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Abstract—To synchronize clocks between spacecraft in proximity,
the Proximity-1 Space Link Interleaved Time Synchronization
(PITS) Protocol has been proposed. PITS is based on the NTP
Interleaved On-Wire Protocol and is capable of being adapted
and integrated into CCSDS Proximity-1 Space Link Protocol
with minimal modifications. In this work, we will discuss the
correctness and liveness of PITS. Further, we analyze and
evaluate the performance of time synchronization latency with
various channel error rates in different PITS operational modes.

1. INTRODUCTION

Spacecraft at great distances from Earth require high-
precision time information for accurate navigation and
communications. Typically, an on-board computer carries a
mission-elapsed time counter or space clock (SCLK)[1];
however, the SCLK is susceptible to reset, skew and drift due
to external environmental effects such as radiation,
temperature fluctuation, relativistic effects, as well as software
updates or reboots. Inaccurate and misaligned timing can
cause other catastrophic subsystem failures and jeopardize
critical mission objectives. In addition, accurate timing
knowledge would be required for enabling future multiple
access communications between orbiter and rovers operations.

The Proximity-1 Space Link Interleaved Time
Synchronization (PITS) Protocol was first designed and
developed for synchronizing spacecraft that are in proximity,
where proximity means less than 100,000 km apart. One
particular application of PITS is time synchronization between
a Mars orbiter and rover. In addition, PITS is capable of
providing time synchronization and distribution services in
more general situations, such as when multiple flying entities
need to achieve time synchronization using a single point-to-
point link. This is particularly attractive in deep space
environments, where direct Earth-to-spacecraft contact is
intermittent, and propagation delay is long such that direct
time synchronization from Earth to spacecraft is extremely
difficult to achieve. In this case, PITS can provide the local
time synchronization and the distribution service until the link
from Earth is available. For example, in a Mars network, an
orbiter can function as a time server and a rover can function
as a time client, thus exchanging time information with each
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other. For missions to the outer planets such as the Europa
Jupiter System Mission (EJSM), a mothership can function as
a time server, and a probe can function as a time client such
that a mothership can provide the time distribution service to a
probe.

So far, most time synchronization research has primarily
focused on measuring errors in timing accuracy and offset,
while paying little attention toward analyzing the underlying
time synchronization protocol operations with link errors. In
particular, there is no framework for analyzing the
performance of space time synchronization protocols.

In this work, we provide the sketch of proof for the liveness
and correctness properties of PITS, which are critical for
guaranteeing the correct operations of the protocol. Also, we
analyze the expected number of transmissions required to
achieve synchronization with link errors under different PITS
operation modes.

II. BACKGROUND

A. Time Synchronization

Typically, time synchronization involving two peers can be
achieved by exchanging three time information packets[2] as
shown in Fig. 1, where a peer that has accurate time
information is called the time server, and the other peer who
wishes to be synchronized to the time server is called the time
client. In Fig 1, peer A is the time server and peer B is the
time client. The One Way Time (OWT) is defined to be half of
the round-trip time (R77). We denote #; as the transmit-
timestamp of peer A, which is the packet transmission time at
A. Also, we define 7, as the receive-timestamp of peer B,
when B receives the packet from A. Similarly, #; and ¢, are
defined to be the transmit-timestamp at peer B and receive-
timestamp at peer A respectively. The offset is defined as the
relative time difference between nodes A and B. Once each
peer obtains four consecutive timestamps as shown below in
Fig. 1, the RTT delay and offset can be calculated as follows:
At peer A,

offset = 1/2((t2 - tl) - (t4 -1l ))
RTT delay = (t4 - tl) - (t3 - tz)
At peer B,



offset = 1/2((t4 = t3) = (tg — 15 ))
RTT delay = (t6 . t3) — (t5 — t4)
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Fig 1. Tllustration of Time Synchronization Process that starts

at 7; and ends at 74
In general, the accuracy of time synchronization depends on
the several factors including clock drift, skew, hardware
processing delay, timestamping error, and propagation
delay[5]. In this work, we primarily focus on analyzing and
examining the PITS protocol interactions and provide the
latency performance in terms of the number of time
information exchanges required with different channel
conditions.

