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ABSTRACT

This paper approaches the noise versus resolution trade-off
in wind scatterometry from a field-wise retrieval perspective.
Theoretical considerations are discussed and a practical im-
plementation using a MAP estimator is applied to the Sea-
Winds scatterometer. The approach is compared to conven-
tional approaches as well as numerical weather predictions.
The new approach incorporates knowledge of the wind spec-
trum to reduce the impact of components of the wind signal
that are expected to be noisy.

1. INTRODUCTION

A scatterometer is a radar that measures the normalized radar
cross section (c°) of the Earth’s surface. Over the ocean
this signal is related to the wind via the geophysical model
function (GMF). The objective of wind scatterometry is to
estimate the wind vector field from ¢° measurements; how-
ever, there are many subtleties that complicate this problem—
making it difficult to obtain a unique wind field estimate.

Conventionally, wind estimation is split into two stages:
a wind retrieval stage in which several ambiguous solutions
are obtained, and an ambiguity removal stage in which ambi-
guities are chosen to produce an appropriate wind vector field
estimate. The most common approach to wind field estima-
tion is to grid the scatterometer swath into wind vector cells
and estimate wind vector ambiguities independently for each
cell. Then, field-wise structure is imposed on the solution
by an ambiguity selection routine. Although this approach
is simple and practical, it neglects field-wise structure in the
retrieval step and does not account for the spatial correlation
imposed by the sampling. This makes it difficult to develop a
theoretically appropriate noise versus resolution trade-off us-
ing point-wise retrieval, without imposing restrictive assump-
tions.

Field-wise structure may be imposed in the retrieval step
using a model-based approach. However, this approach is
generally only practical if a low order wind field model is
applied, which may discard more information than is desired.
Furthermore, model-based approaches do not account for the
structure imposed by the sampling.

A more general field-wise approach is to estimate all the
wind vectors for all the WVCs simultaneously from all the
measurements. This approach can account for structure of

the wind field as well as structure imposed by the sampling
in the wind retrieval step. Williams and Long in 2010 [1]
developed a field-wise retrieval method based on maximum
a posteriori estimation (MAP). This MAP approach can be
extended to perform a noise versus resolution trade-off, and
deal with ambiguity selection.

This paper extends the field-wise MAP estimation ap-
proach and investigates the noise versus resolution trade-off
in the field-wise wind retrieval step. Some theoretical issues
concerning field-wise ambiguity removal are also considered.
The method is applied to the SeaWinds scatterometer and the
results are analyzed.

2. BACKGROUND

This section presents background on scatterometry. The scat-
terometer sampling and noise models are also presented.
Wind scatterometers make multiple ¢ measurements
from different look directions of the same location on the
Earth’s surface. For the SeaWinds scatterometer, each scat-
terometer pulse is partitioned into several ‘slices’ with dif-
ferent spatial response functions that are narrow (~5 km) in
the range direction and long (~25 km) in the azimuth di-
rection. The slice 0° measurements from different looks (or
‘flavors’) of measurements sample the same location with
response functions that overlap irregularly and with different
orientations. Neglecting noise, the ith slice ¢” measurement
Ugi can be expressed as an inner product of the underlying *

field Ugi(x) with the spatial response function A;(x), where
the 0 field is a nonlinear function of the wind field U ().
In practice, the integration is made discrete. The multiple
measurements can be stacked into a vector, producing the
discrete scatterometer sampling operator [1]
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where gmf,(-) represents the GMF that relates the wind to
0¥ with viewing geometry, polarization, and frequency cor-
responding to the ith slice measurement, and x represents a
two-dimensional spatial variable.

Scatterometers make noisy o’ measurements due to sev-



eral sources. A standard scatterometer noise model is that
the measurements are Gaussian random variables, where the
mean is the ‘true’ or noise-free measurement and the variance
is a quadratic function of the mean [2]. This form accounts
for fading as well as other noise sources. The distribution for
noisy scatterometer measurements can be expressed as
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where &) is a function of the wind field as expressed in Eq. 1,
and R is a diagonal covariance matrix with diagonal elements
R, ;= a;(69,)? + Bio?, + i, where v, 3;, and ~; are func-
tions of the scatterometer design.

The problem of wind scatterometry is to invert the noisy
sampling model and estimate the wind field given the noisy
scatterometer measurements. [1] develops a MAP estimation
approach for wind field retrieval. The MAP estimator can be

expressed as argmaxﬁ(m){log £(3° |0 (x)) + log f(U ()},

where f(U(z)) is a prior distribution of the wind field. The
maxima can be found using a gradient search approach. The
method developed in [1] employs a simplistic prior designed
to regularize the problem in a practical manner in order to
reconstruct a high resolution wind field. For this paper, a
tunable prior is desired that appropriately handles the noise
versus resolution trade-off.

