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ABSTRACT 

The Support Vector Machine is a powerful algorithm, useful in classifying data in to 

species. The Support Vector Machines implemented in this research were used as 

classifiers for the final stage in a Multistage Autonomous Target Recognition system. A 

single kernel SVM known as SVMlight, and a modified version known as a Support 

Vector Machine with K‐Means Clustering were used. These SVM algorithms were tested 

as classifiers under varying conditions. Image noise levels varied, and the orientation of 

the targets changed. The classifiers were then optimized to demonstrate their maximum 

potential as classifiers. Results demonstrate the reliability of SMV as a method for 

classification. From trial to trial, SVM produces consistent results. 

1. INTRODUCTION 

Computer vision is a field of research, which develops algorithms that allow computers to draw useful information 
from images, or video feeds.  The information encoded in an image can be valuable in many applications, allowing a 
computer to understand its environment visually, recognize objects, and perform operations autonomously.  
Applications of computer vision range from medical image analysis to autonomous guidance and maneuvering of 
spacecraft for docking or hazard avoidance.  

Autonomous target recognition (ATR) is one of the biggest challenges facing a computer vision system. Finding and 
identifying a particular type of target can be difficult. Targets must be identified under varying conditions, and in 
various orientations.  Furthermore, ATR algorithms must be computationally efficient if they are to be done in real 
time.  If an automated system uses a continuous video feed, the algorithm must complete calculation on one frame of 
the video before the next frame can be processed. 

2. BACKGROUND 

OT-MACH Correlation for Target Detection 

To address the issue of speed versus accuracy in a target recognition system, the Jet Propulsion Laboratory has 
developed a multistage autonomous target recognition system. This method uses a grayscale optical correlator 
(GOC) to instantaneously scan an image, and identify subsets of the image data that contain targets. These subsets 
are considered regions of interest (ROIs) and serve to reduce the amount of data that is extracted and passed to the 
final stage of the ATR system. 



The GOC filter is fast, but tends to produce many false-positive targets. To filter out erroneous ROIs, the GOC is 
used in combination with an Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter. The 
OT-MACH filter limits the number of erroneous features passed from GOC, and extracts the ROIs, which are passed 
to the classification stage. To perform this task, OT-MACH parameters are optimized though training by an operator 
to minimize Output Noise Variance, Average Correlation Energy and maximize Average Correlation Height. Each 
parameter is weighted independently, and is determined by an adaptive step gradient descent algorithm.   

ROI Classification with Machine Learning Methods 

The second stage of the ATR system uses a machine learner to classify each previously extracted feature as a target, 
or non-target.  The ROIs are considered vectors, in which each pixel value is a dimension, and can be simplified 
using Principal Component Analysis (PCA). PCA selects the top 18 features of the ROI vector to produce features 
of smaller dimensionality. Each ROI is then projected into an 18-dimensional feature space. Machine learners are 
trained on a set of ROI feature vectors, and each is identified as a target or a non-target. Data represented in feature 
space is subsequently classified according to the machine learner algorithm. This paper documents the use of two 
types of support vector machines that are used as final classifiers in an autonomous target recognition system.  

Free-Response operating characteristic curve (FROC curve) 

A Free-Response operating characteristics curve (FROC curve) describes the accuracy of a classification method.  
SVMs output a ‘score’ for each potential target. This ‘score’ represents the classification accuracy of each sample; if 
the score is high the sample is positive or true, whereas if it is low the sample is false or negative.  Picking a 
threshold, which defines what “high” and “low” are changes the quantity of samples classified as true versus false.  
Varying this threshold and plotting the results in an ROC curve gives a measure of the performance of the 
classification method. 

Along the x-axis is the average percent of false positives (negative samples classified as positive).  The y-axis 
represents the percent of true positives (positive samples classified as positive).  A curve, which increases along y 
rapidly, is best; with an ideal scenario being a vertical line along the y-axis.  

3. TRAINING METHODS 

Support Vector Machines 

In order to distinguish classes in highly enmeshed data, 
as is the case with ATR, Support Vector Machines 
examine a set of labeled instance pairs in a 
multidimensional feature-space. SVM attempts to 
separate the data in to classes. It does so by creating a 
separating hyperplane along the maximal margin of class 
separation. In other words, it creates a hyperplane 
between classes where they are the most different.  
 
The number of features representing each labeled data 
point determines the dimensionality of feature-space. In 
this case, 18 feature vectors are selected through PCA. 
Mapping of feature-space is determined by the SVM 
kernel, and is optimized by maximizing the class 
separation of data. The kernel parameters are optimized 
for the best ‘fit’, and the kernel is selected based on the 
conditions of input data.  



This research was done using the Gaussian Radial Basis Function as a SVM kernel function according to the given 
optimization problem. 
 