B. PITS Protocol

PITS can be described as a simple request and reply protocol.
As soon as the receiver receives the message from the sender,
it immediately replies back with its own message. This
message includes peer time information and further serves as
an acknowledgement to the received message. PITS is a
stateful protocol which keeps track of 7., frec, and f, time
information in the payload in the SpaceNTP (SpNTP) packet
[2-5] as shown in Table 1. In particular, each t,,., and #,,, is the
received and transmitted time of SpNTP packet at each peer
and 7, holds the transmitted time of SpNTP packet in the
previous time slot. Time information f,., f.. and t., are
updated when the new SpNTP packet is created. The actual
SpNTP packet can be implemented and integrated into the
CCSDS Proximity-1 Timestamp SPDU[6] where additional
details on the SpNTP packet format and fields are described in
[3,4]. Further, each peer has the rec, dst, org, Aorg, and Borg
local state variables in its memory to store time information,
Torgs trec, and 1, to calculate the RTT delay and offset.
Table 1. Timestamp and state variables used in PITS

Descriptions

lorg origin-timestamp

trec receive-timestamp

Lemt transmit-timestamp

rec receive timestamp state variable

dst destination timestamp state variable

org origin timestamp state variable used in
BSM

Aorg, Borg | alternate origin timestamp state variables
used in ISM

PITS can be operated in Basic Symmetric Mode (BSM),
Interleaved Symmetric Mode (ISM), and Broadcasting Mode
(BM)[2]. In this work, we mainly concentrate on BSM and
ISM modes since we believe that the analysis of BM can be
readily extendable based on this work.

First, in BSM, time server A initiates the synchronization
by sending a SpNTP packet to B. Upon reception of a SpNTP
packet at B, B updates its state variables rec, dst, and org and
transmits a SpNTP packet with new time information. The
packet exchange interactions in BSM are exactly the same as
one shown in Fig. 1. The example of the PITS algorithm
showing the SpNTP packet payload as well as the
corresponding state variables in each peer at each time instant
are explained in [2-5]. The details of state variables and
packet payload updates occur according to the Transmit and
Receive process presented in [2-5].

On the other hand, ISM operates in a slightly different
manner than BSM. In ISM, time server A captures and records
the timetag immediately after SpNTP packet is actually
transmitted. Hence, a more accurate transmit-timestamp is
obtained by capturing and timetagging the packet as close to
the physical layer as possible and the transmit-timestamp is
not included at the time of SpNTP packet transmissions,
however, transmit-timestamp is included in the following
SpNTP packet transmission. The obtained transmit-timestamp
is encapsulated and sent in the following SpNTP packet
transmission as shown in Fig 2.
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Fig 2. SpNTP packet Exchange with ISM[2-5]

On the other hand, the Receive Process in ISM operates in
the same way as in BSM. Therefore, ISM requires more
SpNTP packet transmissions than BSM because the transmit-
timestamp must be transmitted in the following round. Also,
instead of single origin timestamp org, two alternating Arog
and Borg timestamps are used for storing 7., in ISM. At the
expense of extra time exchanges, more accurate timing
information can be captured in ISM mode. However, the link
utilization of BSM and ISM are the same because both modes
deliver the same number of timestamps in one RTT, where the
link utilization is defined as a fraction of time that the link has
been used. This interleaved feature in particular has been
tested in the NTP On-Wire Protocol since 2005 and more
details can be found in [2,5,7].

The PITS protocol operates in a symmetric manner, where
any involved peers can initiate the time synchronization
process providing flexibility and efficiency of operations. In
addition, we also consider the server-client based operation



where the orbiter functions as a time server and the rover
functions as a time client. This mode would be applicable for
the deep space mission where an orbiter or mothership
typically carries a more accurate clock than the one in a rover,
providing the time services to a rover.

