Coarrays for Parallel Processing

See “Coarrays in the next Fortran standard”
John Reid, 21 April 2010
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf

Van Snyder

van.snyder@jpl.nasa.gov

Jet Propulsion Laboratory
California Institute of Technology

@

4 July 2011

Copyright (© 2011 California Institute of Technology. Government sponsorship acknowledged.

Summary

The design of the Coarray feature of Fortran 2008 was guided
by answering the question “What is the smallest change
required to convert Fortran to a robust and efficient parallel
language.”

Two fundamental issues that any parallel programming model
must address are work distribution and data distribution.

In order to coordinate work distribution and data distribution,
methods for communication and synchronization must be
provided.

Although originally designed for Fortran, the Coarray paradigm
has stimulated development in other languages. X10, Chapel,
UPC, Titanium, and class libraries being developed for C++
have the same conceptual framework.

Work Distribution

Work distribution is addressed by a simple Single Program
Multiple Data (SPMD) programming model.

When a program starts, several instances of it, called
“images,” are initiated. The number of images, and their
allocation to computing resources, is not addressed by the
standard.

Images proceed independently, according to ordinary Fortran
rules, until they synchronize.

The intrinsic function NUM_IMAGES() returns the number of
images initiated.

The images are numbered 1 : NUM_IMAGES(). The intrinsic
function THIS_IMAGE() returns an image's image number.

Data Distribution
Data distribution is addressed by specifying the relationship of
data objects and images using a syntax similar to normal
Fortran array declarations.

The objects thus declared, called Coarrays, are declared
similarly to any other data object, except that they have a
sequence of bounds for codimensions declared within square
brackets. The upper bound of the last codimension is required
to be an asterisk, meaning “it's specified when the program
runs, not when it's compiled.”

Images

Coarray

Data Distribution (cont.)

The number of coelements of a coarray is the same as the
number of images. A coelement of a coarray is either a scalar
or an array. The rank + corank shall not exceed 15.

real :: A[-1:1,%*] ! A coarray of scalars
real :: B(10)[*] ! A coarray of arrays

Images correspond to coelements in the same way that
consecutive memory locations correspond to array elements:
The first cosubscript varies most rapidly. Since the number of
coelements is the same as the number of images, the largest
value for the last cosubscript might depend upon the values of
the other cosubscripts. For example, for the coarray scalar
A[-1:1,*], if there are ten images A[-1,4] is allowed (image
10) but A[0,4] is not (image 11).

Data Distribution (cont.)

Coarrays can be of any type and kind, and can even be
polymorphic, except that a coarray cannot have a coarray
component. If polymorphic, every coelement has the same
dynamic type.

Every subobject of a coarray is a coarray and has the same
cobounds as the coarray. For example, if a coarray P is of a
type that has a component X, then P[3]%X is the X
component of P on image 3.

The intrinsic function IMAGE_INDEX returns the image
number corresponding to a coelement of a coarray.

The intrinsic function THIS_IMAGE returns the sequence of
cosubscripts that references a coelement corresponding to a
specified image.

Coarrays and Procedures

Dummy arguments can be coarrays, in which case the
associated actual argument shall also be a coarray.
Restrictions on coarray arguments ensure that copy in / copy
out argument association is never needed, to avoid a need for
synchronization at every procedure reference.

If a dummy coarray is an array, it can be explicit shape,
assumed shape, assumed size, or allocatable. If it is
allocatable, it must ultimately be associated with the same
non-dummy-argument coarray on every image.

Unless it is allocatable or a dummy argument, a coarray or an
object with a coarray subobject is required to have the SAVE
attribute. Automatic coarrays are not allowed. In Fortran

2008, all module variables implicitly have the SAVE attribute.

Interoperability

Coarrays are not interoperable, since C does not have coarrays.
Storage Association

Coarrays are not permitted in COMMON or EQUIVALENCE
statements.

Allocatable Coarrays
When a coarray is allocated, the dynamic type and the value

of each bound, cobound, and length parameter shall be the
same on every image.

