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INTERPLANETARY DEPARTURE STAGE NAVIGATION BY MEANS
OF LIAISON ORBIT DETERMINATION ARCHITECTURE

Ryan M. McGranaghan,̊ Jason M. Leonard,̊ Kohei Fujimoto,̊ Jeffrey S. Parker:,
Rodney L. Anderson;, and George H. Born§

Autonomous orbit determination for departure stages of interplanetary trajectories is con-
ducted by means of realistic radiometric observations between the departing spacecraft and
a satellite orbiting the first lunar libration point. Linked Autonomous Interplanetary Satel-
lite Orbit Navigation (LiAISON) is used to estimate the orbit solution. This paper uses
high-fidelity simulations to explore the utilization of LiAISON in providing improved accu-
racy for interplanetary departure missions. The use of autonomous navigation to supplement
current techniques for interplanetary spacecraft is assessed using comparisons with ground-
based navigation. Results from simulations including the Mars Science Laboratory, Mars
Exploration Rover, and Cassini are presented. It is shown that observations from a dedicated
LiAISON navigation satellite could be used to supplement ground-based measurements and
significantly improve tracking performance.

INTRODUCTION

Most observations used to navigate interplanetary spacecraft are carried out by means of Earth-based track-

ing sensors.1 The large cost associated with Earth-based tracking and trajectory design has driven research

into alternatives to ground operations as the primary means by which deep space missions are conducted.2

Recent research has shown that the use of satellite-to-satellite tracking (SST) is one alternative that gives ac-

curate absolute navigation.3, 4 A new technique for performing this type of navigation is Linked Autonomous

Interplanetary Satellite Orbit Navigation (LiAISON).5 LiAISON is conducted between two or more space-

craft accumulating relative radiometric tracking data to simultaneously estimate their relative and absolute

positions and velocities over time.5

LiAISON is enabled by unique trajectories created by the asymmetry in the acceleration field governed by

three-body dynamics. Halo orbits about the Earth Moon L1 (EML-1) point exhibit these characteristics and

are used for this study. Though SST measurements generally provide relative orbit determination between

spacecraft even in unperturbed acceleration fields, under the influence of the acceleration of the Moon the halo

satellite is effectively tied to the Earth-Moon system and can therefore provide absolute position and velocity

estimation for a variety of other orbits. Thus, the advantage of this architecture comes from the fact that

while a constellation of satellites orbiting under dynamics without significantly detectable perturbations will

provide only relative trajectory information on any satellite included, LiAISON provides precise knowledge

of the absolute states of each spacecraft. While LiAISON has been shown to improve accuracy for satellite

navigation in the Earth-Moon vicinity, it has yet to be applied to Interplanetary departure trajectories. In this

study we demonstrate the situational geometry present in the interplanetary departure problem, as geometrical

improvements to conventional ground-based orbit determination (OD) techniques are the source of advantage

for the LiAISON architecture.
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The performance and advantage of LiAISON has been demonstrated in several papers, including in support
of precise orbit determination of geosynchronous spacecraft,6, 7, 8 and in providing navigation solutions for
lunar-bound missions, including low-lunar orbiters and lunar libration orbiters.1, 3, 5 In fact, a concurrent study
is characterizing the performance of LiAISON-supported navigation for very noisy crewed missions bound
for the Moon.9, 10

The only operational EM-LPO navigation experience currently available was obtained through the ARTEMIS
mission which traversed both EML-1 and EML-2 trajectories.11 The two ARTEMIS spacecraft arrived in the
lunar libration regime in late 2010 and departed to low lunar orbits in mid 2011. Extensive ground support
from the Deep Space Network (DSN), Universal Space Network (USN), and Berkeley Ground Station (BGS)
provided radiometric tracking measurements.12, 13 The nominal strategy during this period was to collect 3.5
hours of DSN range and Doppler information each day, alternating between northern and southern hemi-
spheres, and supplementing this with daily tracks from BGS and a weekly track of USN.12 The tracking
design produced accuracies for each satellite of 100 meters in position and down to 1 mm/s in velocity.12

This paper discusses in depth a new paradigm in orbit determination, LiAISON, and the benefits observed
in utilizing it in the departure phase of interplanetary trajectories. The simulations we develop and discuss
use relative satellite-to-satellite observations between a dedicated navigation satellite in an EML-1 lunar
libration point orbit (LPO) and a spacecraft departing on an interplanetary trajectory to determine the absolute
positions and velocities of both satellites. The focus is to provide a quantitative analysis in ground station-
supplemented orbit determination solutions as well as standalone solutions using LiAISON in a high-fidelity
simulation. We show that LiAISON provides improved navigation accuracy for interplanetary trajectories
when used to supplement ground-based observations.

The study begins by detailing the performance of the DSN using continuous tracking of the outbound tra-
jectories under specified simulation conditions. Next, the DSN solutions are quantitatively compared with
the navigation solution tracking the same trajectory using only LiAISON observations. Finally, DSN and
LiAISON observations are taken simultaneously in the realistic situation where SST would be used to sup-
plement ground station tracking. In each case realistic radio measurements serve as the observables in the
solution process. Additionally, the simulations include dynamical modeling errors, measurement errors, and
measurement biases. The interplanetary trajectories used in this analysis were the Cassini, Mars Exploration
Rover A (MER A), and Mars Science Laboratory (MSL) spacecraft.

LIAISON NAVIGATION

LiAISON is the performance of absolute tracking of two or more spacecraft using relative SST measure-
ments without the aid of groundstation observations. The determination of orbit size, shape, and orientation
are each necessary to provide absolute tracking. The key is that the SST measurement time-series can only
be generated using a unique combination of orbits. A trajectory is unique when only a single set of initial
conditions exist that result in an orbit of that size and shape. The acceleration field governing a satellite’s
orbit determines whether a unique trajectory can exist, and this is only possible where the acceleration func-
tion and its time derivative are appreciably asymmetric. Therefore, LiAISON navigation relies on one of the
linked spacecraft being under the influence of asymmetric dynamics. In fact, the asymmetry must be suffi-
cient enough to outweigh force modeling errors and observation noise to prevent being lost beneath the noise
during the orbit determination process.

