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ABSTRACT 
We describe a certification approach for software development 
that has been adopted at our organization. JPL develops robotic 
spacecraft for the exploration of the solar system. The flight 
software that controls these spacecraft is considered to be mission 
critical. We argue that the goal of a software certification process 
cannot be the development of “perfect” software, i.e., software 
that can be formally proven to be correct under all imaginable and 
unimaginable circumstances. More realistically, the goal is to 
guarantee a software development process that is conducted by 
knowledgeable engineers, who follow generally accepted 
procedures to control known risks, while meeting agreed upon 
standards of workmanship. We target three specific issues that 
must be addressed in such a certification procedure: the coding 
process, the code that is developed, and the skills of the coders. 
The coding process is driven by standards (e.g., a coding 
standard) and tools. The code is mechanically checked against the 
standard with the help of state-of-the-art static source code 
analyzers. The coders, finally, are certified in on-site training 
courses that include formal exams.  

Categories and Subject Descriptors 
D.2.0 [Software Engineering]: General – standards.K.5.2. 
[Governmental Issues]: – Regulation. K.7.3: [The Computing 
Profession]: Testing, Certification, and Licensing. 

General Terms 
Design, Reliability, Standardization, Legal Aspects. 

Keywords 
Coding standards, code review, static source code analysis, logic 
model checking, runtime verification, safety-critical software. 

1. INTRODUCTION 
John Rushby once described the dilemma of current approaches to 
software verification or certification as follows: “Because we 
cannot demonstrate how well we've done, we'll show how hard 
we've tried.” [1] The statement is apt. Few, if any, organizations 
feel confident enough about their software development processes 
that they are willing to give an absolute guarantee of its fitness for 
use or so much as the absence of preventable flaws in 
workmanship. As customers, and generally as users that have to 
rely on the safety and reliability of sometimes critically important 
software applications (e.g., as used by banks, car makers, or in 
medical devices), we are quite used to the opposite: we are 
routinely asked to sign disclaimers that hold the software makers 
invulnerable to flaws in workmanship and all possible damage 
that might be caused by it. This in itself is remarkable.  

 

At some point, perhaps a few decades ago, we may have expected 
that standard market principles would solve this problem: 

customers could have been expected to reject products that are 
delivered without warranties of fitness. But this is not what 
happened. 

The driving principles that determine how software applications 
are developed and marketed give a significant advantage to the 
vendor who delivers a new service first, and merely commits to 
slowly improve while the product is in use, based on customer 
feedback. The customers, in this way, become part of what 
otherwise would be the testers, except this group of testers pays 
the vendor, instead of the reverse. As unsettling as this might be 
from a philosophical point of view, it works quite well for the vast 
majority of software products sold today.  

A clear exception holds for the category of safety-critical software 
applications. Most will agree that different rules must apply here, 
since for these types of applications it cannot be considered 
acceptable for a vendor to decline all responsibility for the 
potential damage caused in return for a mere commitment to fix 
any problems not caught in the software development process 
until after they have manifested themselves to end-users. If we 
now look more carefully at which different rules are applied in 
these cases, we are in for a surprise. In many cases there are no 
software certification requirements, and those requirements that 
do exist can only be described as modest. Organizations are often 
only asked to show “how hard they’ve tried” and not that certain 
standards of workmanship are met. 

As part of our research and work, we have inevitably gained 
experience with the analysis of many software products that are 
considered critical. At JPL this naturally includes the analysis of 
the control software for interplanetary spacecraft, but we have 
also been involved in a broad range of other types of safety-
critical applications, including the investigation of specific aspects 
of automotive software (e.g., in the context of a study of the 
potential for sudden unintended acceleration of Toyota vehicles in 
2010), medical device software, software used in the shutdown 
systems of nuclear power plants, railway signaling protocol 
software, etc.  

