
Software certification – coding, code, and coders

Klaus Havelund and Gerard J. Holzmann
Laboratory for Reliable Software (LaRS)

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, Pasadena, California, 91109-8099

firstname.lastname@jpl.nasa.gov

ABSTRACT
We describe a certification approach for software development
that has been adopted at our organization. JPL develops robotic
spacecraft for the exploration of the solar system. The flight
software that controls these spacecraft is considered to be mission
critical. We argue that the goal of a software certification process
cannot be the development of “perfect” software, i.e., software
that can be formally proven to be correct under all imaginable and
unimaginable circumstances. More realistically, the goal is to
guarantee a software development process that is conducted by
knowledgeable engineers, who follow generally accepted
procedures to control known risks, while meeting agreed upon
standards of workmanship. We target three specific issues that
must be addressed in such a certification procedure: the coding
process, the code that is developed, and the skills of the coders.
The coding process is driven by standards (e.g., a coding
standard) and tools. The code is mechanically checked against the
standard with the help of state-of-the-art static source code
analyzers. The coders, finally, are certified in on-site training
courses that include formal exams.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General – standards.K.5.2.
[Governmental Issues]: – Regulation. K.7.3: [The Computing
Profession]: Testing, Certification, and Licensing.

General Terms
Design, Reliability, Standardization, Legal Aspects.

Keywords
Coding standards, code review, static source code analysis, logic
model checking, runtime verification, safety-critical software.

1. INTRODUCTION
John Rushby once described the dilemma of current approaches to
software verification or certification as follows: “Because we
cannot demonstrate how well we've done, we'll show how hard
we've tried.” [1] The statement is apt. Few, if any, organizations
feel confident enough about their software development processes
that they are willing to give an absolute guarantee of its fitness for
use or so much as the absence of preventable flaws in
workmanship. As customers, and generally as users that have to
rely on the safety and reliability of sometimes critically important
software applications (e.g., as used by banks, car makers, or in
medical devices), we are quite used to the opposite: we are
routinely asked to sign disclaimers that hold the software makers
invulnerable to flaws in workmanship and all possible damage
that might be caused by it. This in itself is remarkable.

At some point, perhaps a few decades ago, we may have expected
that standard market principles would solve this problem:

customers could have been expected to reject products that are
delivered without warranties of fitness. But this is not what
happened.

The driving principles that determine how software applications
are developed and marketed give a significant advantage to the
vendor who delivers a new service first, and merely commits to
slowly improve while the product is in use, based on customer
feedback. The customers, in this way, become part of what
otherwise would be the testers, except this group of testers pays
the vendor, instead of the reverse. As unsettling as this might be
from a philosophical point of view, it works quite well for the vast
majority of software products sold today.

A clear exception holds for the category of safety-critical software
applications. Most will agree that different rules must apply here,
since for these types of applications it cannot be considered
acceptable for a vendor to decline all responsibility for the
potential damage caused in return for a mere commitment to fix
any problems not caught in the software development process
until after they have manifested themselves to end-users. If we
now look more carefully at which different rules are applied in
these cases, we are in for a surprise. In many cases there are no
software certification requirements, and those requirements that
do exist can only be described as modest. Organizations are often
only asked to show “how hard they’ve tried” and not that certain
standards of workmanship are met.

As part of our research and work, we have inevitably gained
experience with the analysis of many software products that are
considered critical. At JPL this naturally includes the analysis of
the control software for interplanetary spacecraft, but we have
also been involved in a broad range of other types of safety-
critical applications, including the investigation of specific aspects
of automotive software (e.g., in the context of a study of the
potential for sudden unintended acceleration of Toyota vehicles in
2010), medical device software, software used in the shutdown
systems of nuclear power plants, railway signaling protocol
software, etc.

NASA’s shuttle software [2] is often mentioned as an example of
how critical software systems can reach a high level of safety and
reliability. This software indeed has an exemplary track record of
having a low residual fault density rate over the approximately
three decades of use. Like any other human design, it is, of course,
not completely free from defects, nor can it be expected to be.
One could well say that the first principle adopted in the design of
any system that is meant to be reliable is the recognition that no
single system component can be perfect: every part has breaking
points, some known and some unknown. Reliability and safety,
therefore should be treated as system properties, not component
properties. (And to complete the argument, in almost all cases of
interest the software is merely one component in a larger system

mailto:firstname.lastname@jpl.nasa.gov�

that includes also hardware and human operators as essential
elements.)