C. Assumptions

We make the following assumptions throughout this work:
each SpNTP packet has a fixed packet size, which is known
among peers a priori. Also, we assume that the OWT from A
to B and B to A does not change during the time
synchronization process. Therefore, the effect of relative
velocity changes due to spacecraft movements is not included
in the proposed work. Although the relative distance changes,
different internal hardware processing delay, asymmetrical
bandwidth, and channel conditions can cause different OWT,
we believe that the several SpNTP packets can be rapidly
exchanged in a short period of time over the link in proximity.
Therefore, we focus our analysis on capturing the theoretical
performance and the underlying PITS protocol behavior rather
than capturing the performance under specific hardware and
trajectory constraints. In addition, we assume that there are
1.1.d. SpNTP packet errors on each link, where the probability
of packet error is never equal to one so that there is always a
small probability of success on SpNTP packet transmissions
by persistently sending packets. We do not consider the
packet loss during the time synchronization. Throughout this
work, we assume that the underlying CCSDS Proximity-1
Space Link Protocol provides the perfect CRC check.

III. CORRECTNESS OF THE PITS PROTOCOL

The correctness guarantees the integrity of the protocol
operations. Furthermore, the correctness property provides
correct functioning of the designed protocol. The correctness
proof requires proving that packets are delivered to the higher
layer of the receiver in order, and without deletion or
repetition. Protocol correctness is established by showing the
1) liveness and 2) safety properties[8]. The liveness property
guarantees that the protocol will continue to produce results.
The safety condition guarantees that the protocol will never
produce an incorrect result. In other words, once a packet has
been received, packets are delivered error-free and in proper
order to higher layer application for the offset and RTT delay
calculation. First we will describe the liveness and then show
the safety property of PITS.

A. Liveness of PITS Protocol

The protocol liveness property guarantees that the protocol
never falls in the deadlock conditions. We need to show that
peers will eventually collect a total 4 consecutive timestamps to
achieve synchronization in BSM. We prove the liveness using
a contradiction as follows:

(Proof) Suppose there is a deadlock and the currently received
transmit-timestamp is equal or less than the previously received
timestamp:

temr Sxmt,
where xmt is previously received timestamp.

In this case, the PITS protocol will not move forward simply
ignoring the received packet. Let xm¢ =i* at time ¢* for all #*
< t, where i* is previously received transmit-timestamp, and

let 7 be some average time after 7. Further, if we assume the
timeout period to be constant, 7' < co; which is the time that a
time server has to wait to send next SpNTP packet if SpNTP
packet does not sent back from the other peer. With above
fact, we need to consider the following different cases: £ >
xmt, Lyye=xmt, and Ty, < xmt.

Case 1: lyr > xmt

This is no deadlock condition. The current transmit timestamp
received from a sender is greater than the previously received
transmit timestamp from a sender due to causality of
timestamps. Therefore, in this case, PITS protocol moves
forward, sending its SpNTP packet back to the other peer.

Case 2: lyyr =1 = xmt

If fy;; = xmt, the peer will persistently send a new SpNTP
packet after every 7, if it does not hear SpNTP packet from the
other peer. After some time later persistently sending packets,
. becomes

Lot =1 +nT > xmt,
where n is an integer. Therefore, a protocol moves forward
since

Lot > xmt.

Case 3: Lot =7 < xmt
The same reasoning applies to case 3 as case in 2. After some
number of timeout period, a peer transmits SpNTP packets
persistently and £, will eventually become greater than xmt¢
at some time instance,

Leme =7 +mT> xmt,

where m is an integer.
Thus, these prove the liveness of PITS. This proof can be
easily extended for ISM mode.

B.  Safety of PITS protocol

Since the space environment is harsh and errors can occur
during packet transmissions, the safety property is critical and
must be maintained in order to provide correct results under
severe link errors. In general, safety means the protocol does
not deliver erroneous packets nor packets with the incorrect
time information to the higher layer. The safety condition
should properly handle the erroneous as well as out-of-order,
and duplicate packets. The safety is examined in the following
three cases:

1) Erroneous packet: We assume that the underlying error
correcting codes and CRC can detect errors. Thus PITS will
not forward erroneous packets to the higher layer. Based on
our assumption this is trivially true. In this work, we further
explore the exceptional case where a receiver can make a use
of the received time of erroneous packet even though PITS
cannot decode the content of the erroneous packet. We denote
this as an error-torrent timestamp. Therefore, PITS can only
make a use of the received timestamp information for the
offset calculation at the physical layer and does not forward,
discarding the content of the erroneous packets. Although this



scenario is somewhat an unrealistic operational case, it can be
realizable only if we have dedicated time synchronization
sessions only allowing the exchanging of SpNTP packets
during this period. This is further explored in later sections.

