threads communicate by message rather than shared memory. That is, the software is event-
driven. This is important for isolation between modules. The expectation is that modules based
on messages, rather than shared memory, have a higher probability of behaving as expected after
integration with other modules.

It is important that a thread wait for a message at only one point in the code. Generally, a fi-
nite-state machine is used to determine what to do with any given message, but by waiting at only
one place in the code, a module will have a handler for any message at any time, including mes-
sages that may violate some protocol, even if it means throwing the message away. At least the
message will be handled, perhaps with a warning message to developers.

Module initialization and messaging is standardized in MSL. Within a module, a developer
was pretty much free to write the code as he pleased. Some modules have a layered, function-
oriented structure, while others are more object-oriented (though in C). Some modules have no
thread, in which case we call them libraries.

THE EDL FLIGHT SOFTWARE

The Edl flight software comprises four principal modules:

• EdlMain with the Edl timeline and the single Edl main thread
• EdlGnc is a library containing the vast majority of GNC code that runs during Edl; the

code in this library is run by the thread in EdlMain.
• EdlComm has a single thread and is responsible for recording data and sending a portion

of it, in real time, to the ground
• EdlBg is the background batched radar measurement thread, and secondarily handles pa-

rameter updates for all of Edl.

Figure 1 shows the relationships among the Edl modules as well as some of the modules ex-
ternal to Edl.

Figure 1. The Edl main thread runs both the Edl timeline and EdlGnc code.

 5

Anchors, distinct from timepoints, are distinguished times, such as the navigated Mars entry
point. Anchors are arranged in a tree so each anchor is relative to some other anchor, except for
the root anchor whose time is defined to be zero. Any anchor whose time is an absolute time t
(such as the navigated entry point time) is represented as an offset of t seconds from the zero root
anchor. The anchor tree is represented in the program as an array of anchors topologically or-
dered so if anchor A is defined relative to anchor B, then anchor A follows anchor B in the array.
In this way, a single sweep through the array allows all anchor times to be computed, since if A is
at an offset from B, B’s current value will already have been computed in the same timeline cy-
cle.

In the software, a timepoint is a C structure, and the timeline is simply an array of timepoints.
Each timepoint has a number of temporal constraints that must be satisfied in order to fire as
shown in Figure 2: a minimum offset time from the previous timepoint, and either a desired offset
time from the previous timepoint or from an anchor. Thus, a timepoint is relative to either an an-
chor or the previous timepoint on the timeline. The Edl timeline runs at 64 hz, and during each
cycle the timeline interpreter considers whether to fire the “current timepoint”. It looks at the
current timepoint and computes a Boolean expression that asks if the current time on the clock
satisfies either the desired offset time from the firing of the previous timepoint or the desired off-
set from the specified anchor, and is at least the minimum offset from the previous timepoint. If
so, the timepoint fires by executing the function named in the timepoint structure. After execut-
ing the function, the timepoint changes state and waits for a reply that verifies that the timepoint
action completed. When that reply arrives, or the reply timeout expires, the timepoint sets its
“firing time” slot to the current time on the clock. The timeline then proceeds to the next
timepoint.

With some limitations, relative-time offsets in the timeline or the anchor tree can be a positive
or negative number, or can be “undefined”. The “undefined” value encountered while evaluating
an arithmetic expression results in “undefined”. The Boolean logic in the Edl timeline code was
generally simple, so interpreting “undefined” as False was adequate, such as in the above de-
scribed timing offset requirements for timepoint firing.

In each timeline cycle, the anchor tree is computed first, and then the current timepoint is
checked to see if it can fire. If so, the timepoint firing takes place (the associated action is exe-
cuted) and if the timepoint is to wait for a reply indicating completion, the timeline is done for
this cycle. If the timepoint action did not request a reply, the timeline goes on to check the next
timepoint for firing. Ground commands may change the offsets at any time between timeline cy-
cles. Any change to an offset propagates fully in the next timeline cycle.