The software used for commercial airplanes, similarly, has an
enviable track record for reliability. Again, the track record is not
for perfection, because in any sufficiently complex system there
are always residual defects that are discovered only after a system
is delivered and goes into operation. The goal for certified
software, therefore, cannot be to put a process in place that
guarantees correctness under all circumstances – the goal is to
produce a safe and reliable system that is build by competent,
well-trained developers, following a process that controls risks
and meets the evolving standard of skilled workmanship. In one
sentence here, then we touch on three separate targets for a
software certification process: the code, the coder, and the coding
process that is followed. The certification process that is followed
in the aerospace industry (e.g., for software used to control
commercial airplanes), targets primarily the coding process, e.g.
with standards such as DO-178B [3]. There are no strict
requirements here for the use of specific verification tools, or for
the certification of software developers themselves. The target is
only to secure that due diligence was used in the development
process itself.

2. CERTIFICATION PROCESS
At JPL, in the development of the control software for
interplanetary spacecraft, such as the Mars Exploration Rovers
[4], we have adopted a different process. The intent of this process
is to subject not just the coding process, but also the code, and the
coders, and to some extent the software managers as well, to some
form of certification.

2.1 The Coding Process
For flight code, JPL has adopted an Institutional Coding Standard
[5], which it requires compliance in all newly developed mission-
critical software written at JPL.1

2.2 The Coders

 The coding standard deliberately
captures only risk-related rules for which compliance can be
verified mechanically. Other than most other coding standards,
then, this standard has real teeth: except in rare cases, non-
compliance is not an option for our flight software developers.
Because all rules in the standard are specifically risk related (i.e.,
we can often point at a mission anomaly or mission loss that was
caused by the violation of the underlying principle), approval for
non-compliance is also rarely requested or granted. An example of
a risk-related rule in this coding standard is the abolition of all
dynamic memory use and of recursive code. Some of the
motivation for the rules can be traced to the Power of Ten rules,
described in [6]. JPL further imposes fairly strict requirements on
the code review process some of which is detailed in [7].

Starting in 2010, JPL adopted a new procedure for the
certification of flight software developers. The procedure itself is
still subject to some revision, but once fully operational no
software developer will be able to touch flight code (develop,
manage, or modify) without having successfully completed a JPL
specific Flight Software Certification course. The course consists
of three modules, focusing on (a) computing science principles,
(b) JPL software development standard processes, and (c)
software risk and software vulnerabilities. Each module takes two

1 Most flight software, by a significant margin, is traditionally

written in the C programming language, and therefore the JPL
coding standard targets this language.

full days of instruction, for a total of six days for all three modules
combined. Each module ends with an exam that must be
completed with a passing grade. At the time of writing, the first
twenty software developers have successfully completed this
course, and have received their certificates, others have not passed
and will have to take the course, and the exams, again. New
classes are held several times a year, until all software developers
have been certified. At that point, we will likely add refresher
courses for those who are already certified, in addition to the basic
certification course itself, to keep pace with continuing
developments in this field. The certification course intents to
certify that all developers of critical code are familiar with basic
computing science theory, and standard algorithms, are intimately
familiar with the risks inherent in the use of the programming
languages that are typically used for flight code, and understand
not just the letter but also the rationale for the coding standard that
they are expected to follow. The certification course also
introduces developers to the tools (e.g., static analyzers, code
review tools, and unit test tools) that they will be using in flight
software development.

Perhaps as an aside, JPL has also instituted an (as yet non-
required) course for senior management. Senior management
normally has deep experience with spacecraft and mission design,
but less so with software design principles. To date, most of JPL’s
senior management has taken and completed this course. The
course is repeated once a year, and is by invitation only.

2.3 The Code
The code, finally, is rightfully subject to the strictest requirements.
Flight code, e.g. for the MSL mission [4], is checked nightly for
compliance with the JPL coding standard [5], and subjected to
rigorous tests with four separate state-of-the-art static source code
analysis tools [7] (at the time of writing this includes the
commercial tools coverity, codesonar, and semmle, and the
research tool uno). The warnings generated by each of these tools
is combined with the output of mission-specific checkers that
secure compliance with naming conventions, coding style, etc.. In
addition, all warnings, if any (there should be none), from the
standard C compiler, used in pedantic mode with all warnings
enabled are included in the results that are provided to the
software developers as part of the standard ‘scrub’ interface [7].
The developers are required to close out all reports before a
formal code review is initiated. In peer code reviews, an
additional source of input is provided by designated peer code
reviewers, and added to the ‘scrub’ results.