2) Duplicate packet: The protocol can detect a duplicate
packet it t,,,, = xmt, where xmt is a local variable that stores the
t.m: value from the previous packet reception.

(Proof) If #,,,; in the currently received transmit-timestamp is
the same as the previously received timestamp, xm¢ , then the
current packet must be the same as the previous packet. Packet
retransmissions may occur due to packet loss or malicious
replay of the same packet. Therefore, the protocol simply
ignores the duplicate without updating any state variables.

3) Out of order packet: The protocol can detect the out of
order packet if t,,, 1s different from the dst state variable.
(Proof) Each org, Aorg or Borg state variable is not changed
during one RTT as shown in Fig 2. and is only updated after
successful reception of a packet from the other side. Therefore,
if org, Aorg or Borg is different from 7., then it must be the
out of sequence packet. In this case, PITS simply ignores the
received packet but updates the state variables accordingly.
Therefore, PITS provides the additional protocol level
protection achieving a high level of safety conditions.

IV. ANALYSIS AND EVALUATION

We first consider the server-client operation mode where
time synchronization is always started from the time sever A.
Next, we analyze the peer-to-peer operation when any nodes
can be a time server and initiate the time synchronization
process. We evaluate the total latency required until successful
synchronization between two nodes. Since the PITS time
synchronization performance is essentially equivalent to the
number of SpNTP packet exchanges, we define the random
variable X to represent the total time incurred until the first
successful time synchronization. The random variable X is
measured as a multiple of OWT. Further, we define timeout T’
as a multiple of OWT, such as T' = n-OWT, when n is an
integer.

In particular, we denote Xpgy, and Xjg, for BSM and ISM
mode respectively. We assume that the path characteristics
between A and B are statistically equivalent during the time
synchronization. Therefore, we consider the i.i.d. channel
error rate p in the link. In addition, we specifically consider
four cases based on the location of error occurrence during the
SpNTP packet transmission and different operational modes as
follows: 1) Packet Error in Client-Server mode, 2) Packet
Error with valid Receive-Timestamp in Client-Server mode, 3)
Packet Error in Peer-To-Peer Mode, and 4) Packet Error in
Peer-to-Peer Mode with valid Receive-Timestamp.

For each of these four cases, we derive the expected latency
required between two nodes A and B and denote the random
variable Xpg, and Xjgy for case 1), Xpo ™™ and Xig, ™ for
case 2), Xgart ° and Xpg " for case 3) and Xpg <7 and
Xy 2Pl for case 4), respectively.

1) Packet Error in Client-Server mode: This is the
nominal client-server data transmission scenario. If the packet
is received with an error at node, node simply ignores and

drops the erroneous packet and does nothing until sender times
out and resends a new SpNTP packet. In this case, all three
consecutive transmissions need to be successful from time
server A to time client B to collect four consecutive time
stamps. Whenever there are packet errors from A to B, the
packet is retransmitted from A after 7. Hence,

E[X o, 1= {3+ pzn + 2p
(I-p)yd-p) (A-p)Xl-p) 1)
L 2EmP, oy
(1-p)

Similarly, five consecutive transmissions initiated from A
need to be successful in ISM to collect as follows,

X )= 54—y PO
(-p)a=p) (=-pPU-p) @
PO B Ca ) Aoy
(I-p)d-p) (A-p)

2) Packet Error with valid Receive-Timestamp in Client-
Server mode: In this case, we consider that node still makes a
use of the received-time of erroneous packet (error-tolerant
timestamp) and transmits a new packet back to the other peer.
Therefore, we allow PITS protocol to collect the error-tolerant
timestamp from the reception of erroneous packet, even
though it cannot make a use of the payload of the SpNTP
packet.