3. MAP ESTIMATION FOR A NOISE VERSUS
RESOLUTION TRADE-OFF

This section discuses some considerations involved in devel-
oping a prior distribution suitable for the noise versus resolu-
tion trade-off. The notions of observability and identifiabil-
ity are discussed, which relate to the noise versus resolution
trade-off and ambiguity selection respectively. Then a practi-
cal implementation is developed.

3.1. Observabilty and Identifiability

Note that including a prior generally improves both the iden-
tifiability (i.e., ameliorates ‘field-wise’ ambiguity selection)
and the observability (i.e., reduces the variability of the es-
timate given a particular ‘field-wise’ ambiguity) of the MAP
estimates over the ML estimates. Identifiability and ambigu-
ity selection have to do with the number of local maxima of
the expected estimator objective function, as well as the rel-
ative heights of the local maxima. Observability has to do
with the expected widths of the local maxima. Including a
prior distribution along with the ML objective function, as
MAP estimation does, modifies the widths, relative heights,
and locations of the local maxima—thus, modifying both the
identifiability and observability of the problem.

For a practical implementation, MAP estimation is often
performed with a gradient search method using an initializa-
tion field. In general, the presence of the prior reduces the
variability of the estimate (i.e., effectively making the widths

of the objective function around the local maxima more nar-
row). However, this particular approach does not handle am-
biguity selection directly—since it converges to a particular lo-
cal maximum near the initialization. In theory, all the field-
wise local maxima can be found and the highest one may be
chosen, but this is impractical due to the high number of pa-
rameters in the field-wise problem. Furthermore, multiple lo-
cal maxima may have a similar height given a particular prior.
This suggests that there may be different considerations for a
prior that allows for unique identifiability (i.e., one dominant
field-wise ambiguity), and for a prior that optimizes the noise
versus resolution trade-off given a particular field-wise ML
ambiguity.

For the purpose of this paper, a prior that optimizes the
noise versus resolution trade-off (i.e., observability versus
resolution trade-off) is considered, leaving the identifiability
versus resolution considerations as they apply to ambiguity
selection for future investigation. Nevertheless, some ambi-
guity selection issues are considered.

3.2. Implementation

In general, we desire a prior that imposes as little informa-
tion as possible to obtain a desired variability of the esti-
mates. Thus, we take a conservative approach employing a
maximum entropy prior under certain constraints. We wish to
impose structure on the power spectrum or correlation of the
signal, which uniquely determines the covariance of the prior
distribution. The maximum entropy distribution with a given
covariance is the Gaussian distribution. Also, we desire the
energy in the unobservable components of the signal to go
to zero—suggesting a zero mean Gaussian prior distribution.
Thus, we employ independent, zero-mean Gaussian priors on
the U and V components of the wind fields with a Toeplitz co-
variance (which implies a wide-sense stationary process with
a particular power spectrum). Note that for a diagonal covari-
ance (i.e., white process), this results in a Rayleigh distributed
wind speed prior and a uniform direction prior.

The power spectrum of wind components over the ocean
tends to fall of approximately as one over the wave num-
ber squared [3]. We impose this structure on the wind field
by assuming an exponential correlation function. Note that
the exponential correlation function results in a flat spectrum
up until the wave number corresponding to the correlation
length, where it begins to fall off as one over the wave number
squared. We use a correlation length of 200 km in order to im-
pose the structure of the power spectrum on the finer scales,
allowing the data to dominate the retrieval for the lower wave
numbers.

We desire a tuning parameter that can be used to weight
the influence of the prior. That is, we want to be able to adjust
the amount of information (i.e., the entropy) that the prior im-
poses, which allows for a different trade-off for different ap-
plications. For example, we may desire a significant amount
of smoothing for a climatological record in order to reduce
the noise; whereas for a hurricane case study we may require
a higher resolution—even if the estimates are noisy. Such a



tuning parameter can be implemented by scaling the covari-
ance of the prior, which directly adjusts the entropy of the
Gaussian prior. The parameter p can be tuned either to pro-
duce a desired resolution (i.e., spectrum), or a particular noise
level (i.e., RMS error with respect to some wind field). Based
on preliminary analysis, we use a value of p = 4 because
it produces retrieved speed and direction spectra that resem-
ble the selected ambiguity spectra for low wave numbers, but
continues to fall off gradually for high wave numbers.

The resulting prior can be expressed as
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where p is the tuning parameter, U represents the sampled

U and V components of the wind field U (z) stacked into a
column vector of length IV, and
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is the covariance of the prior. Note Ryy = Rvyv are the
covariance matrices of the U and V components whose rows
are the exponential correlation function expressed as
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where x indexes the two-dimensional locations of the WVCs
in the swath, || - ||2 represents the Lo-norm, r. is the WVC
posting resolution, and r; is the correlation length. For this
paper, we retrieve the wind at a WVC posting of 12.5 km,
and a correlation length of 200 km.