Three-body systems provide sufficient asymmetry to create observability in the LiAISON process. Specif-
ically, perturbations provided by the Moon give rise to LPOs whereby LiAISON is well-suited. The libration
point residing between the Earth and Moon, EML-1, gives rise to locally unique trajectories with signifi-
cant asymmetry in the governing acceleration function. This asymmetry allows absolute positioning to be
performed by means of SST alone. Though orbits about EML-1 were used for this study, spacecraft placed
about EML-2 would work just as well. In fact, these may be even better suited for tracking interplanetary
missions due to their distance from Earth.

LiAISON has been demonstrated for several navigation applications using LPOs.3, 5, 14 Early research
analyzed the benefits of this system using EML-1 and EML-2 orbits to track low lunar orbits and several
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permutations therein.3, 5 The results show that navigation solutions at the Moon with accuracies under 100

meters for the halo orbiters and an order of magnitude less for low lunar orbiting spacecraft are possible

with realistic constraints and without the aid of ground tracking. More recently, studies have detailed precise

orbit determination solutions for geosynchronous spacecraft using LiAISON navigation.6, 7, 8 Leonard et al.

explored a trade study for geosynchronous spacecraft navigation with tracking from ground stations and a

dedicated LiAISON satellite at EML-1.7 High-fidelity simulations produced viable tracking schedules that

drastically reduced the ground station passes necessary for a given GEO position accuracy when LiAISON

was included. Accuracies of 100 meters and 30 meters for the EML-1 and GEO satellites, respectively, were

achieved using only sparse observations from the ground and LiAISON.

The application explored in this paper focuses LiAISON capabilities on the departure stage of interplan-

etary trajectories. We investigate the effectiveness of LiAISON in the departure phase of interplanetary

missions by placing a dedicated navigation satellite at an EML-1 LPO and simulating the performance for

three landmark NASA missions. Analysis is included for the Cassini, MER A, and MSL missions. Tracking

expensive interplanetary missions in the departure phase is crucial to mission success through early trajec-

tory correction maneuver design as well as pre-flight dynamical model calibration. Therefore, OD solutions

for ground-tracking-only, LiAISON-only, and DSN supplemented with LiAISON navigation are analyzed to

assess the potential value of using LiAISON in this context. Radiometric data with realistic errors and uncer-

tainties comprise the observational model. The satellite orbits are determined using high-fidelity dynamical

models and a Kalman filter is used to process the observations.

DYNAMICAL MODEL AND LINEARIZATION

The OD procedure begins with an initial estimate of a satellite state at a given epoch whose state and

uncertainty are propagated through time yielding the reference trajectory. This path will deviate from that

actually followed by the spacecraft, the truth trajectory. The OD procedure processes observations of the

spacecraft to determine a new estimate of the reference path, the best estimate trajectory, that matches the

true trajectory as well as possible. Thus, a linearization about the reference orbit is carried out and the process

solves for state deviation vectors used to improve the reference. This section details the dynamical system

governing the time evolution of the reference trajectory and the linearization process used in this study.

Dynamical Model

The propagation of the reference trajectory is governed by an approximation to the dynamics driving

the truth trajectory. This approximation is given by a nonlinear first-order system of differential equations

specified for this work as

„
9ri
9vi

j
“

„
vi

a2-bodypt, riq ` an-bodypt, riq ` aSRP pt, riq
j

(1)

where a2-body represents the acceleration due to Earth’s gravitational pull, an-body accounts for the gravita-

tional accelerations of bodies outside the spacecraft-Earth system, and aSRP accounts for the effect of solar

radiation pressure.

The two-body acceleration term is given as

a2-body “ ´μ

„
rsat
r3sat

j
(2)

where μ is the gravitational parameter of the primary body and rsat is the vector from the primary to the

satellite.

The acceleration due to non-central bodies (n-bodies) are encapsulated in the an-body term given as
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an-body,k “ ´μk

„rk,sat
r3k,sat

` rC,k

r3
C,k

j
(3)

where μk is the gravitational parameter of the kth body, rk,sat is the vector from the kth body to the satellite,

and rC,k is the vector from the central-body to the kth body. These bodies introduce perturbations due to the

Sun, Moon, or other heavenly bodies in the solar system. The Jet Propulsion Laboratory’s DE405 ephemeris

is used to compute the positions of the celestial bodies.15, 16 Additionally, due to the great distances between

the satellites and the bodies exerting gravitational influences, simplified point mass representations are used

for all bodies.

Finally, a solar radiation pressure model is included in the force model for the satellite. This acceleration is

based off of a constant area constant reflectance model. A shadow model calculates the portion of the Sun’s

surface visible to the satellite using radii of solar system bodies provided by the JPL ephemerides.15 The

acceleration is additionally adjusted for distance from the Sun. This acceleration becomes

aSRP “ PSRCR
A@

m

r@sat

r@sat
(4)

where CR is the coefficient of reflectivity for the spacecraft, A@ is the cross-sectional area of the spacecraft

facing the Sun in square meters, m is the mass of the spacecraft in kilograms, r@sat is the vector from the

center of the Sun to the spacecraft, and PSR is the pressure of the solar radiation in pascals. PSR is about

4.53 ˆ 10´6 Pa at one AU and can be calculated at varying distances from the Sun using

PSR “ PSR,AU
p149, 597, 870 kmq2

r2
@sat

(5)

The dynamical system governing the evolution of the state, X, can be assembled and written as

9Xptq “ fpt,Xptq,uptqq (6)

where uptq is a zero-mean Gaussian white process noise vector. This represents a first order ordinary differ-

ential equation that can be solved using integration.