Time is an extremely difficult “object” to get right. It needs to be measured, converted to dif-
ferent forms, transmitted from one hardware unit to another, and synchronized across hardware
units, both within the spacecraft and the test beds. There is one interesting method we used in the
flight software to make calculations with time a little less troublesome than might otherwise have
been the case. The programmer uses a function clk_1_hz() to get the current clock time with a
resolution of 1 second. In addition, there are other functions clk_x_hz() to get the same clock at
different resolutions. The best resolution, for software, was 64 hz. These resolutions are all pow-
ers of two. We also determined that the range of a 64-bit floating-point number was large enough
to represent all times that the spacecraft would encounter over its lifetime, allowing sufficient bits
to represent 1/64 second as well. All software timing, and arithmetic operations on time, could
then be done exactly using double-precision floating-pointing numbers. This eliminates any con-
cern about round-off errors accumulating. In fact, this was the reason we chose for the hardware
clock to tick at 64 hz. We were not so fortunate with sensor timings. For example, the imu is 200

 6

hz which is inconvenient for any binary system. Nevertheless, the scheme avoided a lot of trou-
ble for the vast majority of time calculations on the spacecraft.

The EdlBg Module

This thread runs when the radar is on. It batches the radar data into rolling averages over 5 se-
conds of data and sends the result to the navigation filter at 1 hz. This thread exists because at the
time of design of the system it was unclear how long this thread might occupy the processor. It
was simply not good planning to try and fit it into the 64 hz GNC loop. As it turned out, all the
work probably could have been done at a 1 hz rate and run inline with the 64 hz navigation filter
code – this would have removed one thread from the system. However, that approach was
deemed risky and not worth taking for the sake of one less thread, as the disruption of creating the
thread later (for example, if we discovered we could not make it fit into the 64 hz thread) could be
significant.

The EdlComm Module

The Entry, Descent, and Landing Communications module (EdlComm) is responsible for or-
chestrating the collection, management, and telemetry of Edl data, both recorded and real-time.
All Edl telemetry goes through EdlComm as shown in Figure 3. It is a principle of the design that
all data is written to non-volatile memory during Edl, and the telemetry that goes to the ground is
simply a subset of that which is collected. Making real-time telemetry a subset of the recorded
data, rather than a separate stream, eliminates the post-landing correlation problem of two sepa-
rate streams.

There are several data streams with specific purposes. Many important events go trough the
MFSK path (Multiple Frequency-Shift Keying) and are communicated in real-time using very
low bandwidth X-band tones. MFSK is present in case of catastrophe or when normal communi-
cation is impossible (such as atmospheric entry). It allows one tone from a set of 256 possible
tones to be sent at one time. A tone needs to be transmitted for 10 seconds to ensure correct de-
coding on the ground. The MFSK module selects the most important tone from a set of outstand-
ing tone requests and sends it. When a tone request gets too old or has been overtaken by events,
it is dropped from the candidate set. In addition, higher bandwidth channelized telemetry, event
reporting, and data products are sent in real-time using a UHF link to an orbiting relay satellite.
The frequency and set of real-time data products changes as the spacecraft progresses through
Edl, and EdlComm is responsible for ensuring that the correct data is present in the UHF data
stream based on vehicle state.

OVERALL EDL OPERATION

Edl begins operation several days before landing, in the phase called pre-Edl. System Fault
Protect can still take action during pre-Edl, so to prevent Edl from interfering with these actions,
System Fault Protect can inhibit Edl, that is, Edl will make no progress while system fault protect
repairs a situation. After pre-Edl, which ends several hours before touchdown, System Fault Pro-
tect is no longer allowed to inhibit Edl.

The Edl timeline will not begin operation, and thus EdlGnc will not run, until the spacecraft
receives two particular commands. The first command is “set edl parameters” which is a ground
command with the latest navigation information. This command is sent each time there is a use-
ful navigation update. After the Edl parameter command has been received at least once, the “do
edl” command from the ground gives the Edl module permission to begin running the timeline.

