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Introduction
The Systems Modeling Language (SysML)[18] has found wide acceptance as a standard graphical notation for the
domain of systems engineering. SysML subsets and extends the Unified Modeling Language (UML)[16, 17] to define
conventions for expressing structural, behavioral, and analytical elements, and relationships among them. SysML-
enabled modeling tools are available from multiple providers, and have been used for diverse projects in military
aerospace, scientific exploration, and civil engineering.

The Web Ontology Language (OWL)[7, 8] has found wide acceptance as a standard notation for knowledge rep-
resentation. OWL-enabled modeling tools are available from multiple providers, as well as auxiliary assets such as
reasoners and application programming interface libraries, etc. OWL has been applied to diverse projects in a wide
array of fields.

While the emphasis in SysML is on notation, SysML inherits (from UML) a semantic foundation that provides for
limited reasoning and analysis. UML’s partial formalization (FUML)[13], however, does not cover the full seman-
tics of SysML, which is a substantial impediment to developing high confidence in the soundness of any conclusions
drawn therefrom. OWL, by contrast, was developed from the beginning on formal logical principles, and consequently
provides strong support for verification of consistency and satisfiability, extraction of entailments, conjunctive query
answering, etc. This emphasis on formal logic is counterbalanced by the absence of any graphical notation conven-
tions in the OWL standards. Consequently, OWL has had only limited adoption in systems engineering.

The complementary strengths and weaknesses of SysML and OWL motivate an interest in combining them in such
a way that we can benefit from the attractive graphical notation of SysML and the formal reasoning of OWL. This
paper describes an approach to achieving that combination.



The Role of Logical Reasoning in Systems Engineering
It is universally accepted that quantitative analysis is an essential element of the practice of systems engineering. Sys-
tems engineers routinely employ mathematical models to calculate measures of effectiveness, performance metrics,
failure probabilities, costs, etc. In contrast, systems engineers do not generally feature a role for logical analysis,
although most competent systems engineers would recognize the importance of the following example applications:

Requirements Tracing In a properly-formed forest of requirements, every requirement levied upon a subcompo-
nent traces up to at least one requirement levied upon its parent component. Moreover, no requirement levied
upon a subcomponent traces to a requirement levied upon a subcomponent at the same level or lower. Such
properties can be straightforwardly verified using simple (and fast) algorithms applied to graph data structures.
Graph structures, in turn, are fundamental to knowledge representation in OWL.

Interface Consistency Interfaces joined in a well-formed system design must be of compatible type. A rigorous
system model, therefore, will not only assign a type to each interface, but will also explicitly declare which
interface types are mutally compatible. Testing interfaces for compatibility, however, is more subtle than merely
checking their types for asserted compatibility. The actual predicate to be tested is whether the interface types
are compatible types or are subtypes of compatible types; evaluating this predicate requires finding the transitive
closure of the has supertype property. Knowledge representation systems commonly employ reasoners that,
among other things, find transitive closures.

Viewpoint Consistency The design of complex systems invariably involves constructing views that correspond
to multiple viewpoints. For example, in spacecraft design we might describe a single avionics card from con-
ceptual viewpoints that address power consumption, heat dissipation, lifetime, radiation susceptibility, mass
properties, volume, computational performance, fault containment, etc. The end of integrating these views is
to produce a specification for the card that will lead to acquisition of a physical realization that satisfies all
constraints in the union of all views. For a complex system consisting of multiple components, each of which
is described from multiple viewpoints, it is a challenge to ensure that every conceptual viewpoint is accounted
for in some realization. Finding counterexamples is an application of a common technique in knowledge rep-
resentation called conjunctive query answering.

It is important to note to distinguish these examples from similar but more pedestrian activities encountered in tracking
policy and procedure compliance and assessing progress against a schedule. There are notorious failures in systems
engineering that could have been prevented by more careful attention to this type of analysis[1].