Linearization of the Dynamical Model

The orbit determination procedure seeks to estimate a set of selected variables, in this case the position and

velocity of the interplanetary (ip) and EML-1 halo (h) satellites. Therefore, the state becomes

X “ “
xip, yip, zip, 9xip, 9yip, 9zip, xh, yh, zh, 9xh, 9yh, 9zh

‰
(7)

In order to perform the estimation, the state dynamics are linearized about a reference trajectory, X˚, which

in this study is taken to be the current best estimate trajectory. We can now define our state deviation vector

to be

xptq “ Xptq ´ X˚ptq (8)

with Xptq representing the unknown truth trajectory. The state deviation vector can be mapped from one

epoch to another using the state transition matrix

Φptk`1, tkq “ BXptk`1q
BXptkq (9)

and the process noise transition matrix
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Γptk`1, tkq “ BXptk`1q
Buptkq (10)

The state transition matrix can be found for any time the reference trajectory has been integrated by solving

the system of differential equations

9Φpt, tkq “ AptqΦpt, tkq (11)

with initial conditions Φpt0, t0q “ I . The matrix Aptq is given by the Jacobian matrix

Aptq “ Bfpt,Xptqq
BXptq (12)

Finally, the state transition matrix is used to map the state deviation through time

xptk`1q “ Φptk`1, tkqxptkq ` Γptk`1, tkquptkq (13)

OBSERVATIONAL MODEL AND LINEARIZATION

In order to determine the state of the spacecraft at some future epoch, it must be observed from tracking

stations, which could be ground stations or, in the case of LiAISON, a dedicated navigation satellite. These

observations are processed in the OD filter to drive the state and uncertainty updates. The filtering process

seeks the initial state of the satellite that minimizes the computed residual, observed minus expected, based

off of the current best estimate trajectory, for some defined cost function. Much like the dynamical model,

the filter requires a measurement model and its linearized representation; this section details that process.

Measurement Model

This study implements a simplified measurement model. Simulated observed instantaneous range and

range-rate measurements are generated using each state along the truth trajectories for the halo and inter-

planetary departing spacecraft. More realistic measurements including time of flight and clock effects are

not included in this proof of concept paper, but must be for future realistic mission analyses. The observed

measurement model then becomes

Yoptq “ hpt,Xptqq “
„
ρptq ` ρnoise ` ρbias

9ρptq ` 9ρnoise

j
(14)

Idealized equations for ρ and 9ρ are used in this study. These are given in Eqs. 15 and 16.

ρ “
b

pxh ´ xipq2 ` pyh ´ yipq2 ` pzh ´ zipq2 ` ρnoise ` ρbias (15)

9ρ “ ρ ¨ 9ρ
ρ

` 9ρnoise (16)

The range measurements are corrupted by adding constant bias and Gaussian white noise terms. The range-

rate corruption is contained in the white noise addition shown in Eq. 16.

Similarly, simulated ground station observations are found with these equations, where one of the states

is replaced by the coordinates of the given observing station in GCRF coordinates. For the purposes of this

work, ground station locations were chosen from the three main DSN sites; Goldstone, Madrid, and Canberra.
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The measurement model is also used to generate expected observations. The satellite states along the

reference trajectories are used in place of the truth trajectories. The residuals are found when the expected

and observed measurements are differenced

ε “ Yo ´ Ye (17)

The filtering process will minimize the residuals due to criteria specified in some cost function.

Linearization of the Measurement Model

In a similar manner to how we derived the state deviation mapping equation, we also seek an equation by

which the observations can be mapped through time. To do so, the observation deviation vector, y, at the

current epoch must be given in terms of the state deviation vector at the reference epoch, t0

yptkq “ Hptkqxpt0q ` εptkq (18)

where the state transition matrix is again used to perform the mapping

yptkq “ HptkqΦpt0, tkqxptkq ` εptkq (19)

This is simplified to

yptkq “ H̃ptkqxptkq ` εptkq (20)

with the relationship H̃ptkqΦptk, t0q “ Hptkq. Finally, the linearization process produces the Jacobian

matrix to construct the H̃ptq matrix as follows

H̃ptq “ Bhpt,Xptqq
BXptq (21)

ORBIT DETERMINATION FILTER

In this study an attempt is made at estimating the state given in Eq. 7 using a Kalman filter. The Kalman

update equations begin with a priori estimates of both the state deviation vector, x̂ptkq, and associated co-

variance matrix, P̄ ptkq and propagate them forward in time using the time update equations

x̄ptk`1q “ Φptk`1, tkqx̂ptkq (22)

P̄ ptk`1q “ Φptk`1, tkqP ptkqΦptk`1, tkqT ` Γptk`1, tkqQptkqΓptk`1, tkqT (23)

Where the second term in Eq. 23 represents the state noise compensation (SNC) contribution to the a priori
covariance term called the process noise covariance matrix. Qptkq is given by

E
“
uptquTpτq‰ “ Qptkqδpt ´ τq (24)

where δ is the Dirac Delta.

In the presence of errors in the dynamical model, as the number of accurate observations increases, the

covariance matrix will asymptotically approach zero making the estimation procedure insensitive to new

observations and force the results to diverge. SNC is used to account for dynamical model errors and prevent

6



this divergence. In this study, the process noise covariance matrix will be diagonal and chosen by a trial and

error approach to best represent un-modeled accelerations.

Assuming an observation exists at tk`1, the next epoch in the simulation, the linearized equation can be

written

yptk`1q “ H̃ptk`1qxptk`1q ` εptk`1q (25)

where yk`1 signifies the deviations in the observations between the truth and the computed measured on

the reference trajectory, εk`1 represents measurement noise and errors, and H̃ptk`1q was defined in Eq. 21.

