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On the surface of Mars, the Mars Science Laboratory will boot up its flight computers every morning,
having charged the batteries through the night. This boot process is complicated, critical, and affected
by numerous hardware states that can be difficult to test. The hardware test beds do not facilitate
testing a long duration of back-to-back unmanned automated tests, and although the software
simulation has provided the necessary functionality and fidelity for this boot testing, there has not been
support for the full flexibility necessary for this task. Therefore to perform this testing a framework has
been build around the software simulation that supports running automated tests loading a variety of
starting configurations for software and hardware states. This implementation has been tested against
the nominal cases to validate the methodology, and support for configuring off-nominal cases is
ongoing. The implication of this testing is that the introduction of input configurations that have yet
proved difficult to test may reveal boot scenarios worth higher fidelity investigation, and in other cases
increase confidence in the robustness of the flight software boot process.
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Introduction

The Mars Science Laboratory (MSL) flight software (FSW) boot robustness testing is a task to
develop functionality that provides an effective method of comprehensively testing the FSW boot
process through a set of possible scenarios. The work on this task was performed by three summer
interns with help and guidance from the MSL FSW team, but this report will detail only some aspects
of the development. This report will present the life cycle of the project with an emphasis on the
architecture of the testing framework and the integration of components from the multiple team
members.

Background

Mars Science Laboratory (MSL) is a rover from NASA's Mars Exploration Program, launching
in late 2011, that will evaluate if the environment of Mars is today or was in the past able to sustain
microbial life. The MSL flight software is used not only to facilitate in-situ experiments on the surface
of Mars, but also to support other mission phases including: launch, cruise, and entry-descent-landing.
A critical component of the flight software is the boot process, which occurs every time that the
computers are turned on. During cruise and descent the computers are expected to be continually
awake, thus limiting the number of boots, but during surface operations it is intended that the
computers be turned off every night, meaning that the flight software will be booting many times
throughout the surface mission. Because of the large number of possible boot scenarios and the
potential severity of faults, it is desired that a tool be created to facilitate the testing of flight software
booting under a variety of different hardware and software scenarios.

Figure 1: Image of NASA's Mars Science i,ﬁborio taken during mobility
testing in the Spacecraft Assembly Facility at the Jet Propulsion Laboratory
on June 3, 2011. Image Credit: NASA/JPL-Caltech
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Approach

Research:

Throughout the project there has been a need to become familiar with the standard testing
procedures and tools used for flight software testing. There has been a need to learn about boot-related
hardware, wakeup conditions, and software states, especially at the beginning of the project to
understand the objectives of the boot robustness task. During this initial research phase the viability of
the software simulation as the base for this testing has been established. The functionality of the Work
Station Test Set (WSTS) tool using the Software Simulation Equipment (SSE) to simulate hardware has
been determined to have the ability to run the tests and some of the capabilities needed to configure the
tests.

Architecture and Design:

As more is learned about how the simulation tools work and how the boot testing tool will be
used, the testing framework has been designed and modified. The architecture has not been changed
much since the original design, although some details have been worked out as components were
implemented, integrated together, and tested. Figure 2 shows a diagram of the architecture for this boot

tester, illustrating the interaction among the scripts, files, and memory data.
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Figure 2: Diagram of the Boot Testing Framework showing the interaction among scripts and data.
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There have also been some implementation-related considerations that took some time to figure out.
General use of the simulation tools is in an interactive mode with windows open for sending flight
software and simulation commands and with flight software running indefinitely until a user-specified
end. However for this tester the process has been automated, so the tests are run for a specific number
of simulated ticks, which keeps track of simulation time and a socket has been opened to the simulator
to send commands after the boot to acquire the end of test hardware state. During this transition there
have also been some issues encountered, one of which was caused by specifying the output directory as
a location outside of the usual temporary directory. The implication of this is that all file accesses
occur across the network, slowing down the simulation, and before finding the correct option to
increase the timeout, the simulation was ending prematurely as a result of this. Despite the changes
necessary to have the simulation run in the method desired for boot testing, the number of
modifications and additions on top of the already available testing tools is surprisingly minimal — with
most of the difference resulting from the capability to take specially-designed configuration files to
define test scenarios.

Integration:

Aspects of this project have been easily broken down into components, which has allowed parts
to be developed almost independently of others. While the actual implementation of a component is
not then restricted by the test framework, there has been an understanding of what the interfaces among
components will be so that there is consistency and so that when components are integrated together
there will not be incompatible interfaces. Adopting a system of scripts with information shared by
environment variables and command line arguments in a simple and consistent way has proven
successful for this testing and allows the tools to be run piecewise with various functionalities under
different environments. By originally trying to keep only one version of up-to-date scripts in a
common location, we have learned the utility of having a configuration management tool take care of
version as it was often the case that unfinished changes by one person on a script would corrupt results
of a test run by a different person. We have since moved the tester into the control of the flight
software versioning system, and that has been proving to be a worthwhile improvement.

Iteration:

Along with integration, after our first tests with the tool, the team has been iterating with new
functionality, attempting to maintain a working version of the tester while adding new capabilities to
have an ever-increasing set of working test configurations. A major capability that has been added,
which greatly increases the possible test sets, is the configurability of two image files, which simulate
non-volatile flash memory and volatile shared memory. Together these image files provide the
capability to specify the software-implied health state of any hardware device and the spacecraft mode
and configuration as understood by flight software. These software states have a profound impact on
the procedures during the boot process, and testing with off-nominal configurations is desired.

Conclusions

The expectations of a successful project were that the introduction of input configurations that
have yet proved difficult to test may reveal boot scenarios worth higher fidelity investigation, and in
other cases increase confidence in the robustness of the flight software boot process. The outcome thus
far is perhaps just short of that goal, meaning that we have demonstrated the capability to run the tests
to increase confidence in boot and perhaps reveal anomalies, but that testing is ongoing. However, the
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work of the project is currently being preserved under configuration management and the development
is being finished off and cleaned up so that it may become a low-maintenance tool for continued use by
the MSL flight software team. Thus this project has resulted in a useful contribution to the MSL
project and hopefully with the remaining time a more comprehensive set of tests can be run and the
results carefully analyzed.
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