This MAP approach is implemented using a gradient
search, which produces a reconstructed wind field estimate
near the initialization wind field. The method can be con-
sidered either as a resolution enhancement procedure or a
smoothing procedure on the initialization field, depending on
the structure of the initialization field and the prior. There
are many possibile approaches to come up with an initializa-
tion field, which can be considered as ambiguity selection.
We could use a numerical weather prediction (NWP) field;
however, the NWP direction fields tend to smooth over fronts
and misplace storms. Alternatively, the result of a standard
ambiguity selection routine may be used as the initialization.
For example, the direction interval retrieval with tresholded
nudging method (DIRTH) [4], and the two-dimensional vari-
ational analysis method (2D-Var) [5] both use information
from a NWP and information from the scatterometer to pro-
duce a potentially improved nudge field. One more approach
is to develop a new ambiguity removal method that relies
less on the NWP by considering the field-wise identifiability
versus resolution trade-off.

For this paper, we desire to compare the results of the
noise versus resolution trade-off, uncoupled from the issue of
ambiguity selection. In order to do this we initialize with the
conventional 12.5km DIRTH result.
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Fig. 1. Speed and direction RMS difference from ECMWEF.
The higher value of the MAP RMS differences relative to the
DIRTH do not suggest that the MAP estimates are noisier, but
may be due to recovering more fine scale information that is
not represented by the ECMWEF field.

4. ANALYSIS

Here, we take a statistical approach to analyse the results of
the MAP method applied to SeaWinds data. We process sev-
eral revolutions worth of SeaWinds data and compare the re-
sults to the standard 12.5km product DIRTH product (L2B12
DIRTH), the selected ambiguity (L2B12 Sel), and ECMWE.
Spectral analysis is also applied.

Figure 1 shows the RMS speed and direction difference
with respect to ECMWEF of the various approaches. The MAP
speed and direction RMS differences are relatively flat across
the swath. Also, the MAP RMS speed and RMS direction
differences in the nadir region are similar to DIRTH, but in
the sweet spot and part of the swath edge they are higher than
even the selected ambiguity. This suggests that a higher res-
olution may be recovered with MAP than is recovered from
the point-wise retrieval.

Figure 2 displays the along-track one-sided power spec-
tra of the speed and direction of the various winds. The direc-



tion spectra are taken as the magnitude squared of the Four-
rier transform of exp{—id(x)} where d(x) represents the di-
rection field expressed in radians. At low wave numbers the
MAP speed and direction spectra are the highest, suggesting
that more information is recovered for the high SNR signal
components than is obtained from the point-wise retrieval.
The MAP speed and direction spectra tend to follow the shape
of the L2B12 Sel spectra until the L2B12 Sel spectra hit the
noise floor and level out, while the MAP spectra continue to
fall off. This suggests that the resolution of the retrieved speed
and direction is at least as high as the L2B12 Sel product but
is less noisy. In general, the MAP spectra are higher than
the DIRTH (except for high wave numbers where the DIRTH
spectra flatten due to noise), suggesting that the inherent res-
olution of the MAP estimates is higher than the resolution ob-
tained by DIRTH. That is, DIRTH tends to attenuate both the
high SNR components and the low SNR components, while
MAP attenuates only the low SNR components. This sug-
gests that the MAP approach more appropriately handles the
noise versus resolution trade-off.
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Fig. 2. Speed and direction power spectra. Note that the MAP
approach tends to only attenuate the low SNR components
(i.e., high wave numbers where the other methods flatten out
due to noise). Also, MAP recovers slightly more energy at
the lower wave numbers than the point-wise approaches.

5. CONCLUSION

This paper considers the noise versus resolution trade-off in
wind scatterometry as part of the wind retrieval step. MAP
estimation is employed with a prior that more appropriately
handles the trade-off. The new approach reduces the esti-
mation noise by driving the less observable components (i.e.,
those that are expected to be more noisy) towards the mean
of the prior. This effectively smooths different regions of the
swath differently—producing more constant error statistics as
a function of cross-track index.

Although the MAP approach aids the noise versus res-
olution trade-off, there are many issues that still need to be
considered. As suggested above the issue of ambiguity selec-
tion and field-wise identifiability are topics of future investi-
gation. Another issue that may be possible to address with the
MAP approach is direction favoring. That is, for certain mea-
surement geometries, certain wind directions are significantly
more observable than others, which results in retrievals (both
ML and MAP) that favor certain directions. This direction
favoring is especially evident when the wind signal is cor-
rupted by rain. Methods of ameliorating direction favoring
may be possible with the MAP approach and are to be devel-
oped in future work. Furthermore, since the rain spectrum dif-
fers from the wind spectrum, a field-wise simultaneous wind
and rain estimation procedure may result in improved wind
field estimates as well as provide useful rain field estimates.
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