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General formulation 
Time series X = {xt: 1≤ t ≤ T,  xt∈RN} 

• Radio filterbank time series 
• Optical light curves  
• Petabyte data streams generally 

Seek fast transients 
• Brief, energetic pulses 
• X-ray bursts, RRATs, and the 

unknown 
Low false positive rate, online 
performance is vital 

• Human effort required to review 
candidates 

• Avoid overflowing data buffer 
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Case 1:  we know the target signal 
Classical Neyman Pearson detection:  

 
 f(x) =                       > τ 

 
Implemented with matched filter, with threshold based 
on false positive tolerance 
 
 
 
 
 

 

L(xt ; H1)  
L(xt ; H0)  

Time 
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f(x) =                    > τ 
 

Generally handled with ad hoc rules, and limits the 
practical capacity of any system 
 
 
 
 
 
 

 

Challenge: noise and interference 

Parkes 
telescope 
multibeam 
receiver 
(Courtesy 
CSIRO) 

Hard to characterize 

Time 
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L(xt ; H1)  
L(xt  ; H0)  

Momentary 
noise 

Varying background 

Radio image courtesy CSIRO / Parkes Pulsar Survey / S. B. Spolaor 2011 
 



Case 2: Anomaly detection 
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f(x) =                    > τ 

 

Related methods: One-class SVM [Schölkopf et al., 2001], 
Semi-supervised anomaly detection [Blanchard et al., 2010] 

Interference is even more problematic!! 
 
 
 
 
 
 

 
 

Can we do better? 

(crude 
simplification) 

Pulsar pulse “Peryton” Radio Freq. Interference 

1 
L(xt ; H0)  



Review: our problem 

• Weak signals 

• High data rates 

• Structured background interference (false 
alarms) 

• Changing background interference (difficult to 
characterize in advance) 

• Don’t always know what we’re looking for 

• Must run online in real time 
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Can we do better? 



Semi-Supervised Eigenbasis Novelty 
Detection (SSEND) 
 

• Online background estimation based on 
incoming data (assumption – background 
changes slowly) 

• Semi-supervised  train with known “ignorable 
anomalies” 

• Use Reconstruction Error as novelty score 

 

 
 
 

 

 

 

Can we do better? 
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SSEND Concept: online, trainable 
novelty detection 

Compute basis Us Ignorable 
anomalies 

Pre-compute once 
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Online Updates 
Compute principal components using Online PCA 
[Ross et al., 2004] 

 
1. Have old decomposition                 
2. We get a new data point 
3. Compute combined                 without 

 

Time 

Data 

Principal Components 

X1 X2 X3 X4 X5 

U1 U2 U3 U4 U5 
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Semi-supervision 

Compute principal components from training data 
(ignorable anomalies): 

 

Concatenate bases and orthogonalize with QR 
decomposition: 

Retain first few bases in  

Compute reconstruction error: 
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Radio Astronomy Data 
Parkes Multibeam Survey [Edwards et al., 2001] 

• 1.4 GHz, 125 µs sample time, 96 channels 
• Goal: detect pulsars 
• … but other anomalies also lurk within 

Parkes telescope 
multibeam receiver 

Pulsar pulse “Peryton” Radio Freq. Interference 

Time 
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Experiments 
• Subsample and segment data every 15 ms 

• 576 dimensions (6 time steps x 96 channels) 
 
 
 
 
 
 

• Construct        online; retain 4 bases 

• Train       using 30 manually selected RFI 
• Collapse to 10 bases 
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Eigensignals 

Supervised 
(PCA) 

Supervised 
(Sparse PCA) 

Adaptive 
(Online PCA) 

ignorable RFI current noise 
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Initial 
Results 
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Novelty 
Scores 

False 
alarms 
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SSEND for “Iterative Discovery” with 
user interaction 

Kepler: the hunt for exoplanets 
Planet transits are rare, anomalous - but many other 
anomalies exist 
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Kepler Mission 
Goal: characterize exoplanets in/near habitable 
zones and their host stars 

• 0.95-m telescope, 105 sq deg, >145,000 stars 
• To date: 1781 candidates, > 1000 stars 
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Image courtesy Kepler 
Mission / NASA 
 



Kepler Time series Data  
Three quarters released so far  

Hunting for anomalous, rare transits 

11512246: 3 planets; T=5,7,10 days 10666592: 1 planet, T=2.2 days 
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Kepler Q0 Data 
52,496 light curves, 476 time points 
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Iterative Discovery with SSEND 

Each iteration:  
 examine top N, add FPs to “ignorable” set 
Best results with small K, large Ksup 
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How about the full data set? 
• Requires more review, more training 

• 100 vs. 1000 per iteration: 
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Summary: Digging deeper through 
interference 

Novelty detection that 

• Adapts to changing data properties 

• Avoids known false alarms 

Novelty score based on linear bases: a modular 
approach that accommodates online and trained 
components 

Promising initial results for radio, optical astronomy 
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Extra slides… 
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