 

Given a training set of instance‐label pairs (xi , yi ), i = 1, . . . , l where xi ∈ Rn and y ∈ {1, −1}^l 
SVM requires optimization of the problem: 

 

 

Where ξi is the error term, C > 0 is the penalty parameter for the error term 

Training vectors xi are mapped to higher dimensional space by the function ϕ  

 

Furthermore, the kernel function: K(xi , xj ) ≡ ϕ (xi )T ϕ (xj ) 

RBF: K(xi , xj ) = exp(−γ xi − xj 2 ), γ > 0 

Linear: K(xi , xj ) = xT xj  

polynomial: K(xi , xj ) = (γxi T xj + r)d , γ > 0.  

Sigmoid: K(xi , xj ) = tanh(γxi T xj + r) 

 

With kernel parameter γ (gamma) optimized to set the kernel width. Tightening the spread of 
instances in regions of dense species population, and expanding the spread where population is 
sparse.  

 

 

k-Means Clustering with SVM Classification 

k-Means clustering with SVM (k-SVM) classification uses supervised and unsupervised learning methods to 
enhance SVM classification. k-Means clustering places a set of data points in different classes depending on the 
distance between them.  The user specifies a number of classes, and the algorithm attempts to form sets of points 
form the best ‘clusters’. This method uses a priori knowledge about the distribution of the data to attempt to enhance 
classification.  With sufficient samples, a SVM classifier will yield an adequate separation of data, however, with 
insufficient samples the division will not be maximized.  k-SVM addresses this by dividing the training samples 
among a set of independent SVM classifiers. The algorithm uses a point as a ‘mean’ to define the classes.  Each 
point in the data set is classified according to which data point it is closest too.  k-Means clustering randomly places 



means in the feature space and then sorts the data into clusters based on distance from the mean.  Each cluster’s 
mean is then moved to the average of all the points in that cluster.  This is repeated until the means no longer move.  
Because of the random initial placement of means, the algorithm can converge to different clusters.  To counteract 
this, the process is repeated several times and the clustering of data which best reduces entropy in the clusters is 
chosen. 

The appearance of target objects can vary greatly. They often are portrayed in several orientations throughout a 

dataset, the scale of a target can vary, or it can belong to multiple subclasses of targets. k-SVM can simplify the 
problem of identifying varying targets with a single SVM. By distributing target data to a set of SVMs that are 
trained to identify only one variation of target appearance results can be improved. Learning each of the subclasses 
separately may increase the classifiers ability to generalize to new data.  If image sets are similar but vary only in 
resolution, or if only the target’s scale differs, k-SVM may yield more generalized results. 

Controlling the ‘fit’ of data is of concern during target classification. That is to say, the classifier can be too 
specialized to its training data to be useful in classifying independent target data. Over-fitting the data means that the 
classifier emulates too closely the pattern that training data portrays. The classifier may also lose generality when 
applying the classifier to test data.  Under-fitting has the opposite effect – where the classifier only loosely follows 
the training data.   

The ‘fit’ of data is controlled by kernel parameters, and the outlier error penalty parameter c. Kernel Parameters vary 
by kernel selection, and a consideration to make during kernel selection is the number of kernels required. In the 
case of this research project the Gaussian RBF kernel was used, therefore the optimization of the kernel parameter γ 
(gamma) was required. The SVM classifier also requires the optimization of the parameter ‘c’ which sets the penalty 
for misclassifying a point. The parameter c relocates a sample point closer to the center of its class.  

The particular c, and γ (gamma) values that are best for a given application are not known, so they must be set by the 
operator. It is common for arbitrary values to be used as kernel parameters; however a grid-search is an analytical 
alternative that seems to produce better results. A common strategy is to split the data into training, validation and 
testing sets. The training set is a set with unknown class-labels, and the validation set is a control, whose class-labels 
are known. Given a set of parameters, the SVM classifier is trained on the training set, and tested on the validation 
set. The prediction accuracy obtained from the ‘unknown’ training set reflects the classification performance of an 
independent ‘testing’ set. After several iterations, the set of values that gives the best performance is chosen, and the 
corresponding classifier is evaluated on the testing set.  

4. METHODOLOGY 

Baseline performance data was gathered from a SVM, and a k-SVM classifier. Both were trained on a single set of 
extracted features from long-range sonar image data. A grid-search was performed while sweeping for optimal 
parameters on image data during this research project. The following grid search process was used for sweeping. 

The interval [a,b] was swept, where the SVM parameter c, and γ (gamma) – here represented as p 
where p ∈ [a,b], and [a,b] is divided in to n steps on a log scale starting from the center of [a,b].  

At each of the subsequent n steps, parameter values were noted, and the SVM classifier was tested. The process was 
repeated beginning at the best p on the interval. This time the search interval was shortened, and the number of steps 
was increased. This was done to increase the resolution of the search around the new p, and provide the best possible 
parameter for the SVM Classifier.  

This thorough sweeping of the kernel parameters was performed on both SVM, and Kmeans Clustering with SVM 
classifiers. It was done to determine the best possible fit during classification. The sensitivity of the above classifiers 
was then tested to determine how precise the kernel parameter selection needed to be. The optimal kernel parameters 
were tested on an independent testing set, and the optimal performance scores were recorded to provide a baseline 
for further testing. Then, Parameter values were adjusted according to the following table to determine necessary 
parameter accuracy.  