Subsequently, the best state estimate is given through the measurement update equations

x̂ptk`1q “ x̄ptk`1q ` Kptk`1qryptk`1q ´ H̃ptk`1qx̄ptk`1qs (26)

Kptk`1q “ P̄ ptk`1qH̃ptk`1qTrH̃ptk`1qP̄ ptk`1qH̃ptk`1qT ` Rptk`1qs´1 (27)

P ptk`1q “ rI ´ Kptk`1qH̃ptk`1qsP̄ ptk`1q (28)

Where Kptk`1q represents the Kalman Gain and Rptk`1q is the measurement error covariance matrix. The

covariance update equation, given by Eq. 28, can exhibit numerical problems throughout the filtering process,

so for this study a more stable update equation given by the Joseph Formulation is used and given by

P ptk`1q “ rI ´ Kptk`1qH̃ptk`1qsP̄ ptk`1qrI ´ Kptk`1qH̃ptk`1qsT ` Kptk`1qRptk`1qKptk`1qT (29)

The equations for the development of the dynamic, observation, and filter models were guided by the

discussion given by Born, et al. in Ref. 17.

TRUTH MODEL SIMULATIONS

To assess the performance of the filter, a truth model simulation can be used. The truth model is realized

through numerical integration of the equations of motion given in the Dynamical Model and Linearization
section of this paper. A DOPRI8(7)13 integrator with variable step size control was used to generate high-

fidelity truth trajectories for this study.18 Radiometric tracking of the spacecraft is simulated between both

the two orbiters, for LiAISON observations, and from the DSN stations. The orbit integration package,

TurboProp, is used to solve the time evolution of the state dynamics.19

EML-1 Truth Model

The EML-1 truth trajectory is integrated in the GCRF coordinate frame using third body perturbations of all

solar system planets including the Moon. The state of each body is provided by the JPL DE405 ephemeris.15

Each body is modeled as a point mass. Additionally, the simple solar radiation pressure approximation given

in Eq. 4 is used with an area-to-mass ratio and CR of 0.01 m2/kg and 1.5, respectively.

The L1 reference trajectory is generated in two steps. First, a set of states is obtained from the analytical

expansion described in Ref. 20 using the dates given in Table 1 for the appropriate simulation. A single

shooting process is then used to differentially correct these states into the high-fidelity dynamical model

discussed previously.21, 22 The purpose of the differential corrector is to create a continuous trajectory such

that the orbit between the states contains no discontinuities greater than 10´6 km in position and 10´9 km/s in

velocity. Normal operational navigation of halo orbiters contain uncertainties greater than these constraints,

and therefore this is considered appropriate for the designation of a continuous trajectory.
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Interplanetary Spacecraft Truth Models

The interplanetary departure trajectory truth models are generated in a manner similar to the process de-
tailed for the EML-1 spacecraft. The same dynamical system is used. Again, the Earth and all gravitational
forces are modeled as point masses. This is valid despite the interplanetary satellites beginning near Earth
due to the fact that each rapidly moves away from the region where spherical harmonics representations at
Earth are considered valid and point mass representations become acceptable.17 The single shooting differ-
ential corrector is used in this case to specify the trajectory between the initial and final epochs of the overall
measurement arc chosen for the departure stage of each mission. Table 1 contains the initial and final epochs
used in the simulations.

Measurement Generation

LiAISON measurements are taken between the halo and interplanetary departure spacecraft throughout the
simulation period. Both instantaneous range and range-rate are used for the SST measurements as given by
Eq. 15 and Eq. 16. The LiAISON observations are corrupted by Gaussian white noise with zero mean and
1-σ standard deviations of 1 m and 1mm/s, respectively. Simulated DSN ground stations are used to generate
Earth-based observations. Zero mean Gaussian white noise is introduced to corrupt these measurements as
well, with 1 m and 0.1 mm/s 1-σ standard deviations. A bias taken from a uniform distribution with 3 m 1-σ
standard deviation is additionally included in the range measurement corruption for both sets of observations.
Only one DSN observation is included per epoch in this study, even in situations where the satellites are
visible by more than one ground station. To select these measurements, highest weight is placed on the
Goldstone station, followed by Madrid, and finally Canberra. The a priori uncertainties for the measurement
model are given in Table 2.23 Lastly, all observations are taken and processed sequentially in the Kalman
filter at 1000 second intervals throughout the 9 day measurement arc.

NAVIGATION RESULTS

This section begins by detailing the baseline orbit determination filter set-up including the dynamical model
used, initial state errors, and a priori uncertainties. It goes on to display and discuss the results and filter
performance for the Cassini, MER A, and MSL mission departure trajectories. Performance was analyzed
for three observational situations: LiAISON-only, DSN-only, and DSN supplemented with LiAISON. Note
that in the LiAISON-only simulation the EML-1 satellite is established as a dedicated navigation satellite and
thus it is tracked by the ground. LiAISON-only refers to the fact that the interplanetary spacecraft is only
observed by SST measurements.

Orbit Determination Filter Set-up

In order to assess filter performance in a real-world situation, dynamical modeling errors were introduced
to the reference trajectory used in the filter. Third-body effects were again introduced, however instead of
each planet in the solar system contributing to the force model, only the gravitational influences of the Earth
central body, Moon, and Sun were modeled in the filter. SRP still perturbed the trajectories of each spacecraft,
however the coefficient of reflectivity was initially randomly perturbed from a standard deviation of 5% of the
CR values. The DSN station positions were considered known and were not estimated. However, the state
of the navigation satellite at EML-1 for all simulations was estimated along with the interplanetary departing
spacecraft. SNC was implemented to compensate for the unmodeled accelerations. Note that the SNC levels
used were tailored specifically for the full and LiAISON-only set-ups to give the best results in each.

Table 1: A summary of the interplanetary departure trajectory truth models.

Trajectory Initial Epoch Final Epoch
Cassini Oct 15, 1997 9:35:42.8824 Oct 24, 1997 9:35:42.8824
Mars Exploration Rover A Jun 10, 2003 18:31:23.1840 Jun 19, 2003 18:31:23.1840
Mars Science Laboratory Nov 26, 2011 15:52:12.3830 Dec 5, 2011 15:52:12.3830
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Table 2: A summary of the orbit determination filter uncertainties used throughout the simulations.

