
The InSAR Scientific Computing Environment
Paul A. Rosen, Jet Propulsion Laboratory, California Institute of Technology, USA
Eric Gurrola, Jet Propulsion Laboratory, California Institute of Technology, USA
Gian Franco Sacco, Jet Propulsion Laboratory, California Institute of Technology, USA
Howard Zebker, Stanford University, USA

Abstract

We have developed a flexible and extensible Interferometric SAR (InSAR) Scientific Computing Environ-
ment (ISCE) for geodetic image processing. ISCE was designed from the ground up as a geophysics community
tool for generating stacks of interferograms that lend themselves to various forms of time-series analysis, with
attention paid to accuracy, extensibility, and modularity. The framework is python-based, with code elements
rigorously componentized by separating input/output operations from the processing engines. This allows great-
er flexibility and extensibility in the data models, and creates algorithmic code that is less susceptible to unnec-
essary modification when new data types and sensors are available. In addition, the components support prove-
nance and checkpointing to facilitate reprocessing and algorithm exploration. The algorithms, based on legacy
processing codes, have been adapted to assume a common reference track approach for all images acquired from
nearby orbits, simplifying and systematizing the geometry for time-series analysis. The framework is designed
to easily allow user contributions, and is distributed for free use by researchers. ISCE can process data from the
ALOS, ERS, EnviSAT, Cosmo-SkyMed, RadarSAT-1, RadarSAT-2, and TerraSAR-X platforms, starting from
Level-0 or Level 1 as provided from the data source, and going as far as Level 3 geocoded deformation products.
With its flexible design, it can be extended with raw/meta data parsers to enable it to work with radar data from
other platforms.

 © 2011 All rights reserved

1 Introduction

In 2008 at community request, NASA sponsored an
Interferometric Synthetic Aperture Radar (InSAR)
processing workshop to assess the strengths and
weaknesses of the existing InSAR processing packag-
es at the time, define the capabilities of the next-
generation processors required by the user communi-
ty, and set the standards and structure for new InSAR
processor development. The workshop participants
were geophysicists and developers, and the targeted
user community was those who wish to manipulate
InSAR data toward a specific scientific objective, of-
ten in an exploratory fashion and in combination with
other data sets and those interested in the details of
the processing workflow, with an interest in access to
a processing package that can be modified and ex-
tended to meet their needs. These users generally re-
quire well-defined interfaces and documentation to be
able to contribute to the code development or exten-
sion.

The top requirements for the next generation radar
processing package coming out of the 2008 workshop
were: (1) precise and well-characterized products; (2)
flexible and extensible modular code to encourage

modification and improvement by the user communi-
ty; (3) and a comprehensive set of user documenta-
tion.
The NASA Earth Science Technology Office funded
the InSAR Scientific Computing Environment (ISCE)
project through the Advanced Information Systems
Technology (AIST) program to implement these rec-
ommendations [1,2]. The software package was spe-
cifically designed to support that portion of the user
community that requires access to code so they can
modify and extend it for their research purposes, and
who interact with large volumes of data in an explora-
tory fashion. Ideally, the package would be easy for
novices to use, but also deep and sufficiently docu-
mented that computer-savvy geophysicists and geolo-
gists would be able to understand it, and adapt it to
their needs.
We collected community-based requirements for In-
SAR processing methods and generalized data mod-
els, through the 2008 workshop final report and by
interacting with our key science collaborators on the
project. We then used these requirements to define an
object-oriented framework. With the framework in
place, we populated it with processing modules.
Along the way, we are creating documentation of the

framework, modules, and use cases. The project dura-
tion was three years, ending in mid 2012, and the
ISCE package is complete, in the sense that the capa-
bilities proposed to NASA have been implemented
and tested. We anticipate that extensions and im-
provements will occur in much the same way that the
JPL ROI_PAC InSAR package improvements have
over the past 10 years [3].

2 Architectural Elements

At the core of the ISCE architecture are two legacy
InSAR processing packages: ROI_PAC [3] and
STD_PROC [4]. These software packages are written
in Fortran and C and with scripts written in Perl
(ROI_PAC) and Python (STD_PROC). Both are writ-
ten in a similar style that is very effective at accom-
plishing the processing steps but neither are particu-
larly flexible or extensible for users to experiment
with new modules or workflows. The ISCE architec-
ture seeks to inject some modern software principles
that allow for easier use and greater flexibility and
extensibility.

