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Motivation 



Navigation vs Localization  
 In this talk they are interchangeable 

 They both answer to a very primitive question: 
where am I? 

 Who wants to know?  
 Commercial transportation systems (planes, ships, etc) 
 Personal transportation systems (cars, trucks, etc) 
 Robots (UGV, UAVs, …even Rumba!) 
 People (soldiers, first responders, parents obsessing over 

kids!,  etc) 
 Assets 



Inertial Sensors  
 Inertial Measurement Unit 
 Oldest sensor used for navigation (compass is considered an aid) 
 Measures acceleration and attitude rate 
 Biased and noisy 
 High frequency (>500Hz), necessary for control of fast dynamics 

vehicles 
 Position errors grow cubically with time! The  IMU has been often 

“aided” 

As size decrease, the biases increase  larger position error 

Size Weight Bias Cost  

tactical 
grade IMU 

~3”x3” ~1kg ~1deg/ho
ur 

~10K$ 

IMU on 
chip 

~penny ~10gr ~1000deg
/hr 

~500$ 



GPS: a Gift from the DOD  
 Global Positioning System  
 Range measurement to satellite 
 Bounded error in absolute position 
 Frequency 4-1Hz 

 

GPS and IMU are “complementary”:  
• GPS isn’t biased and has low frequency information 
• IMU is biased and has high frequency information  
 

By fusing them we get best of both! 



(Traditional) Sensor Fusion Filter 

Strap-Down 
 (triple integrator)  IMU 

E K F with 
error states 

GPS 

Resets  

Aid  

Position, velocity, attitude Acceleration and 
angular rate in 
body frame 

GPS effectively 
encouraged 
development of small 
scale IMUs. Even an 
IMU on chip can still 
be accurate enough 
(for certain 
applications) when 
fused with GPS! 

Because of the causality and least-square nature of the filter, any 
erroneous measurement can irreparably compromise the filter 
integrity. 



GPS-denied Environments 
 We are spoiled!  
 GPS-denied environments are not that  
     uncommon 
 Underwater 
 Mines 
 Tree canopies 
 Urban canyon (I bet you know about this when dealing 

with your Garmin) 

 
What to do? 



Vision 



Why Vision? 
 It is a passive sensor 
 Low power, weight, and cost 

 Data/cost ratio is high 
 Navigation, obstacle avoidance, recognition 

 Image processing can be computationally expensive 

 Some limitation on applications 
 night time operations, texture free environment  
 

 



Fusion: an example 

Strap-Down 
 (triple integrator)  IMU 

E K F with 
error states 

GPS 

SLAM/PTAM 
 (map on the fly) 

Odometry 
(dR/dT) 

Resets  

Aids  

Position, velocity, attitude Acceleration and 
angular rate in 
body frame 

Vision based localization algorithms: 
Odometry  

Similar to a low rate IMU, it will drift 
Filter can become inconsistent 

SLAM (Simultaneous Localization And Mapping) 
Drift is significantly trimmed when loop closure is 
detected 
Computationally intensive 
Filter can become inconsistent 

nav solution can be used 
to seed the vision 
algorithms 



Building Blocks 
 From images we can  
 Build a map of the world and navigate in it (SLAM) 
 Compute the frame to frame motion (visual odometry) 

 In both cases there are some common steps 
 Feature extraction  
 (at different scale, might involve the whole image) 

 Feature matching (Left to Right, T1 to T2) 
 False matches (outliers) rejection  

 Challenge: outliers are very common and often there 
are more outliers than inliers. 
  



Feature Extraction 
 Point features in 2D (monocular and stereo) 
 SIFT/SURF, and Harris corners 
 SIFT and SURF features have a 128-elements vector as descriptors 
 Harris corners do not have a descriptor, they are less robust to changes in 

light, scale, and rotation but computational load is reduced 

 Whole image: template tracking 

Find features that are unique and 
easily distinguishable is key 



Feature Matching 
 Points features 
 SIFT/SURF : All-to-All distance of descriptors is 

computed, the pairs with the smallest distance (unique 
enough) are considered matches. False matches do occur. 

 Harris corners:  
 KLT tracker, it involves solving a minimization problem and it is 

computationally expensive. False matches do occur. 
 SumOfDifferences, least computationally expensive, more prone to 

false matches 

 Template tracking 
 Best approach for small images and feature-challenged 

environments 
 

Matching is computational expensive 
False matches do occur 

Could be driven by IMU prediction 



Visual Odometry and Outliers Rejection 
 Motion can be approximated as an incremental rotation and translation 

 If the matched features are static, their new locations in the new image have to be 
coherent with the platform motion (dR and dT) 

 Matched features can be used to compute dR and dT which is often argmin 
of a non convex minimization problem: how do we get a good initial 
condition? 

 RanSaC: Random Sample Consensus 
 Hypothesis generation and testing 
 Solve for dR and dT using a small set of features, many times 
 Pick the one that agrees with most of the features 

 Refinement 

 

 VO is a measurement as well as an outlier rejection method  
 

dR, dT 

t1 

t2 



 SLAM (Simultaneous Localization And Mapping) 
 Stand alone or aid to larger navigation filter 
 (Kalman) Filter at its core, solves for position of robots and of map 

(position of feature points) that it sees as it moves along 
 Map becomes large and not manageable, lots of ink spilled to improve its 

efficiency  
 Drift is eliminated as the robot returns to previously visited location: loop 

closure. 