Estimation Parameter a priori Uncertainty Number of Filtered Parameters
(1-sigma)

Spacecraft Position
(EML-1 Satelite) 20 (m) 3
(Interplanetary Satellite) 1000 (m) 3

Spacecraft Velocity
(EML-1 Satellite) 0.1 (mm/s) 3
(Interplanetary Satellite) 10 (m/s) 3

SRP Coefficient 5 % -
SST Measurements

Range 1 (m) -
Range-rate 1 (mm/s) -

DSN Measurements
Range 10 (m) -
Range-rate 0.5 (mm/s) -

SST Range Bias 3 (m) -
(randomly drawn)

DSN Range Bias 3 (m) -
(randomly drawn)

Filter runs using the full set of observations (LiAISON and DSN) were used in addition to literature on
each mission to determine the a priori uncertainties. Uncertainties that provided solutions as accurately as
possible and subject to realistic operational values were chosen. The uncertainty in both position and velocity
of the EML-1 spacecraft were reduced assuming that observations of this orbit prior to the interplanetary
trajectory departure date would allow the state to be known more accurately. Previous LiAISON studies
have demonstrated the ability to accurately determine the state of an EML-1 satellite and explain the chosen
uncertainty levels given in Table 2.1, 5, 6, 7, 8 Measurement noise uncertainties were chosen to be consistent
with modern operational orbit determination, specifically values used for the Gravity Recovery and Interior
Laboratory Mission (GRAIL).24 Extremely large initial state uncertainties were used for the GRAIL mission,
however smaller values were deemed acceptable in this work. The values determined and detailed in Table 2
were used for each simulation throughout the study. Filter performance was assessed in each case to ensure
consistency and reliability of results. Comparisons of the estimated states with truth models were conducted
to ensure results were both reasonable and remained within uncertainty bounds and provided a metric for
filter performance overall.

Finally, the technical aspects of each of these mission trajectories are well published in literature and will
not be detailed in this paper for the sake of space. Instead the reader is referred to Refs. 25, 26, and 27 for
technical information on Cassini, MER A, and MSL, respectively. States from the published, reconstructed
trajectories have been used to model the truth trajectories in this study.

Cassini

The Cassini spacecraft departed Earth on 15 October, 1997 on a Venus-Venus-Earth-Jupiter-gravity assist
(VVEJGA) trajectory. This section explores the filter’s ability to estimate the parameters in Eq. 7 for the first
nine days of the mission. The simulation geometry is shown in Figure 1 in the Earth-Moon rotating frame.

Figs. 2 through 5 show the results from the Cassini simulations. The far left plots represent what will
be referred to as the full set-up, processing range and range-rate observations from the DSN stations and
LiAISON. The 3-σ covariance envelopes are provided as well. Due to the relatively limited motion of the
Cassini spacecraft out of the XY plane, a lack of knowledge of the z-direction contributed to larger errors
and uncertainties shown in Figs. 4 and 5. However, these figures show that despite the higher errors in the
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Figure 1: Views of the Cassini simulation geometry in the Earth-Moon rotating frame with nondimensional
coordinates. The X-Y plane (top), X-Z plane (bottom left), and Y-Z frame (bottom right) are shown.
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full (left), DSN-only (middle), and LiAISON-only (right) Cassini mission simulations.
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Figure 3: EML-1 satellite velocity accuracies (truth - estimated) and 3-sigma uncertainty envelopes for the
full (left), DSN-only (middle), and LiAISON-only (right) Cassini mission simulations.
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Figure 4: Interplanetary satellite position accuracies (truth - estimated) and 3-sigma uncertainty envelopes
for the full (left), DSN-only (middle), and LiAISON-only (right) Cassini mission simulations.
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Figure 6: Log RSS uncertainties for the Cassini mission simulations. Uncertainties in the position (left) and
velocity (right) are given for the EML-1 (top) and interplanetary (bottom) satellites.

LiAISON-only simulations, including observations from a dedicated navigation satellite at EML-1 tracked by
the ground, the tracking performance of the DSN-only case was significantly improved when supplemented
by the SST measurements. Using both measurements tightened the 3D-root mean square (RMS) uncertainty
of the interplanetary spacecraft position by nearly 500 m and improved the 3D-RMS velocity uncertainty by
a factor of two. Figure 6 gives the time evolution of the log root sum square (RSS) position and velocity
uncertainties for each satellite. The DSN-only uncertainties (shown in green) were improved in both position
and velocity for each satellite when used in concert with LiAISON observations (given by the full simulation
values shown in blue).
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Over the nine day simulation period the distances grew substantially and worsening 3-dimensional relative
motion between Cassini and the Earth and between Cassini and the EML-1 satellite contributed to less effec-
tive observations. During this time, it appears that LiAISON navigation became even more important. Figure
4 shows that with DSN tracking alone the interplanetary position uncertainties continued to grow, however in
the full simulation the uncertainties leveled off due to LiAISON navigation.

Filter results demonstrate that the EML-1 position and velocity uncertainties were maintained roughly at
the a priori levels specified in the simulation and were relatively well known throughout. This is desired
behavior for a navigation satellite. The 3D-RMS values for the EML-1 orbit uncertainties over the 9 day
measurement arc in the full simulation were 26 m and 0.16 mm/s in position and velocity, respectively. The
3D-RMS values for the simulated Cassini spacecraft were 232 m and 0.36 m/s.

Mars Exploration Rover A

The Mars Exploration Rover project launched two rovers to the red planet in the summer of 2003. The
focus of this section is the departure phase of the MER A spacecraft, which left Earth on 10 June, 2003. The
geometry for this departure trajectory is shown in Figure 7 in the Earth-Moon rotating frame.
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Figure 7: Views of the MER A simulation geometry in the Earth-Moon rotating frame with nondimensional
coordinates. The X-Y plane (top), X-Z plane (bottom left), and Y-Z frame (bottom right) are shown.