Communication

Data transfer between images is accomplished by referencing
or assigning values to coelements that correspond to different
images, e.g.

Al-1,1] = A[1,2]
transfers data from the coelement on image 6 to the one on

image 1. Any image can do this; it isn’'t restricted to image 1
or 6. This also works for components:

P[1]1%X = P[6]%X

If no cosubscripts appear, the referenced or defined coelement
is the one on the same image as the one executing the
reference or definition. E.g., on image 3, B = A is the same as
B[3] = A[1,1]. Since B is an array the value of A[1,1] is
broadcast to every element of B[3].

Communication (cont.)

Each statement that is executed is executed by the image on
which the sequence of execution reaches that statement. The
appearance of a cosubscript does not affect which image
executes a statement. For example

B[1] =1
is executed by every image on which the sequence of execution
arrives at that statement. To cause it to be executed on only
one image, e.g.

if (this_image() == 1) B[1] =1

causes the statement to be executed only on image 1.

Coarrays and Pointers

Coarrays cannot be pointers, but they can have allocatable or
pointer components. The targets of pointer components of
coarrays are always on the same image as the coelement. If
they are arrays, they are not required to have the same bounds
on every image. The pointer target can be accessed on a
different image. For example

x = z[qllp

means “Go to image q and get the address of z%p on that
image; then transfer the data to x on my image.” This is
difficult to express using other parallel programming models.

Coarrays and Pointers (cont.)

The association of a pointer component of a coarray with a
target is always established, either by allocation or pointer
assignment, on the same image as the coelement of which it is
a component. A pointer on one image cannot be associated
with a target on another image. The following are prohibited:

allocate (z[ql%p)

z[qllp => r

r => z[qllp
but the following are allowed because they apply to a single
image:

allocate (z%p)

zhp => T

r => zhp

Coarrays and Pointers (cont.)

If cross-image association would be implied, pointer
components become undefined:

z = z[q] ! Assuming z has
z[q]l = z ! pointer
z[q] = z[r] ! components

A coarray can have a procedure pointer component or a
type-bound procedure. Invoking a procedure using a
coelement on a different image does not imply remote
procedure reference:

call alql%proc(x)

means “Go to image q and determine the target procedure;
invoke it on the current image with arguments a[q] and x."

Synchronization

Most of the time, each image executes indepedently without
regard to execution of other images. It is the program's
responsibility to ensure that when it changes a coarray, no
other image needs the old value, and when it references a
coarray it accesses its current value. Image control statements
are

» SYNC ALL, SYNC IMAGES and SYNC MEMORY

» ALLOCATE or DEALLOCATE involving a coarray, or END,
END BLOCK or RETURN that results in automatic
deallocation of a coarray

» CRITICAL and END CRITICAL
» STOP or END PROGRAM

Execution Segments

On each image the sequence of statements executed before
the first image control statement, or between the execution of
two image control statements, is a segment.

Segments on a single image are always ordered according to
the usual Fortran rules. Execution of corresponding image
control statements on different images can ensure that
segments on different images are ordered. Thus the set of all
segements on all images is partially ordered.

Restrictions on what is permitted in segments that are not
ordered with respect to each other give compilers scope for
optimization.

Restrictions on Segments

If a coarray is defined in a segment P, it must not be
referenced, defined or become undefined in a segment Q that
is not ordered with respect to P.

If the allocation status or pointer association status of a
coarray subobject is changed in a segment P, that subobject
must not be referenced in a segment Q that is not ordered
with respect to P.

If a procedure invocation defines a noncoarray dummy
argument, the associated actual argument shall not be
referenced or defined in another segment unless that segment
precedes the first one or succeeds the last one in that
invocation. This allows (but does not require) copy-in /
copy-out argument passing, without hidden synchronization.

Synchronization statements

If an image executes a SYNC ALL statement, all other images
must execute the same statement before that image can
proceed. This orders the segments before the statement with
respect to the segments after it.

