

Outline

• NASA’s Deep Space Network (DSN)
- Overview
- Long Range Planning & Scheduling

• Loading Analysis and Planning Software (LAPS)
- Evolutionary Multi-Objective Algorithm
- Parallelizing for multiple core hardware

• Results and Conclusions

The Deep Space Network (DSN)
• Current DSN comprises

- 3 sites roughly equally
spaced in longitude

- one 70m + multiple 34m
antennas at each site

• DSN supports all planetary
missions + some earth orbiters
+ radio science/astronomy

• DSN scheduling problem:
• ~500 tracks (communications contacts) per week for ~37

DSN users, with wide variation in types of scheduling
requirements

• Goal is to have a negotiated schedule about 16 weeks
ahead of realtime, and be conflict free about 8 weeks
ahead
- driven by need to sequence spacecraft well in advance

Complex GDSCC CDSCC MDSCC

Location

Longitude
Latitude

Antennas

Capabilities

Goldstone,
California,
USA

Canberra,
Australia

Madrid,
Spain

117° W 149° E 4° W
35° N 35° S 40° N
1 - 70m
5 - 34m

1 - 70m
2 - 34m

1 - 70m
3 - 34m

S, X, Ka
S, X
Ka downlink
only

S, X
Ka downlink
only

DSN Scheduling Process Phases
Process
Phase

Time frame
relative to
execution

Software tools
(software/database) Characteristic activities

Long-
range

Mid-
range

Near
Real-
time

≳ 6 months TIGRAS (RAP version)
+ MADB database

• identify and resolve periods of
contention

• plan for extended downtime
• assess proposed missions
• assess long range asset options

few weeks out to
6 months S3 webapp/database

• schedule normal science operations
• schedule pre-planned s/c activities

(maneuvers, unique science
opportunities)

• generate negotiated schedules for s/c
sequencing

• schedule network maintenance

closer than
a few weeks

TIGRAS (SPS version)
+ Service Preparation

System (SPS) database

• predict generation for execution
• reschedule due to unplanned resource

unavailability
• respond to spacecraft emergencies
• activate pre-planned launch

contingencies

Service Scheduling Software (S3)
• DSN has undertaken a major implementation of

scheduling automation called the
Service Scheduling Software (S3) system

• Major goals are:
- unify the scheduling software and databases into a

single integrated suite covering realtime out
through as much as several years into the future

- adopt a request-driven approach to scheduling (as
contrasted with the current activity-oriented
scheduling)

- develop a peer-to-peer collaboration environment
for DSN users to view, edit, and negotiate schedule
changes and conflict resolutions

S3 Definitions
• Master Schedule is the current baseline DSN schedule, including tracks,

scheduling requests, and events, over a conceptually unbounded time
frame; in practice some portions of the schedule could be very firm from
months to over a year in advance

• Workspace is a user-defined, time-bounded schedule including tracks,
scheduling requests, and events. A workspace could be a subset of the
master or initially an empty schedule, to be used for what-if analysis

• Scheduling Requests are specifications created by service users of their
tracking requirements, including constraints and flexibilities

• Activity or Track represents the actual time allocation on the DSN
antennas and are the result of expanding scheduling requests

• Pull is the action of bringing activities and requests into a Workspace
from the Master Schedule

• Push is the action of putting activities and requests into the Master
Schedule from a Workspace

DSE Design Principles

• No unexpected schedule changes
- all changes to the schedule must be requested

either explicitly or implicitly by the user
- the same sequence of operations on the same

data must yield the same schedule

• Even for infeasible schedule requests, attempt to
return something “reasonable” in response
- possibly by relaxing aspects of the request, along

with a diagnosis of the sources of infeasibility
- provides a starting point for users to handle the

problem

S3 Collaboration Features
• Fully web-based application
• Shared workspaces

- with groups or with individual users
- read, write, and/or publish-to-master permissions
- live updates as changes are made

• Notification framework
- toaster (pop-up), recent, and all
- workspace shares, change proposals, track/conflict changes, and

more
• Integrated wiki (Confluence)
• Online users

- presence and status
• Custom chat interface

- one-to-one and multi-user text chat
- share files, workspaces, and wikis
- integrated chat + wiki

• Create and manage change proposals
- S3 keeps track of concurrences required, with due dates

S3 Status

• S3 was deployed operationally in June 2011 and has
been operational since that date

• Over one year of DSN schedules have been created
and negotiated in S3, since 2011 week 29
- includes baseline schedules for 3 launching

missions in late 2011
- includes Mars Science Laboratory Entry/Descent/

Landing in early August 2012

Extension of S3 to long-range
planning and forecasting
• DSN is extending S3 functionality to long-range

process

• Leverage S3 data model and infrastructure

• Additional development is required for
- modeling uncertainty
- different optimization criteria
- simplified planning request interfaces for users
- new reporting functionality

• Optimization will explicitly use multiobjective
algorithms to provide insight into tradeoffs among
competing objectives

Workspace Manager

Workspace Sharing

Workspace/Proposal Differences

Request
Editor

Loading Analysis & Planning Software (LAPS)

• Algorithm: GDE3 (Generalized Differential Evolution 3,
Kukkonen and Lampinen 2005)
- maintains population of real-valued decision vectors

• Decision variables:
- per time interval (nominally weekly)

‣ mission relative priority
‣ fallback potential (nominal, reduced, minimal)

• Objectives (minimization):
- unscheduled requirement time (all missions)
- total track duration scheduled on all antennas

• Sample problem: 16 weeks, all DSN missions, slightly
(10%) oversubscribed

Java 7 ForkJoin functionality
• New with Java 7 is API for easily parallelizing

algorithms to use multiple cores

• Applied to GDE3 as follows:
- (Fork) For each generation, create N Java Callable

tasks that implement offspring generation,
including time-consuming the objective calculation

- (Join) When all N tasks have completed, perform
the population reduction as needed, then prepare
for the next generation

• By default ForkJoin uses maximum number of cores
supported by hardware

Experimental Hardware

System Description Processor RAM cores

A

Laptop –
MacBook Pro
(2012 retina
display)

2.7 GHz
Core i7 16 GB 8

B Desktop – Mac
Pro (2011)

2x 2.93
GHz Xeon
X5670

64 GB 24

C
Linux server
Sunfire x4450
(2009)

4x 2.66
GHz Xeon
X7460

128 GB 24

Results
• Best speedup is substantial:

- 3x on 8-core machine
- 7x on 24-core machine

• Using more than 1/2 the reported # cores is not
beneficial

• Why is the Linux server proportionately worse when
> 12 cores are used? (using 24 cores is no better
than 2, and much worse than 12)
- Memory bandwidth limitations has been reported

as limiting factor in other similar work
- particularly problematic in older server with slower

RAM

Conclusions

• Parallelizing for multi-core hardware via Java 7 library
features
- easy to implement
- can provide a major performance boost
- some suggestions included in paper

• We are planning to configure as the default
computational mode for the DSN long-range
planning engine

• Next stages of LAPS development are less on
performance than solution quality and visualization