The time history of the navigation performance for the MER A simulation is shown in Figs. 8 through
9. The LiAISON-only case shown in the right panel of Figure 8 gave better results than were found for the
Cassini mission. Whereas the Cassini trajectory followed a path initially approaching the EML-1 orbit, it
quickly moved away from the Moon creating problems for the LiAISON process. However, MER A traveled
towards the Moon with respect to the Earth. Decreased uncertainties and errors for MER A due to SST show
that geometry is an important factor in the performance of LiAISON. The behavior of the RSS uncertainty
values shown in Figure 9 is comparable to Figure 6 and displays similar benefit in using LiAISON and DSN
observations together. In the full simulation, MER A 3D-RMS uncertainty values were 194 m in position and
0.63 m/s in velocity.
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Figure 8: Interplanetary satellite position accuracies (truth - estimated) and 3-sigma uncertainty envelopes
for the full (left), DSN-only (middle), and LiAISON-only (right) MER A mission simulations.
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Figure 9: Log RSS uncertainties for the MER A mission simulations. Uncertainties in the position (left) and
velocity (right) are given for the EML-1 (top) and interplanetary (bottom) satellites.

Mars Science Laboratory

This section is centered around assessing the filter performance using the MSL trajectory as the inter-
planetary departure orbit. MSL departed Earth on 26 November, 2011. Figure 10 is provided for the MSL
mission geometry in the Earth-Moon rotating frame. Exploring the MSL trajectory presented a chance to
analyze LiAISON performance for a different geometry so that the influence on navigation capability could
be observed.

The MSL trajectory presented the most difficult geometry for LiAISON navigation. Figure 10 shows the
trajectory moving away from the EML-1 orbit. Relatively large uncertainties accompanied this trajectory
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Figure 10: Views of the MSL simulation geometry in the Earth-Moon rotating frame with nondimensional
coordinates. The X-Y plane (top), X-Z plane (bottom left), and Y-Z frame (bottom right) are shown.
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Figure 11: Interplanetary satellite position accuracies (truth - estimated) and 3-sigma uncertainty envelopes
for the full (left), DSN-only (middle), and LiAISON-only (right) MSL mission simulations.
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Figure 12: Log RSS uncertainties for the MSL mission simulations. Uncertainties in the position (left) and
velocity (right) are given for the EML-1 (top) and interplanetary (bottom) satellites.

when only LiAISON was utilized. However, MSL exhibited the largest motion out of the XY-plane of the
three missions studied in this report. As a result, the position uncertainties in the Z-direction (shown in Figure
11) were smaller for each simulation than those in Figs. 4 and 8 for Cassini and MER A, respectively. 84
m and 0.36 m/s 3D-RMS position uncertainty values in the full simulation were calculated for the simulated
MSL spacecraft.

Mission Comparison

Table 3 contains the 3D-RMS values for each mission under the various simulations that were tested. These
were calculated by taking the RSS of the x, y, and z coordinate errors and then calculating the RMS of these
values. Only data from the second half of the measurement arcs (i.e. from day 4.5 and on) were used in
these calculations to give a better representation of the filter performance once the initial uncertainties had
been reduced. The table shows that LiAISON improved position accuracy significantly for the MER A and
MSL missions. For Cassini, the higher 3D-RMS value for the full simulation can be attributed to the errors in
LiAISON observations arising from poor geometry between days 3 and 6 of the simulation shown in Figure
14 and discussed below. Figure 4 shows a large error during this period in the position determination of the
interplanetary spacecraft.

Figure 13 shows the RSS position errors compared for the three missions over each of the simulations. It is
interesting to note that the LiAISON results show a clear spike in the position error for the Cassini spacecraft
beginning near the 3.5 day mark and continuing for nearly 3 days. Figure 14 is provided to demonstrate the
poor geometry that contributed to the heightened RSS error. During this period, the majority of the motion
is directly away from the EML-1 satellite, increasing range primarily, with limited angular motion to allow
LiAISON to gain 3D information.

LiAISON results showed that while it was less accurate than DSN when used alone, the benefit in sup-
plementing ground station observations was significant both in position and velocity. The degradation in
performance for LiAISON-only was most likely a result of two factors: 1) The assumption that these obser-
vations were less accurate than those from the ground and 2) the fact that the DSN stations were considered
known and therefore not estimated. Though the state of the EML-1 navigation satellite was assumed rela-
tively well known, the position and velocity were subject to initial perturbations and a priori uncertainties and
were estimated in the filter. In the situation where the initial state was assumed known exactly, the a priori
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Table 3: 3D position RMS values for the second half of each simulation.

Mission Full Simulation DSN-Only LiAISON-Only
(m) (m) (m)

Cassini
(Interplanetary Satellite) 228.392 130.698 1874.312

MSL
(Interplanetary Satellite) 133.890 254.462 1211.702

MER A
(Interplanetary Satellite) 170.845 244.170 374.650

uncertainties were reduced, and SST observations were given the same accuracy as ground measurements,
the LiAISON-only simulation exhibited uncertainties similar to the levels seen in DSN-only tracking.
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Figure 13: Interplanetary trajectories’ RSS errors for each simulation.

EML-1-State-Fixed Simulations

We mention above that the LiAISON OD solutions must estimate both the state of the tracking station (the
EML-1 navigation satellite) and the departing spacecraft. LiAISON is thus at a disadvantage with respect to
ground-tracking simulations where the DSN locations were considered known. To investigate a more direct
comparison between LiAISON and DSN performance, simulations for each mission were conducted where
the EML-1 state was considered known and thus not estimated. Figure 15 shows the results for the MER A
trajectory. The halo-state-known simulations used an extended Kalman filter (EKF) to process both range and
range-rate observations. Dynamical errors and interplanetary spacecraft initial perturbations were included as
before. However, the a priori uncertainty for the interplanetary spacecraft was 100 m and 0.1 m/s in position
and velocity, respectively. Finally, observations were turned off for the first half day in these simulations.
This allowed the dynamics to sufficiently affect the spacecraft state and more accurately gauge the filter’s
ability to recover the trajectory.