If an image executes a SYNC IMAGES statement, all other
images specified in that statement must execute the same
statement before that image can proceed. This orders the
segments before the statement with respect to the segments
after it.

A SYNC MEMORY statement divides a segment on an image. It
has no synchronization effect with respect to other images. An
optimizer should not move statements across SYNC MEMORY,
and should flush values from registers to memory when it is
executed.

Critical Sections

A critical section begins with a CRITICAL statement and ends
with an END CRITICAL statement. If an image enters a
critical section, no other image can enter the same critical
section until the first one completes execution of it. This is
used, for example, for “atomic updates:”

CRITICAL
A[1] = A[1] + 1
END CRITICAL

This prevents another image from slipping its update between
the load, add, and store, which would result in adding 1 to
A[1] instead of 2.

Locks

A type LOCK_TYPE is provided, along with LOCK and
UNLOCK statements, for use in situations where critical
sections impose too rigid a structure.

Example — Jacobi relaxation

real :: A[m,*], Diff[m,*], NewA
integer :: I, J
i = mod(this_image()-1,m) + 1 ! my row num
j (this_image()-1)/m + 1 ! my col num
if (1 ==1) then ; a = j ! bottom row
else if (j==1) then ; a =1 ! left col
else ! i > 1 and j > 1 here
a=20.0
do
newA = (a + ali-1,j] + ali+1,j] + &
& ali,j-1] + ali,j+11) / 5.0
diff = abs(newA-a)
if (comaxval(diff) < 0.01) exit
a = newA
end do
end if

Example — Jacobi relaxation

] 10 20 30 40 50 0 70 80 90 100

B4 73 82 51 100

o = = T 9Dace

Input/Output

Standard input is connected only on image 1.

Each other preconnected unit is connected only on the
executing image, and the connected file is different from any
preconnected file on any other image. A processor is permitted
but not required to interleave the standard output and
standard error streams from several images.

An OPEN statement opens a connection only on the executing
image. Whether a named file on one image is the same as a
file of the same name on a different image is processor
dependent. A named file shall not be connected on more than
one image.

Program Termination

A STOP statement or an END PROGRAM statement is a
synchronization statement. The program doesn’t finish
execution until all images execute a STOP or END PROGRAM
statement, or any image executes an ALL STOP statement or
initiates error termination.

An ALL STOP statement terminates execution of the image
that executes it, and terminates execution of all other images
as soon as possible. It is intended for error or emergency
termination.

The program can also be terminated immediately on all images
if an error condition arises during the execution of one of them,
for example, by deallocating a deallocated allocatable variable
without a STAT= specifier in the DEALLOCATE statement.

Why not just use MPI or OpenMP?

MPI is far more verbose, especially for structures in Fortran.
This is because of the inherent rigidity of procedure references,
which don't have access to the full richness of the syntax
without excessive complication.

MPI is inefficient on shared-memory systems; with Coarrays,
your compiler + runtime should choose the most efficient
transport for each transaction.

OpenMP doesn't scale to large systems.

Implementations

Cray has provided Coarrays for over a decade.
Intel 12.0 provides Coarrays.

Gnu Fortran 95 (g95) provides incomplete support for
Coarrays, and hopes for complete support soon. gfortran
supports Coarray syntax, but provides only single-image
execution.

Coarrays are in the 2008 Fortran standard, so most other
major Fortran compiler vendors (IBM, Oracle/Sun, NAG, ...
will be supporting them.

Rice University is working on a translator to Fortran 90 +
ARMCI (Aggregate Remote Memory Copy Interface).

More information

Fortran 2008 standard
http://j3-fortran.org/doc/standing /archive /007 /10-007r1.pdf

Coarrays in the next Fortran standard
John Reid, 21 April 2010

ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850,/N1824.pdf

Using MPI (2nd ed.): Portable Parallel Programming
with the Message-Passing Interface
William Gropp, Ewing Lusk, Anthony Skjellum, MIT Press
(1999) ISBN 0-262-57132-3

http://www.co-array.org (a bit out of date).