An Aside on the Word Ontology
A formal ontology is a set of statements (commonly called axioms). In practice, “creating an ontology” or words
to that effect generally means defining a set of concepts and properties applicable to a domain of discourse. Such
definitions are known as a terminological component or TBox in knowledge representation[2]. TBox axioms for
systems engineering might define concepts like component, function, requirement, and work package, data properties
like mass and cost, and object properties (relationships) like performs, specifies, and supplies. In contrast, a set of
axioms describing specific individuals and their properties (using terminology from a TBox) is known as an assertion
component or ABox. For example, “the Curiosity rover is a component” and “its mass is 899 kg” are ABox axioms.
Strictly speaking, an ontology may contains both TBox and ABox axioms. An ontology containing both is commonly
called an information base.

Developing OWL Ontologies for Systems Engineering
The purpose of developing ontologies for systems engineering is to have a common controlled vocabulary for a very
broad range of assertions about complex systems under design and development throughout their life cycles. Using a
controlled vocabulary and enforcing rules for well-formedness permits, among other things, durable information stor-
age, lossless information interchange, interdisciplinary information integration, and automated analysis and product
generation.

One might ask whether SysML itself provides such on ontology (or the kernel of one); while it is true that SysML
was developed for systems engineering, it is equally true that a number of foundation concepts from systems engineer-
ing (e.g., work package, objective, environment, etc.) do not explicitly appear in it. More fundamentally, however,
we view SysML as one domain in which systems engineering concepts apply, but not the only domain. Our existing
engineering analysis tools, for example, embody (usually implicitly) fundamental concepts like component, function,
interface, message, etc. Our systems engineering ontologies reflect our usage conventions; we intend for them to
provide the formal unifying framework for all systems engineering information in any language, in any repository.



Because our systems engineering ontologies are expressed in OWL, they are amenable to formal validation (syn-
tactic and semantic). We use formal reasoning techniques to ensure that they are consistent and satisfiable, and
constrained within the bounds of Description Logic, which ensures that certain reasoning operations remain tractable.

Ontology Categories
We have partitioned our ontologies into three broad categories. The boundaries between categories are not sharp, and
the assignment of an ontology to one category or another has no effect on its expressivity or applicability. Instead the
categories are reminders of differing foci and objectives.

Within each category are multiple individual ontologies. Again, the boundaries between ontologies are not sharp;
division into multiple ontologies is simply for the purpose of improving understanding and ease of management.

Foundation Foundation ontologies define broad, general concepts and properties that establish an overall frame-
work for systems engineering. There are four major ontologies in the foundation category:

Base The base ontology defines a small number of general concepts (e.g., container) and properties (e.g.,
contains) that are refined in other ontologies.

Mission The mission ontology defines concepts and properties used to describe the execution of a mission
and its context: objectives, performing elements, functions, interfaces, requirements, etc.

Analysis The analysis ontology defines concepts and properties used for qualitative and quantitative charac-
terization of individuals of any time.

Project The project ontology defines concepts and properties used to describe the entities and endeavors
involved in designing, analyzing, acquiring, integrating, and testing the elements of a mission: projects,
programs, work packages, deliverables, etc.

Discipline Discipline ontologies define (mostly by specialization) concepts and properties pertinent to a particular
discipline. The primary objective of discipline ontologies is information interchange; if all systems engineering
models, regardless of topic or organization of origin, use common vocabulary for, say, mass properties, it
becomes a simple matter to extract the mass of any modeled component. Some example discipline ontologies
include:

Electrical Defines concepts and properties for current sources and loads, signal types, conditioning and dis-
tribution equipment, etc.

Mechanical Defines mass properties, mechanical interface types, etc.

Verification and Validation Defines process and analysis specializations to capture V&V activities and re-
sults.

Application Application ontologies define concepts and properties pertinent to a particular class of engineered
system. A propulsion subsystem ontology, for example, would draw from multiple discipline and foundation
ontologies to characterize components like thrusters as they are typically employed in a propulsion application.

Each ontology is identified by a unique Internationalized Resource Identifier (IRI)[10], which also establishes a unique
XML[6] namespace for all definitions therein. To simplify notation, we use XML prefixes to denote namespaces; the
class Component in the mission ontology is denoted mission:Component.