By examining protocol interactions and state variables
more carefully in Fig 2, we can observe that the first SpNTP
packet from A to B does not contain timestamp needed for B’s
offset or round trip calculation. Also, A already has
timestamp information before transmitting to B. Therefore, the
first data transmission can be error-tolerant and have errors
from A to B without impacting the correct operation of PITS.
However, follow-on packet content from second (B->A) and
third (A->B) transmissions are necessarily for calculating
offset and delay at A and B. Since receiver sends immediately
its own packet upon the reception of erroneous packet, there
are no timeout at the sender. Therefore,

E[XBSMan'nl] — {3+ 2p i 4p }OWT. (3)
(I-p){d-p) A-p)
Similarly, in ISM, the first transmission can be error-tolerant
with the same reason as above. Regardless of the success of
the first transmission, next 4 consecutive transmissions must
be error-free. Hence,

artiay 2p
E[ Xy = 5+—EL
o (1-p)*1-p)’ )
4p 4p 2 omr,

+ + +
(1-p)*(-p) A-p)1-p) (1-p)

3) Packet Error in Peer-To-Peer Mode: If there are errors
in this mode, time client and time server peer can be
immediately switched. Upon reception of erroneous packet,
time client peer can restart the time synchronization process
immediately becoming a new time server peer. Therefore, it
can save timeout period. This case can be modeled as mean
time for the specific patterns to occur as discussed in [9], since
time synchronization can be dynamically started from any
peers during the time synchronization process. If we



enumerate transmission success as “1” and failure as “0” in
any link, then the problem is equivalent to obtaining the
following three consecutive ones “111” for BSM and five
consecutive ones “11111” for ISM mode. The mean time to
obtain the pattern “111” regardless of which node initiated is:

E[XBSMPeer] — E[Xlll] — 1 + 1 4 1 - (5)
I-p (d-p* A-p)

Similarly, in ISM
E[XISMPM] =E[X ]
1 1 1 1 1 ©
= + + + + )
I-p (-p* d-p) (A-p)' A-p)

4) Packet Error in Peer-to-Peer Mode with valid
Receive-Timestamp: We allow each peer can make a use of
receive-timestamp of erroneous SpNTP packets as described
in above case 2). In this case, first transmission can be either
“0” or “1”. Therefore, we are looking for the pattern “x11”
two consecutive 1’s followed by “x” which can be either “0”
or “1”. Therefore,

E[XBSMPeerfPartial] — 1+ E[X“] — 1+

—
l-p (d-p)
In ISM, we have

E[XISMPMPPMW] =1+ E[Xllll] =1+ ! !

—+—
I-p (A-p) (8)
1 1
+ + .
1-p’ A-p'
Next, we evaluated the various expected values of X from Eqs
(1) — (8 with p from 0 to 0.25 to evaluate the PITS
performance in the various channel conditions. For
convenience, we used 7' = 2.50WT assuming OWT = 1 time
unit in the simulation. In Fig. 3, the X-axis is the channel error
probability p and the Y-axis is the expected latency required
for the successful time synchronization measured in OWT.
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Fig 3. Expected Latency required (measured in OWT) vs. p

The dotted lines capture the results in ISM mode and solid
lines are the results obtained in BSM mode. These provide
several intuitions for PITS protocol operations. First, we can
observe that BSM requires less time for synchronization than

ISM mode and the differences increase as p increases.
Secondly, the peer-to-peer mode performs better than the
client-server approach as channel error increases regardless of
including error-tolerant transmit-timestamp information. The
gain is obtained because time synchronization process starts
without timeout between peers. Further, if we make a use of
available receive-timestamp, the performance gain can be
achieved by 1OWT and 70WT for BSM and ISM mode
respectively at p = 0.25. This clearly shows the benefit of
including error-tolerant timestamps. In summary, if we want
the fast time synchronization, we can use the receive-
timestamp of erroneous packets with peer-to-peer mode. If we
want to obtain more accurate time synchronization
performance based on only using error-free packets, then we
can use the ISM mode with server-client mode.

V. CONCLUSION AND FUTURE WORK

In this work, we presented the correctness of PITS protocol
and carefully investigated how packets received with errors
can still benefit the time synchronization. The low-overhead
time synchronization methods in PITS can operate under
various conditions which provide the flexibility in time
synchronization and distribution services. Future work will be
necessary to more accurately characterize the performance and
constraints in the operational environment by incorporating
realistic spacecraft trajectories.
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