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The ACOS “Full Physics” XCO2 Retrieval Algorithm 
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Biases in Early ACOS XCO2 Products 

• Initial comparisons of ACOS GOSAT and TCCON retrievals showed a consistent 
global bias of ~2% (7 ppm) in XCO2 when compared with TCCON and aircraft 
measurements. 

• About 2/3 of this bias is associated with a ~10 hPa (1%) high surface pressure 
bias, that was traced to limitations in the Oxygen A-band spectroscopy. 

• Much of the remaining bias is associated with uncertainties in CO2 spectroscopy 
 

Ps – Ps (a priori) 

ACOS GOSAT XCO2 estimates (green and grey triangles) 
and their zonal averages (blue triangles with 1σ errors) are 
compared to TCCON XCO2 estimates (red diamonds). 

Global histogram of differences between retrieved 
surface pressures and  a priori (ECMWF) surface 
pressures show a ~10 hPa bias. 
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Evidence of Shortcomings in Gas 
Absorption Coefficients 

• Persistent spectrally-dependent residuals in ensembles of GOSAT and 
TCCON retrievals provide additional evidence of shortcomings gas 
absorption cross sections 
– Residuals correlated with spectral features limit the retrieval algorithm’s ability 

to exploit the full information content of the spectra, and converge to a unique, 
best estimate of XCO2 

2.0μm 1.6μm O2 A Band 

Persistent spectral residuals are seen in all 3 bands used to retrieve XCO2  from GOSAT spectra.  Those in the 
SCO2 and ABO2 are most strongly correlated with the band structure.  These issues do not impair TCCON 
XCO2 retrievals, because TCCON uses the WCO2 and O2 1∆g band instead of the A-band in these retrievals. 

SCO2 WCO2 ABO2 
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Improved Gas Absorption Cross Sections 

The ACOS ABSCO team embarked on a three-element approach to improve our 
understanding the CO2 and O2 absorption bands needed to retrieve XCO2, including: 
• New laboratory measurements (Long path FTS, Cavity Ring-down, Photoacoustic) 

• Ground-based direct solar observations from TCCON 
• GOSAT measurements 

• 1-3 bands, multiple absorbers 
• Low spectral resolution 
• Unconstrained atmosphere, aerosols, surface 

albedo 

GOSAT 
soundings 

• 1-3 bands, multiple absorbers 
• High spectral resolution 
• Full atmospheric column 
• Atmosphere conditions constrained at 

surface 

TCCON 
spectra 

• 1 band, one absorber 
• High spectral resolution 
• Known laboratory conditions 
• Mostly room temperature, 

low optical depth 

Laboratory 
spectra 
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Advances in Laboratory Measurements 

• The initial focus was on the CO2 bands at 1.61 and 2.06 microns 
– Exploiting available measurement capabilities and recent advances in 

instrumentation and measurement techniques 
• Improved characterization of trace gas composition, temperature, and 

optical path length in convention, long-path absorption cells 
• New methods, including Frequency Stabilized Cavity Ring-Down (FS-CRDS) 

and Photoacoustic methods, that provide high signal-to-noise ratios over a 
wide dynamic range, facilitating measurements of weak absorption 

• Advanced, multi-spectral fitting techniques, that derive spectral line 
parameters (positions, strengths, widths, pressure shifts) from ensembles of 
spectra collected for a range of optical paths, pressures, temperatures, and 
absorbing gas concentrations 

• Self-consistent treatment of line mixing and line shapes that include speed-
dependence and collisional narrowing as well as pressure and Doppler 
broadening effects 

– This investigation has yielded dramatic improvements in our ability to fit 
laboratory measurements of CO2 
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Evaluation with 
lab spectra 
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GOSAT 

TCCON 

Lab Spectra 

JPL FTS 

1.6 μm band, path length 32.54m 
optical path difference 75cm 
Total cell pressure is 742 Torr  
Sample is 9.03% air-broadened 16O12C16O 

2 μm band, path length 29.3m  
Optical path difference 112.5 cm 
Total pressure 599.8 Torr 
Sample: 4.95% air-broadened 16O12C16O 
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Evaluation with 
TCCON network data 
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State of the art 
First-order line mixing, Voigt 
shapes 

“Ongoing” model 
Nearest-neighbor line mixing 
Speed dependent profile 

TCCON retrieval for Park Falls 22 Dec. 2004 
~12 airmasses 

 
GOSAT 

TCCON 

Lab Spectra 

Thompson et al., JQRST [2012] 
Results shown here do not include 
H2O broadening of CO2. 
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Evaluation with 
GOSAT data 

6/27/2013  Spectroscopic challenges for the OCO-2 mission 
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GOSAT 

TCCON 

Lab Spectra 

• Mean of soundings over TCCON stations 
• Three-band retrieval using surface pressure to 

estimate Column-averaged dry mole fraction Xco2  
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 Two recent publications suggest that water 
vapor broadens CO2 lines much more 
effectively than air (~1.8x). 

 Consistent results now available from 2 
different experiments 

 
 
 
 

 

• Unlike air broadening and self broadening, 
which decrease with increasing rotational 
quantum number |m|, water broadening of 
CO2 increases with increasing |m|. 
 

• New measurements are being conducted to 
confirm these results and assess their impact 
on XCO2 retrievals from TCCON and GOSAT. 