 

5.  RESULTS 

SVM          

test 
number 

c  accuracy @ 2FP 
#FP @ 90% 
accuracy 

γ 
accuracy @ 

2FP 
#FP @ 90% 
accuracy 

baseline  4.717008585  61.04  24 0.962276766 61.04  24

1  9.43401717  66.78  21.33 1.924553532 66.09  21.65

2  18.86803434  70.09  21.41 3.849107064 65.19  21.96

3  37.73606868  69.57  18.72 7.698214129 61.04  31.44

4  75.47213736  70.43  23.39 15.39642826 56.7  34.22

5  150.9442747  69.04  26.18 30.79285651 47.83  31.14

6  2.358504293  64.87  25.04 0.481138383 56.52  26.75

7  1.179252146  55.3  28.99 0.240569192 54.26  31.44

8  0.589626073  51.65  32.34 0.120284596 46.61  37.38

9  0.294813037  47.48  42.01 0.060142298 42.26  40.44

10  0.147406518  44.17  50.01 0.030071149 39.13  48.1
SVM parameters adjusted independently by a factor of 2 with each iteration 

SVM parameters of Kmeans clusters adjusted by a factor of 2 with each iteration 

Kmeans Clusters              

test 
number 

c 
accuracy @ 

2FP 
#FP @ 90% 
accuracy 

γ 
accuracy @ 

2FP 
#FP @ 90% 
accuracy 

baseline  4.717008585  65.19  27.25  0.962276766  66.96  23.29 

1  9.43401717  64.17  22.89  1.924553532  65.57  38.15 

2  18.86803434  66.26  26.63  3.849107064  62.43  35.68 

3  37.73606868  66.96  24.04  7.698214129  57.57  41.01 

4  75.47213736  62.09  29.16  15.39642826  54.61  36.44 

5  150.9442747  64.52  27.08  30.79285651  45.57  30.91 

6  2.358504293  65.04  20.37  0.481138383  63.48  23.41 

7  1.179252146  66.96  25.38  0.240569192  63.3  23.27 

8  0.589626073  64.35  21.3  0.120284596  63.83  23.87 

9  0.294813037  60.35  28.3  0.060142298  58.09  24.94 

10  0.147406518  64  22.44  0.030071149  57.22  29.44 

Final Kmeans SVM Classifier             

test number                 c 
accuracy @ 
2FP 

#FP @ 90% 
accuracy          γ

accuracy @ 
2FP 

#FP @ 90% 
accuracy 

baseline  46.41588834  63.13  26.97  1  63.13  26.97 

1  92.83177667  58.43 29.15 2 64.52  27.78

2  185.6635533  58.26  25.61  4  64.17  24.22 

3  371.3271067  61.57 23.99 8 35.13  37.1

4  742.6542134  64.87  29.2  16  21.04  28.1 

5  1485.308427  59.83 31.7 32 13.39  28.53

6  23.20794417  66.09  22.72  0.5  65.57  19.8 

7  11.60397208  67.13 20.03 0.25 65.22  27.14

8  5.801986042  64.7  22.92  0.125  64.17  23.68 

9  2.900993021  64.87 23.1 0.0625 60.87  25.44



SVM parameters of final Kmeans cluster classifier adjusted by a facot of 2 with each iteration 

Data was recorded in the form of a FROC curve, including overall accuracy, classification accuracy at 2 false-
positives per image, and false-positives per image at 90% accuracy.  

 

                                               

                                                                                                        

 

                          

                                                                                                           

 

Results of these tests show that generally an increase in parameter value caused the SVM classifiers to become more 
accurate (most likely over-fitting), and less accurate when parameters are made smaller. It is clear that kernel 
parameters must be swept accurately to achieve a good fit to testing data. It is clear also that a grid search is a much 
better method for parameter selection than selecting arbitrary numbers.  

The optimal values of these test results all appear to be relatively small, so at least with this dataset, sweeping to 
extremely high values seems unnecessary.  

 

10  1.450496511  66.43  23.22  0.03125  60.35  30 

Performance of SVM: γ = 0.03125

Baseline performance of SVMBaseline performance of k-SVM 

Performance of k‐SVM: γ = 0.5 



 

6. CONCLUSIONS 

SVM, and k-SVM classifiers are fairly robust. They produce consistent results, and are easy to optimize. 
Optimization of kernel parameters increases performance, and should be done using a two-stage method where 
search resolution is increased in the region around the best selection of first sweep. When tested multiple times with 
the same kernel parameters SVM produced identical classification accuracy, while k-SVM results tend to vary.  This 
is possibly due to the method used by k-SVM to cluster data points.  

6. FURTHER RESEARCH 

Further research is required to test the ability of SVM classifiers to generalize to new data. This research was done 
using only long-range sonar data. A test of generalization was planned using long-range sonar data in which the 
targets are oriented differently, and short-range sonar data, in which the target scale is changed. The classifiers 
would have probably performed well under this scenario change – especially k-SVM, due to its ability to use several 
classifiers trained on sub-classes of targets.  
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