The benefit of the LiAISON system is clearly shown in Figure 15. Though the DSN is able to more
quickly reduce the uncertainty, LiAISON outperforms ground-only tracking after roughly 4 days of observa-
tions. Additionally, where the DSN is unable to attain a steady state solution in these simulations, LiAISON
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Figure 14: Geometry of the Cassini spacecraft shown highlighting days 3.5 through 5.5 (shown in blue) that
led to poor geometry for LiAISON navigation. The full simulation is shown on the left, while the EML-1
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Figure 15: Interplanetary satellite position accuracies (truth - estimated) and 3-sigma uncertainty envelopes
for the full (left), DSN-only (middle), and LiAISON-only (right) MER A mission simulations where the
EML-1 satellite state is considered known and not estimated.

moves toward steady state throughout the 9 day measurement arc. Finally, the full simulation gives the best
performance as expected.

CONCLUSION

A new adaptation of the Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) archi-
tecture, one satellite orbiting the Earth-Moon L1 point and one departing on an interplanetary trajectory, has
been analyzed. This study explored using LiAISON to obtain accurate orbit determination solutions for both
spacecraft. A high-fidelity simulation was created to test several means of tracking the interplanetary depart-
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ing trajectory. First, the full simulation consisted of continuous range and range-rate observations tracking
from both LiAISON and the Deep Space Network. Subsequently, variations of this simulation were analyzed
under the same conditions for comparison. It was found that observations from a navigation satellite orbiting
at the Earth-Moon L1 point could be used to supplement ground-based measurements and improve tracking
performance. Additionally, it was shown that the extent to which LiAISON observations were effective in
improving state estimation performance was highly dependent on the situational geometry. The best geom-
etry is given by widely varying relative motion between the spacecraft, thereby allowing satellite-to-satellite
tracking to more effectively leverage the asymmetry in the dynamical fields which is believed to be the source
of LiAISON’s advantage.

Several avenues exist for further exploration of this concept. First, additional fidelity could be intro-
duced both in the filter set-up and the measurement model. Additional parameters could be introduced into
the state, such as coefficient of reflectivity, to facilitate dynamical model calibration, for each spacecraft
and measurement bias. Further, one of the challenges of tracking interplanetary-traveling spacecraft is the
large link distances that quickly develop. More accurately modeling degrading effects due to these distances
would increase real-world applicability. Finally, investigating the use of two LiAISON spacecraft to track
the outbound trajectory at different EML-points may offset shortcomings in the geometry that degraded SST
performance.

The configuration and simulations studied in this paper represent realistic navigation scenarios. The fidelity
has been increased using operational uncertainties and a priori state errors. Moreover, dynamical errors were
introduced in the filter. Each of these modeling complications were overcome and accurate results were
obtained for both the Earth-Moon L1 and simulated Cassini, Mars Exploration Rover A, and Mars Science
Laboratory satellites. This work has demonstrated the potential capability of LiAISON in achieving more
accurate navigation solutions for spacecraft departing on interplanetary trajectories.

ACKNOWLEDGEMENTS

The authors would like to thank the JPL Center Innovation Fund (CIF) Program, sponsored by NASA
Office of the Chief Technologist (OCT), which has supported this research.

The research presented in this paper has been partially carried out at the Jet Propulsion Laboratory, Cal-
ifornia Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Government sponsorship acknowledged.

REFERENCES

[1] K. Hill, M. W. Lo, and G. H. Born, “Linked, Autonomous, Interplanetary Satellite Orbit Navigation (Li-
AISON),” AAS/AIAA Astrodynamics Specialists Conference, No. AAS 05-399, Lake Tahoe, California,
August 7-11 2005.

[2] T. J. Martin-Mur, D. S. Abraham, D. Berry, S. Bhaskaran, R. J. Cesarone, and L. Wood, “The JPL
roadmap for Deep Space navigation,” tech. rep., Jet Propulsion Laboratory, 4800 Oak Grove Dr.,
Pasadena, CA 91109, January 2006.

[3] K. Hill, J. Parker, G. H. Born, and N. Demandante, “A Lunar L2 Navigation, Communication, and
Gravity Mission,” AIAA/AAS Astrodynamics Specialist Conference (AIAA/AAS, ed.), No. AIAA 2006-
6662, Keystone, Colorado, August 2006.

[4] Y.-C. Liu and L. Liu, “Orbit Determination Using Satellite-to-Satellite Tracking Data,” Chinese Journal

of Astronomy and Astrophysics, Vol. 1, No. 3, 2001.
[5] K. Hill, Autonomous Navigation in Libration Point Orbits. PhD thesis, University of Colorado, Boulder,

University of Colorado, Boulder, Colorado, 2007.
[6] J. Parker, R. Anderson, G. Born, K. Fujimoto, J. Leonard, and R. McGranaghan, “Navigation Between

Geosynchronous and Lunar L1 Orbiters,” Proceedings of the AIAA/AAS Astrodynamics Specialist Con-

ference held 13-16 August 2012, Minneapolis, Minnesota, Paper AAS, Jet Propulsion Laboratory and
University of Colorado at Boulder, AIAA, 2012.

[7] J. Leonard, R. McGranaghan, K. Fujimoto, G. Born, J. Parker, and R. Anderson, “LiAISON-
Supplemented Navigation for Geosynchronous and Lunar L1 Orbiters,” Proceedings of the AIAA/AAS

Astrodynamics Specialist Conference held 13-16 August 2012, Minneapolis, Minnesota, Paper AAS,

19



Minneapolis, MN, University of Colorado at Boulder and Jet Propulsion Laboratory, AIAA, August
13-16 2012.

