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OUTLINE

* Light-weight structures are very responsive when their modes are coupled with acoustic
standing waves within an enclosure

* Coupling may occur in any enclosures such as
— Flight: Acoustic standing waves inside fairings interacting with panels. reflectors, etc.

— Reverberant chambers and direct field acoustic testing of flight and development
hardware

* The coupling phenomenon first considered after a failure occurred during an acoustic flight
qualification test; since then the following cases were considered to examine this issue:

— Flight hardware acoustic tests

* CloudSat was subjected to PF reverberant chamber acoustic test and a PF direct
field acoustic test (Reference: O'Connell and Hausle, SCLV 2005)

* DAWN Flight Spacecraft was subjected to workmanship reverberant chamber
acoustic test and PF direct field acoustic test, and the DAWN HGA was subjected to
assembly PF reverberant chamber test (Reference: Kolaini et al., ATS 2009)

* Aquarius reflector subjected to PF acoustic tests performed in two different size
reverberant chambers (Reference: Kolaini et al., ATS 2009)

— Al panel forced to couple with acoustic standing waves ((Reference: Kolaini et al., ATS
2009)

— Aquarius DTM reflector has recently gone through acoustic tests in reverberant chamber
placed in various locations parallel to chamber walls

* The coupling phenomenon is further discussed in this presentation with suggestions
provided on ways to reduce the structural responses when coupling occurs
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Panel Acoustic Test

* Yainch 37.5” x 41” AL
panel suspended from
reverberant chamber
ceiling

* Panel was positioned in
three locations as shown

* Instrumentation

—Eight control mics
(stationary)

—Several response
microphones, some
placed closer to the
panel, moved with panel
location

—Five accelerometers
mounted on panel

* OASPL: 142.7 dB
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Aquarius Reflector Acoustic Tested in Two Different
Chambers

JPL: 21.75’(L)x18.5’(W)x26.5’(H) Wyle: 18’(L)x14’(W)x10°’(H)

Ali.r.kolaini@jpl.nasa.gov @ AE ROS PACE

Dynamics Environments 5



Sound Pressure Spectral Densities in Two Difference
Reverberant Chambers cuo.mber a sec
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Reflector’'s Predicted Fundamental mode at ~ 61 Hz
(potato chip mode)

This mode strongly coupled with one of the JPL reverberant chamber modes
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Aquarius Reflector Acceleration Responses
(JPL and Wyle Test Comparisons)
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Aquarius Reflector Acceleration Responses

(JPL and Wyle Test Comparisons)

Aquarius Acoustic Tests
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Aquarius Reflector Acceleration Responses
(JPL and Wyle Test Comparisons)

Aquarius Reflector Acoustic Test
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Recent Aquarius Acoustic Reverberant Test at JPL
Reverberant Chamber

Reflector positioned at several locations
parallel to two of chamber’s walls




Aquarius Reflector Responses: More evidence of

acoustic structural coupling
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Aquarius Reflector Responses: More evidence
of acoustic structural coupling

Aquarius Reflector
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Summary
Acoustic standing wave/structural mode coupling is real and may occur in flight and
ground tests using Reverberant chambers and DFAT

— Can be detrimental to the health of light—weight and responsive structures if not
understood prior to testing

Suggested ways to minimize this effect during the qualification testing are:

— A complete acoustic characterization of the reverberant chamber and/or DFAT
volume

— Use a high-fidelity FEM model and vibro-acoustic prediction prior to acoustic
testing to examine if coupling is going to pose problems

— Re-position the flight hardware within the reverberant chambers and DFAT
volume to minimize the coupling effect

— Avoid smaller reverberant chamber size and DFAT volume

Response limit to remove conservatism if structural and acoustic standing wave
coupling occurs

— Acoustic impedance is maximum when stranding waves occur and is probably
the cause of the structures excessive excitation

— This is analogous to mismatch in shaker testing impedance

— The notched responses must not affect acoustic field and other components
during testing

For light-weight structures inside fairings vibro-acoustic analysis should be
perforrr]zed to insure that such coupling will not pose a structural issue inside fairings
during flight
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Thank you
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