CO2 lines broadening by H2O 

* K Sung, L. Brown, RA Toth, TJ Crawford, Can J. Phys, 87, 469-484 (2009) 

     Sung et al. (4.3 μm)      Wallace et al. (1.6 μm) 
         half widths  (cm-1)            halfwidth (cm-1) 
R14   0.1287  (±1.4 %)   0.136  (±19.8 %) 
R16   0.1303  (±1.6 %)  0.134  (±17.9 %)   
R18   0.1323  (±1.2 %)  0.133  (±20.3 %) 

* K. Sung, L. Brown, RA Toth, T. J.  
Crawford, Can J. Phys, 87, 469-484 (2009) 

Water broadened half-widths of CO2 (top) is 
compared to air broadened half widths (bottom) 
as function of rotational transition, |m|. 
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Measurements of  CO2 Spectra 

• The new, self-consistent  line parameters yielded 
substantial improvements in fits to laboratory 
measurements of CO2 

– Typical peak-to-peak residuals were reduced 
from 0.5% to 0.1%  

 

• The use of these new line parameters in XCO2 
retrievals from TCCON and GOSAT spectra also 
yielded reductions in both bias and spectrally-
dependent residuals, but these reductions were 
more modest than those seen in the lab. 
 

• These differences in performance may be associated 
with the physical conditions (e.g. vertical variations 
in p, T, or gas amount) or absorbers (e.g. water 
vapor line and continuum absorption) that were not 
included in the lab measurements. 

Baseline 

New 

Lab measurements of the SCO2 
band (bottom) shown with residuals 
for baseline (top) and revised 
(middle) line parameters. 

TCCON measurements of the 
SCO2 band (bottom) shown with 
residuals for baseline (red) and 
revised (blue) line parameters. 
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Other Spectroscopy Issues 

• Recent laboratory measurements indicate that the self- and air-broadened 
water continua absorption in the SCO2 (and WCO2) band may be much 
stronger than previously assumed.  

• This continuum absorption could contribute to both the spectrally-
dependent residuals, and observed biases between XCO2 retrievals using the 
SCO2 and WCO2 bands 

WCO2 SCO2 

Simulated water vapor continuum optical depth in the short wave infrared region for a mid-latitude 
summer atmosphere by models that use the MTCKD-2.5 continuum (dashed line), which is currently 
implemented in ACOS algorithm, and for models that use new measurements (Ptashnik et al. 2011) 
for self- (light grey solid line) and self + foreign (dark solid line) continuum absorption.  
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Evaluation of O2 with GOSAT data 
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GOSAT 

TCCON 

Lab Spectra 

• Estimation of Xco2 requires surface 
pressure information. 

• O2 A band is used for surface pressure 
information (among other things). 

 

Original 
Revised  
Intensities 

Revised  
Widths 

Surface pressure biases due to 
uncertainties in line strengths 
and widths. 
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Causes and Impacts of Column O2 Biases 
• O2 A-Band cross sections have been scaled by 

1.025 to correct 10 hPa surface pressure bias 
– This is a temporary fix! 

• Known errors in the details of O2 spectroscopy 
are contributing some  of this bias 
– Errors in intensity and pressure shifts 
– Oversimplifications in line shape 
– Uncertainties in Line Mixing 
– Uncertainties in collision-induced absorption  
– O2 lines broadened by water vapor 

• New measurements indicate a much larger 
effect than older measurements 

• TCCON observations processed with the air 
broadened and new water-broadened cross 
sections show large (2 ppm) XCO2 differences 

• New laboratory studies are under way to 
address these issues. 

New  
Measurements 

Earlier Measurements 

Air Broadening 
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Summary of ACOS Gas Absorption Line Lists 

 0.76μm O2 1.61μm CO2 2.06μm CO2 H2O 

 Spectral range 12745-13245 cm-1 4700-6500cm-1 4700-6500cm-1  12745-13245 cm-1 
4700-6500cm-1  

Spectral 
resolution 

0.01cm-1 or  
0.002cm-1 

0.01 cm-1 or  
0.002cm-1 

0.01 cm-1 or  
0.002cm-1 

0.01 cm-1 or  
0.002cm-1 

Position Long (2010),  
Long (2011) Devi (2007)1 Benner/Devi (2011)1 Gordon (2012), 

 Rothman (2010) 

Intensities “ “ “ “ 

Air-widths Tran (2008)  Predoi-Cross (2009)1 “ “ 

Air-shifts 
Brown (2009) 

Robichaud (2008a) 
Predoi-Cross (2008) 

Devi (2007b)1 “ “ 

Temp. dep. Brown (2000)1,2 Predoi-Cross (2009)1 “ 
 “ 

Line shapes Voigt / Galatry Speed-dependent 
Voigt 

Speed-dependent 
Voigt Voigt 

Isotopologue 
abundance Rothman (2009)1 Rothman (2009) Rothman (2009)  Rothman (2009) 

H2O broadening Vess (2012) Sung (2009) Sung (2009) - 

Air-Line mixing Tran (2008) Devi (2007) Benner/Devi (2011) - 

“ Temp. dep. Tran (2008) - - - 

Speed dep. - Devi (2007)1 Benner/Devi (2011)1 - 

Continuum CIA via Tran (2008) - * Mlawer (2012)  
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Absorption coefficient (ABSCO) Tables 

Pre-computed ABSCO look-up tables 
– Problem: Advanced spectroscopic models too slow for online use 
– Solution: pre-computed lookup table for linear interpolation 
– 71 Pressure levels, 17 Temperature 
– Recently expanded from 3-dimensions (wavenumber, pressure, 

temperature) to add a 4th dimension, to accommodate water 
variable amounts of water vapor broadening 

16 

Line and 
continuum 
parameters 
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Preliminary Conclusions 

 

• The new models seem a step in the right direction 
– Qualitatively similar improvements for three instruments and retrieval codes 

• Accuracies are not yet to the desired 0.1% level 
– Some systematic errors remain 

• New measurements (CRDS, PAS) may help constrain line shapes 
• Key components of the approach: 

– Consistent use of line parameters with line shape used in their determination 
– Use of multiple spectra in the fitting of line shape and line parameters 
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