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Introduction

I NASA’s Earth Observing System satellites return massive quantities of
multivariate, spatio-temporal data about Earth’s atmosphere, ocean, land,
cryosphere, etc.

I These data are typically collected in chunks (called granules) as spacecraft
orbits Earth, and downlinked and processed granule by granule.

I Scientific inference on these data is difficult because of their volume and
because they are stored in small (granule) subsets, sometimes in different
locations.

I How can we efficiently discover what’s in these data sets so that we can
design an appropriate strategy for making inferences from them?
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Introduction

I We need a data “product" to facilitate this type of exploration by the
science community: a reduced data set that captures important statistical
characteristics.

I If we knew what analyses users intended to carry out, we could design a
reduced data “product" optimized for those analyses. But we don’t.

I The product must be created in a way that is doable within NASA’s data
processing pipeline: granules can’t be staged all at once, so data reduction
must proceed on many small subsets simultaneously with intermediate
results combined at the end.

I Perform exploratory analysis on the set representatives instead of the
original data.
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Introduction

In this talk:

I Set forth an approach to data reduction adopted by NASA’s Atmospheric
Infrared Sounder mission.

I Discuss how it was implemented operationally.

I Provide an example analysis that shows what can be learned from it.
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AIRS Mission and Observations

AIRS data collection:
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AIRS Mission and Observations

AIRS data collection:
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AIRS Mission and Observations

AIRS data collection:

Ascending orbits, February 6, 2013.
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AIRS Mission and Observations

AIRS data collection:

Descending orbits, February 6, 2013.
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Approach

Approach:

I Stratify data on a spatio-temporal grid (e.g., monthly, 5◦ × 5◦

latitude-longitude).

I Reduce data in each cell in a way that preserves statistical characteristics
within and between cells.

I Build up to monthly data set by reducing five days at a time, then combine
these “pentads" to form the monthly.
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Approach

I For our purposes, each Level 2 footprint represented by a vector of length
35:

Indices Field
1-11 atmospheric temperature (tair) at 11 levels
12-22 water vapor (h2ommr) at 11 levels
23-32 cloud fraction (cldfrc) at 10 levels; excludes surface
33 land/water indicator
34 quality indicator
35 day/night indicator

I 240 files per day, each 45× 30 footprints, since September 2002.

I Monthly data volume: 240× 45× 30× 35× 8× 30 = 2.72 GB/month.
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Data reduction

I How to reduce data in a way that preserves information with minimum data
volume?
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Data reduction

I How to reduce data in a way that preserves information with minimum data
volume?
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Data reduction

I How to reduce data in a way that preserves information with minimum data
volume?

I Unequal qualities of representation.
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Data reduction

I How to reduce data in a way that preserves information with minimum data
volume?

I Equalize the qualities of representation.
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Data reduction

y1

y2

yK

...

I = {1, 2, . . . ,K}
α : {x}N

i=1 → I

x1

x2

x3

xN

...

1 0

1 0
1 0

1 0

1 0

1 0
1 0

1 0

N1

N2

NK δK

δ2

δ1

K << N

yk = β(k) =
1

Nk

N∑
i=1

xi1[α(xi) = k]

δk =
1

Nk

N∑
i=1

‖xi − yk‖21[α(xi) = k]

Nk =
N∑

i=1

1[α(xi) = k],

16



Data reduction
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Data reduction
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Data reduction
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Basic algorithm
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Massive data set algorithm
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Data reduction

Setting algorithm parameters λ and K :

I K sets absolute maximum number of representatives. Which regime do
you like better?

I λ controls assignments (distribution) within a given regime.
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Operational
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Operational
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A statistical perspective

I Let X be a (p × 1, p = 35 here) vector representing a raw observations.
The support of X is the set of raw observations, {x1, . . . , xN}.
P(X = xi) = 1/N for all i = 1, . . . ,N.

I Let Y = q1(X) be a function that maps X to its representative, Y. The
support of Y is the collection of representatives, {y1, . . . , yK∗

1
}, where K ∗

1 is
the number of representatives. P(Y = yj ) = Nj/N, where Nj is the number
of raw observations assigned to representative yj .

I By construction, Y = E(X|Y). We say that Y is self-consistent for X (Tarpey
and Flury, 1996).
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A statistical perspective

I Note that E(Y) = E [E(X|Y)] = E(X); the original and reduced distributions
have the same mean.

I The variance of X can be written,

Var(X) = Var [E(X|Y)] + E [Var(X|Y)],

= Var [Y] + E [Var(X|Y)],

which shows that Var(Y) ≤ Var(X) by an amount equal to the average of
the within-representative-group covariance matrices.
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A statistical perspective

Self-consistency ensures that data reduction (replacing the distribution of X with
the distribution of Y) can be applied progressively (pentads→ months→
seasons) with each stage dependent only on the previous one for inputs, and
means and variances equivalent to what would have been obtained had the
reduction been done all at once.
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A statistical perspective

I Let W = q2(Y) be a function that maps Y to its representative, W. The
support of W is the collection of representatives, {w1, . . . ,wK∗

2
}, where K ∗

2
is the number of representatives. P(W = wk ) = Nk/N, where Nk is the
number of raw observations assigned to representative wk .