 8

The Edl timeline benefited a great deal from a Timeline autocode tool. System engineers de-
veloped the timeline using a spreadsheet with extensive analysis tools. After determining the best
timepoint firing times and timepoint separation times, given the current state of knowledge of
spacecraft and software behavior, the spreadsheet passed through the Timeline autocoder. The
autocoder output was a large data structure that represented all the timepoints and their con-
straints. During execution, the timeline engine interpreted this data structure. The Timeline tool
saved considerable time, as the timeline underwent well over one hundred versions even after it
was “finished”. Test results were responsible for most of the adjustments.

The MER Edl allowed for parallel branches of timelines, and these were used in MER in some
of the mechanical systems after landing, such as airbag pulling and solar array deployments
where more than one mechanism was active at one time. Future systems may require more con-
straints and non-linear constraint networks. This might be necessary when alternative sequences
of actions are needed, and more concurrent actions required, to complete work on time. This was
simply not needed for MSL. A computer reboot during pre-Edl (before cruise-stage separation)
resulted in the prime computer re-starting and Edl backtracking specified timepoints and repeat-
ing those timepoint actions. A computer reset after pre-EdL requires a different response since
recovery is time critical. In this case, the backup computer runs a reduced version of the prime
Edl software. This pared down version of Edl is called Second Chance, and was limited to the
absolute minimum actions necessary to land safely.

SECOND CHANCE

The Edl software in Second Chance is the same as in the prime system, but where non-
essential timepoint actions were replaced with no-operation. Also, some non-essential modules
were completely removed from the Second Chance load, while a number of other modules were
lightly or somewhat more extensively modified to work with Second Chance. Among the mod-
ules excluded from the Second Chance build are cruise attitude control and a large number of
modules for surface operations, and all the science instrument modules. The rationale for this
arrangement is that whatever caused the failure might be avoided by the backup version since
fewer devices and program events are taking place. To support Second Chance, the prime Edl
sends state data to the backup computer as it runs. Second Chance then picks up where the prime
Edl left off. To ensure that the ground is aware of any transition to Second Chance, the tones
emitted by Second Chance are different from those of the prime Edl system.

Perhaps the overriding design goal of Second Chance is that it “Do No Harm”. Extensive in-
terlocks and testing ensured that Second Chance would not accidently begin to execute the time-
line or GN&C. This included a ground command required to enable Second Chance. Neverthe-
less, Second Chance was enabled during MSL Edl, but the signal for it to run never arrived.
When touchdown occurred, it dutifully turned itself off.

TESTING THE SOFTWARE

Figure 4 shows the test flow for Edl flight software. In all test venues, the same Edl flight
software is used. The only difference in each venue is the fidelity of the test and which non-Edl
software modules and hardware units are present, and which are simulated.

The GNC team wrote the EdlGnc and EdlBg modules, and tested them in the GSTS test bed, a
Linux system with no hardware in the loop. The intention here is two-fold: simple regression
tests to ensure the latest GNC software changes did not cause any previously tested scenarios
functions to fail, and as new models became available, rather sophisticated Edl GNC tests were
run. This test bed, however, played no role in software performance or margin testing, as com-

 9

puter execution time was not modeled. An additional test bed was at NASA Langley where Mon-
te Carlo POST runs were made for the very detailed performance analysis of the Edl flight soft-
ware, utilizing many models of atmosphere, terrain, and so forth. This test bed was nevertheless a
unit test bed since, as much as possible, only the EDL flight software was present.

Figure 4. The testing venues for MSL Edl Flight Software

In parallel, the non-GNC portions of the Edl flight software ran in a separate environment
analogous to GSTS for GNC. Here too, no hardware was present and computer execution time
was not modeled. These two environments were the unit test environments and were very effec-
tive at removing any errors in the modules themselves.