Separately, key parts of the software design are also checked for
correctness and compliance with higher level design requirements
with the help of logic model checkers, such as Spin [8]. Training
in the use of logic model checkers is tacitly provided via
(optional) graduate-level courses taught by members of the JPL
Laboratory for Reliable Software in the Computer Science
Department at the California Institute of Technology.
Approximately ten JPL employees outside the Laboratory for
Reliable Software have so far taken and passed this course, and
have become proficient in the use of logic model checkers on the
analysis and verification flight software.

3. REGULATORY PROCESS
As noted in the introduction, members of our team have been
involved in a broad range of software analysis applications,
targeting not only aerospace but also safety-critical software used
in automobiles, medical devices, and in the shutdown systems of
nuclear power plants. It is perhaps noteworthy that at present there

do not appear to be any strict regulatory requirements on the
development of these critical types of software applications,
neither on the code or the coders, on the organization that employs
the coders, or on the processes that are followed in the coding
process.

In the automotive industry there is reasonable consensus on at
least one set of coding guidelines: the one developed by the
organization MiraLtd, and known as the MISRA-C Coding
Guidelines [9]. Curiously, although many developing
organizations have publically expressed support for these
guidelines, there is no requirement (or verification) that they
actually comply with them.

Compliance with any reasonable standard, e.g., [5,6,9], can make
it significantly simpler to analyze code for potential anomalies,
and to revise, and maintain it longer term. Much the same is true
in the medical device industry, where the FDA does not require
compliance with any specific coding standard or software
development process, and goes no further than to recommend the
use of state-of-the-art static source code analyzers as part of
software development process, without actually requiring
evidence that this is done. Similarly, the Nuclear Regulatory
Commission has issued no comparable requirements for any
software used in the shutdown systems of future nuclear power
plants, nor does it seem to have plans to do so, as a key part of the
licensing process.

We believe that in each of these cases the lack of requirements on
software development is an omission that should be corrected.
Where not following generally accepted principles for safe
software development could be regarded as a lack of
workmanship on the part of the developer or developing
organization, with the potential effect of contributing to
preventable software failure, inadequate regulation for safety-

critical software systems that we all rely on could well be
regarded as a failure of the regulatory process.

4. ACKNOWLEDGMENT
The research described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under
a contract with the National Aeronautics and Space
Administration.

5. REFERENCES
[1] Rushby, J. Verified Software Systems – the certification

perspective. http://www.csl.sri.com/users/rushby/vsr-
roadmap-ceert-apr06.pdf.

[2] Fishman, Charles, They Write the Right Stuff,
http://www.fastcompany.com/magazine/06/writestuff.html.

[3] DO-178B, Software considerations in airborne systems and
equipment, , http://en.wikipedia.org/wiki/DO-178B.

[4] Mars Science Laboratory mission (MSL),
http://www.nasa.gov/mission_pages/msl/index.html.

[5] JPL Institutional Coding Standard for the C Programming
Language,
 http://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_ext.pdf

[6] The “Power of Ten” Coding Rules, http://spinroot.com/p10/
[7] G.J. Holzmann, Scrub: a tool for code reviews, Innovations

in Systems and Software Engineering, Vol. 6, No. 4, 2010,
pp. 311-318.

[8] G.J. Holzmann, The Spin Model Checker – Primer and
Reference Manual, Addison-Wesley, 2004.

[9] MISRA-C:2004, Guidelines for the use of the C language in
critical systems, Mira Ltd.

http://www.csl.sri.com/users/rushby/vsr-roadmap-ceert-apr06.pdf�
http://www.csl.sri.com/users/rushby/vsr-roadmap-ceert-apr06.pdf�
http://www.fastcompany.com/magazine/06/writestuff.html�
http://en.wikipedia.org/wiki/DO-178B�
http://www.nasa.gov/mission_pages/msl/index.html�
http://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_ext.pdf�
http://spinroot.com/p10/�

	1. INTRODUCTION
	2. CERTIFICATION PROCESS
	2.1 The Coding Process
	2.2 The Coders
	2.3 The Code

	3. REGULATORY PROCESS
	4. ACKNOWLEDGMENT
	5. REFERENCES