Examples
The following examples illustrate (and simplify) some of the concepts and properties in the Foundation ontologies.

Concepts

mission:Component A mission:Component is a designed entity that performs a function or presents an interface.
Examples include Launch Vehicle, Star Tracker, or Mission Operations Team.

mission:Function A mission:Function is an activity performed by a Component. Examples include transport
instruments to Martian surface, conduct geological investigation, or transmit science data to earth.

mission:Interface A mission:Interface identifies a set of mechanical, electrical, signal, or other properties that
describe some aspect of a component’s connection to or interaction with another component. Examples include
Launch Vehicle to Spacecraft Interface and Telemetry Downlink Interface.

mission:Junction A mission:Junction represents the mating or connection of two mission:Interfaces.



mission:Requirement A mission:Requirement is a assertion that must be true for every acceptable realization of
the system design.

project:WorkPackage A project:WorkPackage is an authority that supplies one or more components and autho-
rizes one or more components.

Object Properties

base:contains A mission:Component base:contains zero or more mission:Components. A mission:Interface
base:contains zero or more mission:Interfaces.

mission:performs A mission:Component mission:performs zero or more mission:Functions. (We might consider
a component that performs no functions to be underspecified, but a model with such a component is not neces-
sarily ill-formed.)

mission:presents A mission:Component mission:presents zero or more mission:Interfaces. (Similarly, a compo-
nent that presents zero interfaces may be underspecified but is not necessarily ill-formed.)

mission:joins A mission:Junction mission:joins at most two mission:Interfaces.

mission:specifies A mission:Requirement specifies zero or one specified elements, which may be a mis-
sion:Component, an occurrence of mission:presents, or an occurrence of mission:performs. When the specified
element is mission:presents, we say the requirement is an interface requirement. When the specified element is
mission:performs, we say the requirement is a functional requirement.

mission:refines A mission:Requirement mission:refines zero or more mission:Requirements. Refinement connects
requirements at a lower implementation level with those at a higher level.

project:authorizes A project:WorkPackage project:authorizes zero or more authorized elements. Any concept or
object property can be an authorized element; the meaning of such a declaration is that that occurrence of the
concept or property exists (or is true) because the project:WorkPackage has declared it to be so. Authorizing a
mission:Component means being the customer for it.

project:supplies A project:WorkPackage project:supplies zero or more supplied elements. A mission:Component
is an example of a supplied element.

The project:authorizes and project:supplies relationships are key to integrating technical and programmatic concerns.
They provide the vocabulary to establish delegation of authority, without which no large project can succeed, and
make explicit the customer/supplier relationships and deliverables that may be the subjects of acquisition contracts.

Embedding Systems Engineering Ontologies in SysML/UML
Building profiles from ontologies necessitates establishing formal relationships between the elements of those ontolo-
gies and their counterparts in SysML/UML. In ontological terms, one could say we are stating axioms about elements
in our ontologies. Relating those elements to SysML/UML, however, requires the ability to specify (and reason
about) SysML/UML concepts and properties. A relatively straightforward way to provide this ability is to produce
(by automated transformation) ontologies for SysML, UML, and other related specifications. We implemented such
transformations in the Operational Query/View/Transformation Language (QVTo)[14, 11]. The primary benefit of
this approach (in addition to being able to reason about SysML itself) is the ability to express relationships between
our ontologies and SysML using OWL axioms. That is, we can declare that some class (or property) defined in a
JPL ontology is a subclass (or subproperty) of some corresponding element in SysML, or vice versa. For example,
we declare that mission:Component is a specialization of SysML Block, and mission:Requirement is a specialization
of SysML Requirement. These embeddings are made on a concept-by-concept basis, and require matching of the
ontological commitments in each domain.