I By construction, W = E(Y|W) and W is self-consistent for Y, so
E(W) = E(Y) = E(X), and

E(Y|W) = E [E(X|Y)|W] = E [E(X|Y,W)] = E [E(X|W)|Y] = E(X|W).

I Finally, the variance of the original observations (X) can be reconstructed
from the reduced representation, W, and the intermediate and final
within-representative-group covariance matrices:

Var(X) = Var [E(X|Y)] + E [Var(X|Y)] = Var [Y] + E [Var(X|Y)],

= Var [W] + E [Var(Y|W)] + E [Var(X|Y)].
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AIRS L3Q Data Product

I Five-day and monthly reduced data product capturing profiles of
temperature, water vapor, and cloud fraction at 5◦ × 5◦ spatial resolution.

I Run in two stages at the Goddard Distributed Active Archive Center
(GDAAC).

I Raw monthly data volume: ∼ 2.72 GB.

I Reduced monthly data set volume: ∼ 12.5 MB.

I Processing time to create monthly data product: ∼ 87 minutes (six pentads
at ∼ 51 minutes each, plus one monthly at ∼ 36 minutes) on a single, 2.2
GHz AMD Opteron processor.

I Third stage of processing to create seasonal summaries for 2002 - 2005
run at JPL (∼ 36 minutes on a single Mac 3.2 GHz processor). See below.
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Example analysis

� Create summaries of 2002, 2003, 2004, and 2005 winter seasons at five
degree resolution.

� Winter 200x = Dec 200x, Jan 200(x+1), and Feb 200(x+1).
� Constructed from constituent monthly summaries.

Winter 2002, grid cell [lat = -10, lon = -60] (Amazon)
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� How to quantify the evolution of these multivariate distributions in time and
space?
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Example analysis

I Calculate the "distance" between two distributions (a measure of
similarity).

I 36× 72 = 2592, 5◦ × 5◦ degree grid cells, each containing a distribution.

I Form a 2592× 2592 symmetric distance matrix.

I Use multidimensional scaling (MDS) to analyze the distance matrix.
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Example analysis

� Distance between two distributions, p and q: Δ(p, q)
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Example analysis

2592 5◦ × 5◦ grid cells
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Example analysis

� For each object (e.g. grid cell) in a distance matrix, represent it as a point
in a low dimensional (e.g. 2) space.

� Situate the points in the low dimensional space so that relative inter-point
distances approximate those in the distance matrix.
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Example analysis
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Example analysis
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Example analysis
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Example analysis

� Left: MDS1 (2002) obtained from distribution distance matrix.
� Right: MDS1 (2002) obtained from grid cell mean distance matrix.
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� Not the same, obviously.
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Example analysis

� Left: MDS2 averaged over four winters. (Color scale reversed for
comparison.)

� Right: NCEP reanalysis vertical velocity (“omega") averaged over all
Decembers, Januarys and Februarys, 1968-1996, and spatially averaged
to 5◦ resolution.
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Example analysis

� Joint (left) and marginal distributions of MDS2 winter average (center) and
NCEP reanalysis average “omega" (right) for the region 30◦S – 30◦N.
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� Suggests that the distributional information in the AIRS data may allow us
to tease out vertical velocity.

� Vertical velocity is a crucial climate variable, but no remote sensing
instrument measures it directly.
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Conclusions

I You can find this data product at
http://mirador.gsfc.nasa.gov/cgi-bin/mirador/
homepageAlt.pl?keyword=AIRX3QPM.

I Not enough “science" interest so far: people don’t understand what you
can do with it.

I What can you do with it? Simulate:
I draw from the distributions, calculate, repeat,

I study sampling distributions of arbitrary statistics (with caution).
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Conclusions

I This is a “data mining" product: a descriptive summary of the AIRS Level 2
data.

I All uncertainty accrues to the relationship between the reduced data and
its unreduced parent. Does not account for uncertainty relative to the
Earth’s processes.

I Need to think about how to simulate in a way that accounts for spatial
dependence.

I Algorithm parameters set in a somewhat ad hoc way. (But hey...)

I In an operational mission (where good Statistics can make a huge
difference), optimal is less relevant than do-able.
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Conclusions

I More information in Braverman, A.J., Fetzer, E.J., Kahn, B.H., Manning,
E.R., Oliphant, R.B., and Teixeira, J.A. (2012). Massive Data Set Analysis
for NASA’s Atmospheric Infrared Sounder, Technometrics, Volume. 54,
Number 1, doi: 10.1080/00401706.2012.650504.

I Questions/comments? Reach me at Amy.Braverman@jpl.nasa.gov.

Copyright 2013, California Institute of Technology. Government sponsorship
acknowledged.
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