2.1 Components

We restructured the executable code elements in
ROI_PAC and STD_PROC by extracting the core
compute elements from the overall program flow.
These programs followed the typical input-process-
output programming style. We surround the core
compute elements with structures that deliver services
to the legacy programs, users and developer. The ser-
vices replace legacy code interactions with the exter-
nal world that were previously handled using mostly
primitive language features.

Figure 1 shows the architecture of a component that
has an embedded legacy core. The processing com-
ponents are built from framework components and
properties through either class inheritance or compo-
sition. Configuration and control parameters flow
from a controlling or driving application at the top
into the component initialization method. The con-

figuration and control parameters are derived from
user inputs, either from the command line or from in-
put files, and defaults defined in preferences files or
within the application itself. The component itself
may also define defaults for parameters. Defaults can
always be overridden by user inputs.

The components, applications, and other support
software involve a mixture of different programming
languages and styles. This multilingual structure re-
quires proper use of application program interfaces
(APIs) for effective cooperation among languages.
We use C/C++ as the binding intermediary between
Python and Fortran because there is a standard Python
API that allows Python and C programs to interact.

A component must be instantiated in another type
of component called an application, which has the
responsibility of collecting the user inputs and of
managing its components from their initialization to
the flow of data through them to their finalization.

2.2 Software

The main ISCE applications and components are
contained under the Applications and Packages direc-
tory areas of the distribution. Packages are collections
of logically related Components, Legacy Cores, and
other support software. Current Packages include:
iscesys, which contains the ISCE system or frame-
work components and properties as well as several
APIs; isceobj, which contains class definitions for
several objects used by the components; mroipac,
which contains the recasting of ROI_PAC into com-
ponents; and stdproc, which contains the recasting of
STD_PROC into components. Contributed software
can be located in self-contained areas of the ISCE dis-
tribution without intermingling with the main ISCE
distribution. For example, a new package for polari-
metric data processing and calibration, and ionospher-
ic estimation is included in the ISCE distribution as a
contributed package [5].

2.3 Polymorphism

ISCE supports dynamic alteration of the software for
a processing run using object-oriented polymorphism
design patterns. ISCE allows two types of polymor-
phism: (1) facility polymorphism where major com-
ponents may be morphed at run-time; and (2) a plug-
in type of polymorphism where lower level, common
functions such as fast Fourier transforms (FFTs) may
be selected at run-time. The mechanism is imple-
mented through Facilities, which define a task and an
interface that are implemented by a component. Reg-
istering a Component as a Facility alerts the Applica-
tion to allow the user to specify an alternate Compo-
nent at runtime to implement the Facility.

Figure 1 ISCE Component

2.4 Provenance

Provenance allows users to keep track of: the ver-
sions of applications, components, and other software
that were used to produce a data product; the configu-
ration parameters used to initialize those applications
and components; the input data and other output data
products at the time of creation of the data product of
interest. Provenance enables an investigator to ex-
plore data by using different versions of the software
or iteratively tweaking parameters, while keeping a
record of what was done at every step. This record
allows the user or colleagues to reproduce results ex-
actly, by sharing scripts with the community, facilitat-
ing reproducible collaborations and publications.
ISCE supports provenance through database man-
agement and logging of processing steps and meta-
data at each step of the processing chain. Given the
python-based object-oriented methods in ISCE, the
code lends itself to being used within software pack-
ages with higher levels of sophistication that provide
provenance capability as well.

2.5 Framework APIs

The ISCE framework contains various elements that
support the ISCE component architecture. Key
framework Application Program Interfaces (APIs)
control processing flow among ISCE modules. These
APIs are the:

• Image API – provides a set of versatile li-
brary functions for input and output opera-
tions on images

• Control API – is a set of classes, features and
methodologies providing an easy, reproduci-
ble, extensible and reconfigurable mecha-
nisms to pass data, and to set and examine at-
tributes through set and get methods

• StdOE API – a C++ static class used for re-
configurable standard output and error.