[8] K. Fujimoto, J. Leonard, R. McGranaghan, J. Parker, R. Anderson, and G. Born, “Simulating the LiAI-
SON Navigation Concept in a GEO + Earth-Moon Halo Constellation,” 23rd International Symposium

on Space Flight Dynamics, Pasadena, California, October 29 - November 2 2012.
[9] J. M. Leonard, J. S. Parker, R. L. Anderson, R. M. McGranaghan, K. Fujimoto, and G. H. Born, “Sup-

porting Crewed Lunar Exploration with LiAISON Navigation,” In Proceedings of the 35th AAS Guid-

ance and Control Conference (AAS/AIAA, ed.), No. AAS 13-053, Breckenridge, Colorado, University
of Colorado at Boulder and Jet Propulsion Laboratory, February 2013.

[10] J. S. Parker, J. M. Leonard, K. Fujimoto, R. M. McGranaghan, G. H. Born, and R. L. Anderson, “Nav-
igating a Crewed Lunar Vehicle Using LiAISON,” Proceedings of the 23rd AAS/AIAA Spaceflight Me-

chanics Meeting (AAS/AIAA, ed.), No. 13-330, Kauai, Hawaii, University of Colorado at Boulder and
Jet Propulsion Laboratory, February 10-14 2013.

[11] S. Broschart, M. Chung, S. Hatch, J. Ma, T. Sweetser, S. Weinstein-Weiss, and V. Angelopoulos, “Pre-
liminary Trajectory Desifn for the ARTEMIS Lunar Mission,” Advances in Astronautical Sciences,
Vol. 134, 2009.

[12] D. Folta, M. Woodard, and D. Cosgrove, “Stationkeeping of the First Earth-Moon Libration Orbiters:
The ARTEMIS Mission,” Proceedings of the 2011 AIAA/AAS Astrodynamics Specialist Conference,
2011.

[13] M. Woodard, D. Cosgrove, P. Morinelli, J. Marchese, B. Owens, and D. Folta, “Orbit Determination of
Spacecraft in Earth-Moon L1 and L2 Libration Point Orbits,” Proceedings of the AIAA/AAS Astrody-

namics Specialist Conference, No. AAS 11-514, Girdwood, Alaska, July 31 - August 4 July 31 - August
4, 2011.

[14] K. Hill and G. Born, “Autonomous Orbit Determination from Lunar Halo Orbits Using Crosslink
Range,” Journal of Spacecraft and Rockets, Vol. 45, May - June 2008, pp. 548 – 553.

[15] E. Standish, “JPL Planetary and Lunar Ephemerides, DE405/LE405,” Jet Propulsion Laboratory In-
teroffice Memorandum IOM 312F-98-048, Aug. 26 1998.

[16] D. Hoffman, “A Set of C Utility Programs for Processing JPL Ephemeris Data,” Johnson Space Center,
1998.

[17] G. Born, B. Tapley, and B. Schutz, Statistical Orbit Determination. Elsevier Academic Press, 2004.
[18] P. Prince and J. Dormand, “High order embedded Runge-Kutta formulae,” Journal of Computational

and Applied Mathematics, Vol. 7, March 1981, pp. 67–75.
[19] K. Hill and B. Jones, “Turboprop Version 4.0,” Colorado Center for Astrodynamics, May 2009.
[20] D. Richardson and N. Cary, “A Uniformly Valid Solution for Motion about the Interior Libration

Point of the Perturbed Elliptic-Restricted Problem,” AAS/AIAA Astrodynamics Specialists Conference

(AAS/AIAA, ed.), No. AAS 75-021, July 28-30 1975.
[21] H. Pernicka and K. Howell, “Numerical Determination of Lissajous Trajectories in the Restricted Three-

Body Problem,” AIAA and AAS Astrodynamics Conference, Aug. 18-20 1986.
[22] R. Wilson, “Derivation of Differential Correctors Used in GENESIS Mission Design,” Tech. Rep. JPL

IOM 312.I-03-002, Jet Propulsion Laboratory, California Institute of Technology, 2003.
[23] T. Ely, M. Heyne, and J. Riedel, “Altair Navigation Performance During Translunar Cruise, Lunar Orbit,

Descent, and Landing,” Journal of Spacecraft and Rockets, Vol. 49, March-April 2012, pp. 295–317.
[24] T.-H. You, P. Antreasian, S. Broschart, K. Criddle, E. Higa, D. Jefferson, E. Lau, S. Mohan, M. Ryne,

and M. Keck, “Gravity Recovery and Interior Laboratory Mission (GRAIL) Orbit Determination,” Pro-

ceedings of the 23rd International Symposium on Space Flight Dynamics (ISSFD), Pasadena, California
91109-8099, 29 Oct – 2 Nov 2012.

[25] F. Peralta and S. Flanagan, “Cassini Interplanetary Trajectory Design,” tech. rep., Jet Propulsion Labo-
ratory, 1995.

[26] R. B. Roncoli and J. M. Ludwinski, “Mission Design Overview for the Mars Exploration Rover Mis-
sion,” Tech. Rep. 2002-4823, American Institute of Aeronatics and Astronautics, Pasadena, California
91109-8099, 2002.

[27] T. Martin-Mur, G. Kruizinga, P. Burkhart, M. Wong, and F. Abilleira, “Mars Science Laboratory Nav-
igation Results,” tech. rep., Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak
Grove Dr., Pasadena, CA 91109, 2012.

20


	Introduction
	LiAISON Navigation
	Dynamical Model and Linearization
	Dynamical Model
	Linearization of the Dynamical Model

	Observational Model and Linearization
	Measurement Model
	Linearization of the Measurement Model

	Orbit Determination Filter
	Truth Model Simulations
	EML-1 Truth Model
	Interplanetary Spacecraft Truth Models
	Measurement Generation

	Navigation Results
	Orbit Determination Filter Set-up
	Cassini
	Mars Exploration Rover A
	Mars Science Laboratory
	Mission Comparison
	EML-1-State-Fixed Simulations

	Conclusion
	Acknowledgements