 PTAM (Parallel Tracking And Mapping) 
 Stand alone or aid to larger navigation filter 
 Bundle adjustment method at its core  (non-convex optimization), 

position of features across multiple frames are the unknowns 
 Developed for monocular systems and has two threads 
 Mapping thread  

 solves for features location (map) using bundle adjustment 
 Filter thread  

 fuses gyros and features location provided by the mapping thread  
 provides 6DOF position updated between mapping threads cycles 
 

SLAM vs PTAM 



Applications 



One of each … 
 Legged Squad Support System (LS3, next 

generation Big Dog) 
 Fusion of stereo vision odometry and IMU 

 Quadrotor 
 Fusion of monocular PTAM and IMU 



Legged Squad Support 
System (LS3) 

Perception for High-Speed 
Legged Vehicles 



LS3 Overview 
 Objective:  
 A robot that goes anywhere a dismount soldier goes, carrying 400lbs, 

covering 20 miles, and lasting 24 hours 

 Team:  
 Boston Dynamics, Bell Helicopter, Woodward HRT, AAI Corporation, 

CMU/NREC, JPL 

 Sponsor:  
 DARPA (TTO), U.S. Marine Corp Warfighting Lab (MCWL) 



Perception Objectives 
 Perception sensors are located in the head 

Tracks 
Leader 

Detects 
Tree 

Detects 
Steps 

Follows 
Path 

Detects 
Slope 

Detects 
Rock 

Leader Tracking 
Obstacle Detection 
Terrain Map 
Localization 
Environment 

2 - 45m, 0.5m err 
Range: 20m, Diam: 4”  
Range: 5m, Res: 3-5cm 
< 0.5m per 50m 
Night, rain, sand, ford 



LS3 in action 
 LS3 follows leader or navigates its own path. 
 Prototype unifies all core perception, behavior, and robot control.  



Visual Sensor Field of View 

LIDAR: 5 meters shown, 50m range, 270°HFOV Stereo Camera and Illuminators: 5 meters, 97°HFOV 

Color Cameras: 5 meters shown, 180°HFOV 

NIR Cameras: 50m range 
30°HFOV, 30°up, 14°down VFOV,  

panned 200° 



Localization Filter Overview 
 Asynchronous EKF filter 
 Error states: position, velocity, attitude, and IMU biases 
 Prediction step: IMU (tactical grade) integration at 600Hz 
 Correction step: triggered when a measurement is available 

 Measurements (autonomously triggered) 
 ZUPT: when stationary to prevent attitude drift 
 Visual odometry in nominal conditions,  leg odometry when 

Visual odometry  fails 

 “Gates” 
 Hard filter reset when engine is off  
 Residual tests on visual odometry  and leg odometry 
 Fall detection to further shield the filter from erroneous leg 

odometry measurements 

 



Localization Performance 
 Ground truth provided by differential GPS or surveyed markers 

Description Run time Distance x-y % error*  z max error 

(a) Asphalt/grass 350s 150m 1% 0.2m 

(b) Asphalt/grass 1200s 300m 1% 4m 

(c) Asphalt/grass with falls  1700s 800m 0.5% 1m 

(d) Asphalt 350s 150m <1% 0.1m 

(e) Asphalt 270s 100m 1% 0.2m 

(f) Asphalt  650s 400m <1% 0.5m 

(b) (c) * = percent of distance 
traveled at steady state 



Micro Autonomous Systems & Technology 



MAST Overview 
 Objective: 
 To develop autonomous, multifunctional, collaborative 

ensembles of agile, mobile microsystems to enhance 
tactical situational awareness in urban and complex terrain 
for small unit operations. 

 Team: 
  BAE Systems, CalTech, GTech, JPL , Harvard 

University, MIT , North Carolina Agricultural & Technical 
State University , UC Berkeley , U of Maryland , U of 
Michigan, U of New Mexico , U of Pennsylvania  

 Sponsor:  
 ARL (Air force Research Laboratory)  

MAST: Micro Autonomous 
Systems & Technology 



Autonomous Landing with PTAM 
 Fast dynamics vehicle 

 Exploration, detection of 
landing platform and landing, 
all fully autonomous, 
running on-board in real 
time 

 PTAM locates the vehicle 
within a pre-built local map 
(~10Hz) 

 Autonomous navigation uses 
6DOF PTAM pose as input to 
the PID to control the vehicle 
position 

 

PTAM 

PID 
controller 

Desired 
trajectory 

propellers 



Results 
 



A Sloppy Controller? 
 Symptom:  
 the controller seems “sloppy” even though PID gains were 

tuned (… a lot!) 
 ~15cm amplitude oscillation around target point 

 Cause:  
 PTAM is computationally expensive and is available with 

~0.1sec of latency 

 Solution:  
 Fusion of on board inertial sensor and PTAM! 
 



Sensor Fusion Filter Performance 

Filter input 

Truth 

on board 
computed 
position (OLD) 

Position x (m) vs time (sec) 



Sensor Fusion Filter Performance 

Filter input 

Truth 

Filter 
Output 
(NEW) 

on board 
computed 
position (OLD) 

Position x (m) vs time (sec) 



Sensor Fusion Filter Performance 

Filter input 

Truth 

Filter 
Output 
(NEW) 

on board 
computed 
position (OLD) 

Position x (m) vs time (sec) 

The delay is eliminated! 

Velocity x (m/s) vs time (sec) 
Filter 
Output 
(NEW) 

on board 
computed 
velocity (OLD) 

On board 
implementation is in 
progress 



Conclusions 
 Navigation has a wide range of applications 

 GPS and  inertial sensor complementarity has been 
exploited in the the fusion algorithms 

 Vision offers an appealing aid to inertial sensors in 
GPS-denied environments 

 Applications 
 LS3: vision and IMU achieve state of the art performance 

in visual odometry 
 Quadrotor: IMU mitigates latency of vision 
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