NASA’s shuttle software [2] is often mentioned as an example of 
how critical software systems can reach a high level of safety and 
reliability. This software indeed has an exemplary track record of 
having a low residual fault density rate over the approximately 
three decades of use. Like any other human design, it is, of course, 
not completely free from defects, nor can it be expected to be. 
One could well say that the first principle adopted in the design of 
any system that is meant to be reliable is the recognition that no 
single system component can be perfect: every part has breaking 
points, some known and some unknown. Reliability and safety, 
therefore should be treated as system properties, not component 
properties. (And to complete the argument, in almost all cases of 
interest the software is merely one component in a larger system 
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that includes also hardware and human operators as essential 
elements.) 

The software used for commercial airplanes, similarly, has an 
enviable track record for reliability. Again, the track record is not 
for perfection, because in any sufficiently complex system there 
are always residual defects that are discovered only after a system 
is delivered and goes into operation. The goal for certified 
software, therefore, cannot be to put a process in place that 
guarantees correctness under all circumstances – the goal is to 
produce a safe and reliable system that is build by competent, 
well-trained developers, following a process that controls risks 
and meets the evolving standard of skilled workmanship. In one 
sentence here, then we touch on three separate targets for a 
software certification process: the code, the coder, and the coding 
process that is followed. The certification process that is followed 
in the aerospace industry (e.g., for software used to control 
commercial airplanes), targets primarily the coding process, e.g. 
with standards such as DO-178B [3]. There are no strict 
requirements here for the use of specific verification tools, or for 
the certification of software developers themselves. The target is 
only to secure that due diligence was used in the development 
process itself. 

2. CERTIFICATION PROCESS 
At JPL, in the development of the control software for 
interplanetary spacecraft, such as the Mars Exploration Rovers 
[4], we have adopted a different process. The intent of this process 
is to subject not just the coding process, but also the code, and the 
coders, and to some extent the software managers as well, to some 
form of certification.  

2.1 The Coding Process 
For flight code, JPL has adopted an Institutional Coding Standard 
[5], which it requires compliance in all newly developed mission-
critical software written at JPL.1

2.2 The Coders 

 The coding standard deliberately 
captures only risk-related rules for which compliance can be 
verified mechanically. Other than most other coding standards, 
then, this standard has real teeth: except in rare cases, non-
compliance is not an option for our flight software developers. 
Because all rules in the standard are specifically risk related (i.e., 
we can often point at a mission anomaly or mission loss that was 
caused by the violation of the underlying principle), approval for 
non-compliance is also rarely requested or granted. An example of 
a risk-related rule in this coding standard is the abolition of all 
dynamic memory use and of recursive code. Some of the 
motivation for the rules can be traced to the Power of Ten rules, 
described in [6]. JPL further imposes fairly strict requirements on 
the code review process some of which is detailed in [7]. 

Starting in 2010, JPL adopted a new procedure for the 
certification of flight software developers. The procedure itself is 
still subject to some revision, but once fully operational no 
software developer will be able to touch flight code (develop, 
manage, or modify) without having successfully completed a JPL 
specific Flight Software Certification course. The course consists 
of three modules, focusing on (a) computing science principles, 
(b) JPL software development standard processes, and (c) 
software risk and software vulnerabilities. Each module takes two 
                                                             
1 Most flight software, by a significant margin, is traditionally 

written in the C programming language, and therefore the JPL 
coding standard targets this language. 

full days of instruction, for a total of six days for all three modules 
combined. Each module ends with an exam that must be 
completed with a passing grade. At the time of writing, the first 
twenty software developers have successfully completed this 
course, and have received their certificates, others have not passed 
and will have to take the course, and the exams, again. New 
classes are held several times a year, until all software developers 
have been certified. At that point, we will likely add refresher 
courses for those who are already certified, in addition to the basic 
certification course itself, to keep pace with continuing 
developments in this field. The certification course intents to 
certify that all developers of critical code are familiar with basic 
computing science theory, and standard algorithms, are intimately 
familiar with the risks inherent in the use of the programming 
languages that are typically used for flight code, and understand 
not just the letter but also the rationale for the coding standard that 
they are expected to follow. The certification course also 
introduces developers to the tools (e.g., static analyzers, code 
review tools, and unit test tools) that they will be using in flight 
software development. 