3 Functional Capabilities

Repeat pass InSAR forms topographic and dis-
placement maps from radar data collected at two dif-
ferent times by a platform such as an orbiting space-
craft. InSAR processing depends on precise
knowledge of the position and velocity of the plat-
form at the time of observation of a pixel at a given
range and Doppler relative to the platform.
The STD_PROC processor at the core of ISCE pre-
serves the accuracy of its data products by taking ad-
vantage of the improved accuracy of orbit determina-
tion now available and implementing all of the code
in a uniform geometric framework [4]. This ap-
proach, based on well-known motion compensation
techniques, also facilitates analysis of a time series of

many observations of a particular location on Earth by
its use of a motion-compensated geodetic coordinate
system, referred to as SCH (in which S is the local
along track direction, C is the cross track direction,
and H is the height above the approximating sphere),
is based on a local spherical approximation of the el-
lipsoidal Earth. The equations implemented in the
processor are simplified by use of a spherical Earth
and a corresponding circular approximation of the
platform orbit.
ISCE can process data from the ALOS, ERS, Envi-
SAT, Cosmo-SkyMed, RadarSAT-1, RadarSAT-2,
and TerraSAR-X platforms, starting from Level-0 or
Level 1 as provided from the data source, and going
as far as Level 3 geocoded deformation products. An
example of ISCE output is shown in Fig. 2, a geocod-

ed interferogram with topography removed, from the
ALOS PALSAR L-band SAR system. These data

Figure 2. “First-light” processed ALOS PALSAR
interferogram from the ISCE framework.

were used to verify consistency of processing with the
initial legacy code in STD_PROC.
The STD_PROC, and therefore ISCE, code is paral-
lelized using MPI directives, and is very efficient.
Phase unwrapping is implemented as an optional
module that can be added before the geocoding mod-
ules. (Results in Fig. 2 are not phase-unwrapped.)
Application scripts are also provided to generate con-
sistently processed scenes over time for time series
analysis.

4 Future Developments

The three-year development under the NASA AIST
program is now complete [6], and the ISCE package
is currently being distributed to researchers at US in-
stitutions that are part of the WInSAR consortium
(http://winsar.unavco.org). Others can contact JPL
and Stanford directly to license the software
(http://software.jpl.nasa.gov).
It is hoped that the community will embrace the soft-
ware and choose to improve, extend, and document it.
There are a number of extensions that we anticipate
will be a priority to users, and will be incorporated
shortly. These include extensions and generalizations
of time series analysis, as well as integration of the
package with other commonly used packages, such as
GUI drivers, plotting tools, and even possibly
MATLAB-like analysis packages.
The current development team is planning to extend
the current package for cloud applications. We have
already created virtual machine instantiations of ISCE
on single nodes of the Amazon cloud. We expect the
software to port to multiple nodes in an embarrassing-
ly parallel fashion, but plan to restructure some of the
modules to granularize operations across local and
distributed nodes to take advantage of where on the
cloud the data reside.

Acknowledgments

Albert Chen and Cody Wortham, both PhD candi-
dates at Stanford University, and Piyush Shanker,
PostDoc at Caltech, formerly PhD student at Stanford,
contributed to the Stanford legacy code at the core of
ISCE. The authors would like to thank the Earth Sci-
ence Technology Office at NASA for support under
the Advanced Information Systems Technology Pro-
gram. This work was performed at the Jet Propulsion
Laboratory, California Institute of Technology, under
a contract with NASA, and at Stanford University un-
der a contract with JPL.

References

[1] Rosen, P. et al. (2009). “InSAR Scientific Com-
puting Environment”. 2009 American Geophysical
Union Meeting.

[2] Gurrola, E., P. Rosen, G. Sacco, W. Szeliga, H.
Zebker, M. Simons, D. Sandwell, P. Shanker, C.
Wortham, and A. Chen (2010). “InSAR Scientific
Computing Environment”. 2010 American Geo-
physical Union Meeting.

[3] Rosen, P. A., S. Hensley, and G. Peltzer (2004),
Updated Repeat Orbit Interferometry Package re-
leased, Eos Trans. AGU, 85(5).

[4] Zebker, H., S. Hensley, P. Shanker, C. Wortham
(2010). Geodetically Accurate InSAR Data Proces-
sor. IEEE Trans. On Geoscience and Remote Sens-
ing, 48(12).

[5] Rosen, P. , M. Lavalle, X, Pi, S. Buckley, W. Sze-
liga, H. Zebker, E. Gurrola (2011) Techniques and
tools for estimating ionospheric effects in interfer-
ometric and polarimetric SAR data, Proc. Intl. Ge-
osci. Rem. Sens. Society, DOI:
10.1109/IGARSS.2011.6049352

[6] http://www.techbriefs.com/component/content/ar-
ticle/10935