Unfortunately, the embedding of OWL relationships (object properties) in SysML/UML relationships is not so
straightforward. This stems in part from the fact that occurrences of object properties in OWL are not (in general)
reified. That is, the statement that says, in essence, “This spacecraft contains a propulsion subsystem” does not have
an identity, and cannot therefore be the subject or object of another statement about the containment relationship.
Relationships in UML modeling tools are reified (although the reification may be obscured by its representation as an
anonymous line on a diagram). This mismatch must be addressed before integrating the two.

OWL provides mechanisms to define arbitrary classes and properties, so there is no difficulty in principle with
creating, for every object property p in some ontology, a corresponding class P to represent occurrences of that



property, as well as (unreified) source and target properties that connect the reified occurrence to the model elements
that it relates. Less obviously, perhaps, OWL (version 2) also provides a property chain mechanism that can be used
to declare that the existence of a reified object property occurrence of class P with source A and target B implies A pB.
A further preliminary step, then, is to supplement the system engineering ontologies with axioms that implement this
reification pattern for every object property

Reified relationships are the key to a semantics-preserving mapping between UML and OWL. Without reification,
there are many possible combinations for mapping OWL classes and object properties to UML classes, associations,
association classes, properties and other relationships (e.g., dependencies). The Object Management Group’s Ontol-
ogy Definition Metamodel (ODM)[15] specification explains some of these possibilities but does not recommend a
particular one. More importantly, the ODM lacks a unifying pattern for handling the various ways in which concep-
tual relationships are modeled as associations, dependencies, generalizations, ports, etc. A generic reification pattern
simplifies the UML/OWL mapping because it separates the problem of modeling a conceptual relationship in OWL in
terms of classes, object properties and property chain axioms from the problem of choosing an adequate embedding
of this conceptual relationship in UML or in a profile extension of UML.

Analyzing and Validating Ontologies
OWL ontologies can be serialized in several forms, all of which are analogous to source code, and fit reasonably
well into the software development and code management paradigm. Processing of ontologies, however, including
reasoning, requires that they be loaded into a repository that exposes them in the form of software objects and services.
We use the Sesame[3] repository. Sesame provides a Java application program interface and a REST-style[12] web
interface. Both interfaces support direct manipulation of axioms, as well as query processing using the SPARQL[9]
language.

An ontology contains explictly-stated, or asserted, axioms. These asserted axioms may, in turn, imply entailed
axioms. For example, if we assert that every spacecraft is a component, and Curiosity is a spacecraft, then we can
determine by entailment that Curiosity is a component. Entailed axioms are useful for reasoning about ontologies; we
use the Pellet reasoner to extract entailments and load them into the repository.

Any well-formed ontology will satisfy certain criteria. For example, every concept in a well-formed ontology
should be satisfiable. That is, it should be logically possible for an instance of the concept to exist. A somewhat more
subtle criterion is that the domain and range of a subproperty should be subclasses of the domain and range, respec-
tively, of the specialized superproperty. Other criteria might be developed reflecting local conventions, allocation of
responsibility, etc.

Ontologies, of course, lend themselves to formal verification of criteria. Our ontology processing workflow imple-
ments three distinct validation steps, all run under a continuous integration system that invokes validation upon any
change to ontology code:

XML Syntax A simple test to ensure that the ontology source file is syntactically-valid XML.

Consistency The Pellet[4] OWL reasoner checks that no axioms in any ontology contradict any other axioms in
that ontology or its imported ontologies.

Satisfiability The Pellet reasoner checks that every defined class can (in principle) contain at least one member.
(It is possible through mistakes in disjointness and subclass axioms to define classes that can are necessarily
empty. Such classes are described as unsatisfiable.)

Well-Formedness A battery of SPARQL-based tests ensure that the ontologies comply with local rules for ontol-
ogy development. For example, the object property reification pattern described above requires 18 axioms for
each declared object property. The test for that pattern ensures that all required axioms are present. The current
test battery includes 25 such tests.