The WSTS environment is a Linux system where all the flight software can run together, but
still without computer performance measurement. The FSWTB is the first place where computer
performance can be measured. The FSWTB had a RAD750 and significant GNC hardware-in-
the-loop. For example, a gyro, thrusters, and so forth, but where the signals were generated by
support hardware but injected into test ports in the hardware devices to simulate as close as possi-
ble real spacecraft behavior. However, additional software debugging tools and internet connec-
tions made the FSWTB easier to use.

In addition to design, code, and test reviews, every flight software module went through at
least one code quality review. Several commercially available static analysis tools were used to
improve code quality, and a JPL tool called Scrub coordinated the running of the analysis tools,
collected the results, and assisted in the recordkeeping during code quality reviews. Also,
Valgrind and purify were required test tools for all flight software modules. In addition, Edl un-
derwent additional reviews by non-Edl developers from the flight software team, and to review
by a team at the NASA IV&V Center in West Virginia.

Any software developer could use any of the test environments mentioned so far. The MSTB
was an even higher fidelity test bed that had more hardware than FSWTB, but ATLO was the end
test done on the actual spacecraft.

 10

LESSONS LEARNED

• Complex code needs an “Explanation System”: This means that it can be difficult for a
tester or fight controller to understand the behavior of the system when complex condi-
tions occur. It can even be difficult for the designer and programmer to remember the in-
tricacies of a system as large as MSL and more than once we wasted time looking for in-
correct behavior that did not happen. When a program goes beyond a few conditionals,
and it is a “rare” situation, there should be messages to the ground that explain the condi-
tions that resulted in the unusual, but correct, actions taken by the software.

• It can be useful to have redundant code that checks conditions, even if it does nothing
about them: For example, the time constraints in the Edl timeline were “rollups” of sets
of other constraints bookkept by the system engineer. Those constraints should be in-
cluded in the code, and checked, but necessarily raise an error as much as simply report
that some sub-constraint was not satisfied, even though the overall “roll-up” constraint
was satisfactory. This helps finding vulnerabilities, and might be considered a special
case of the previous point.

• Autocode should parse source code, as well as simply scan: MSL made extensive use of
autocode – specification files that were translated into C code. Sometimes C source was
scanned for inputs, but scanning is not sufficient. Simpler specifications, with less pro-
grammer effort and better generated code covering more circumstances would have been
possible if C source files were parsed whenever information needed by the autocode tool
could be gathered from the source. A good deal of the complexity of the autocode sys-
tem used on MSL was due to not making the autocoder a real parser.

• Designs tradeoffs are difficult, and if made on the basis of cost, make sure you have all
the costs identified: For example, it is easy to say “we should do it the way we did it be-
fore: we have the designs and the same people”. When margin gets thin, and you need to
compress and make optimizations, it can cost far more than one can imagine without a
thorough analysis.

ACKNOWLEDGEMENTS

The author has worked with Miguel San Martin, Paul Brugarolas, and Fred Serricchio of the
GN&C team on several projects. Along with Martin Greco, EDL system engineer, these are
among the most outstanding individuals with whom the author has ever worked. Ben Cichy led
the Flight Software Team on MSL for most of the software development period. I thought MSL
was large enough that no one person could understand every element of the entire system, but that
may not hold for Cichy. I also wish to acknowledge the contributions of Joe Snyder, the first
lead, who knew just how big a job it was going to be.

This research was carried out at the Jet Propulsion Laboratory, California Institute of Tech-
nology, under a contract with the National Aeronautics and Space Administration.

REFERENCES
1 A.M. San Martin, S.W. Lee, E.C. Wong, "The Development of the MSL Guidance, Navigation, and Control System
for Entry, Descent, and Landing," AAS/AIAA Space Flight Mechanics Meeting, Kauai, HI, Feb. 2013.
2 F. Serricchio, A.M. San Martin, E.C. Wong, “Mars Science Laboratory Navigation Filter,” AAS/AIAA Space Flight
Mechanics Meeting, Kauai, HI, Feb. 2013.