Perhaps as an aside, JPL has also instituted an (as yet non-
required) course for senior management. Senior management 
normally has deep experience with spacecraft and mission design, 
but less so with software design principles. To date, most of JPL’s 
senior management has taken and completed this course. The 
course is repeated once a year, and is by invitation only. 

2.3 The Code 
The code, finally, is rightfully subject to the strictest requirements. 
Flight code, e.g. for the MSL mission [4], is checked nightly for 
compliance with the JPL coding standard [5], and subjected to 
rigorous tests with four separate state-of-the-art static source code 
analysis tools [7] (at the time of writing this includes the 
commercial tools coverity, codesonar, and semmle, and the 
research tool uno). The warnings generated by each of these tools 
is combined with the output of mission-specific checkers that 
secure compliance with naming conventions, coding style, etc.. In 
addition, all warnings, if any (there should be none), from the 
standard C compiler, used in pedantic mode with all warnings 
enabled are included in the results that are provided to the 
software developers as part of the standard ‘scrub’ interface [7]. 
The developers are required to close out all reports before a 
formal code review is initiated. In peer code reviews, an 
additional source of input is provided by designated peer code 
reviewers, and added to the ‘scrub’ results.  

Separately, key parts of the software design are also checked for 
correctness and compliance with higher level design requirements 
with the help of logic model checkers, such as Spin [8]. Training 
in the use of logic model checkers is tacitly provided via 
(optional) graduate-level courses taught by members of the JPL 
Laboratory for Reliable Software in the Computer Science 
Department at the California Institute of Technology. 
Approximately ten JPL employees outside the Laboratory for 
Reliable Software have so far taken and passed this course, and 
have become proficient in the use of logic model checkers on the 
analysis and verification flight software. 

3. REGULATORY PROCESS 
As noted in the introduction, members of our team have been 
involved in a broad range of software analysis applications, 
targeting not only aerospace but also safety-critical software used 
in automobiles, medical devices, and in the shutdown systems of 
nuclear power plants. It is perhaps noteworthy that at present there 



do not appear to be any strict regulatory requirements on the 
development of these critical types of software applications, 
neither on the code or the coders, on the organization that employs 
the coders, or on the processes that are followed in the coding 
process. 

In the automotive industry there is reasonable consensus on at 
least one set of coding guidelines: the one developed by the 
organization MiraLtd, and known as the MISRA-C Coding 
Guidelines [9]. Curiously, although many developing 
organizations have publically expressed support for these 
guidelines, there is no requirement (or verification) that they 
actually comply with them.  

Compliance with any reasonable standard, e.g., [5,6,9],  can make 
it significantly simpler to analyze code for potential anomalies, 
and to revise, and maintain it longer term. Much the same is true 
in the medical device industry, where the FDA does not require 
compliance with any specific coding standard or software 
development process, and goes no further than to recommend the 
use of state-of-the-art static source code analyzers as part of 
software development process, without actually requiring 
evidence that this is done. Similarly, the Nuclear Regulatory 
Commission has issued no comparable requirements for any 
software used in the shutdown systems of future nuclear power 
plants, nor does it seem to have plans to do so, as a key part of the 
licensing process.  

We believe that in each of these cases the lack of requirements on 
software development is an omission that should be corrected. 
Where not following generally accepted principles for safe 
software development could be regarded as a lack of 
workmanship on the part of the developer or developing 
organization, with the potential effect of contributing to 
preventable software failure, inadequate regulation for safety-

critical software systems that we all rely on could well be 
regarded as a failure of the regulatory process. 
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