Transforming OWL Ontologies into UML Profiles
The complete ontology set, including embedding axioms, is in essence a formal specification for a UML profile
expressed in OWL. This formal specification is input to another QVTo transformation that produces the profile itself.
In principle, the transformation could produce a tool-neutral XMI file that could be ingested by any SysML tool. In
practice, however, usability concerns argue for producing tool-specific profiles. These profiles can exploit extensions
that, for example, provide tool tips or custom user interface widgets that assist modelers in learning and applying the
profile.



Figure 1: Example of profile application.

Building Profiled System Models
Loading the generated profiles allows, but does not mandate, building models that apply the profiles properly. New
stereotypes for classes and properties from the ontologies appear as options, but building a well-formed model that
obeys semantic constraints is a methodological consideration outside the scope of the profile itself. We have active
projects under way building mission models using a candidate methodology closely tied to the profiles.

Figure1 is a (greatly simplified) SysML Block Definition Diagram that illustrates application of the profiles to a
Mars mission.

Transforming Profiled SysML Models into OWL Ontologies
A final step in the integration process is a QVTo transform that translates such a profiled SysML model in the form
of ABox axioms using the TBox vocabulary in the original systems engineering ontologies, amenable to the full
repertoire of semantic processing (formal reasoning, conjunctive query answering, model transformation, etc.)

In principle, the ABox transformation is bi-directional, allowing for the possibility of creating SysML models from
other sources (e.g., CAD data) using OWL as an intermediate representation.

Processing and Validating Profiled System Models
Because profiled system models have rigorous semantics, it is possible to test assertions about ABox ontologies
derived from profiled models in much the same way that we tested assertions about TBox ontologies. Some simplified
examples of assertions to test about a profiled model include

• every mission:Component mission:performs at least one mission:Function,

• every mission:Function mission:isPerformedBy (inverse of mission:performs) exactly one mission:Component,

• every mission:Requirement except an identified root set mission:refines at least one mission:Requirement.

Other more subtle tests involving, for example, consistency of component and requirement hierarchies are possible
with more complex SPARQL queries.

Beyond model validation, there are two major use cases for processing OWL ontologies created by transforming
profiled SysML models:



Long-Term Repositories OWL repositories have excellent scaling properties[5]. It is entirely feasible to build
long-term archives of facts asserted about multiple missions over many years, ranging into hundred of millions
of statements or more. Such repositories would be extremely valuable for observing long-term trends in system
performance, cost, complexity, etc. Moreover, because the foundation theory and standards of the semantic
web are based on open, tool-neutral standards, this approach is robust against obsolescence.

Integration With Specialized Analysis Tools Over the years we have acquired (and often developed) highly
specialized, discipline-specific analysis tools. There is often a substantial setup cost to using these tools for
a particular application. Building rich system models with rigorous semantics opens up the possibility of
constructing input specifications for these tools by extracting features from system models by transformation.
Doing so allows the use of these powerful tools earlier in the life cycle because it essentially eliminates the
setup cost. This is especially important in concept development where we may want to examine a number of
architecturally-distinct approaches and compare them on the basis of figures of merit calculated by analysis
tools.

Conclusions and Future Work
The technique of representing UML and SysML in OWL and relating our ontologies to UML and SysML with em-
bedding axioms has proven to be general and flexible. Pre-processing ontologies using SPARQL queries to produce
digests for profile generation enforces separation of concerns in a way that simplifies the end-to-end process. QVTo
has proven to be a powerful tool for generating “correct by construction” profiles, although the current Eclipse im-
plementation of OVTo has some serious performance deficiencies that require remediation. SPARQL and Sesame are
useful for reasoning about ontologies. We have not encountered any performance issues so far; our current ontology
set plus entailments is about 31 000 axioms. During processing the repository grows to around 250 000 axioms, most
of which are transient and/or redundant.

Transformation from OWL ontologies to SysML profiles is nearly complete. The last remaining step is to complete
embedding rules for OWL datatype properties. Transformation from profiled SysML models to OWL is working in
rudimentary form. It is simpler in design than the ontology-to-profile transformations, so we do not expect any diffi-
culties in completing it. Our focus in the future will be developing discipline ontologies and analysis transformations.
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