
Optimization of KINETICS Chemical Computation Code

Cristina Donastorg

NASA Jet Propulsion Laboratory, California Institute of Technology SURF Summer Intern, Pasadena, CA, 91125

NASA JPL has been creating a code in FORTRAN called KINETICS to model the

chemistry of planetary atmospheres. Recently there has been an effort to introduce Message

Passing Interface (MPI) into the code so as to cut down the run time of the program. There

has been some implementation of MPI into KINETICS; however, the code could still be

more efficient than it currently is. One way to increase efficiency is to send only certain

variables to all the processes when an MPI subroutine is called and to gather only certain

variables when the subroutine is finished. Therefore, all the variables that are used in three

of the main subroutines needed to be investigated. Because of the sheer amount of code that

there is to comb through this task was given as a ten-week project. I have been able to create

flowcharts outlining the subroutines, common blocks, and functions used within the three

main subroutines. From these flowcharts I created tables outlining the variables used in each

block and important information about each. All this information will be used to determine

how to run MPI in KINETICS in the most efficient way possible.

I. Background

For over thirty years NASA JPL has been creating a code called KINETICS, which calculates molecular

abundances in planetary atmospheres. The idea is that molecules can be observed in different planets’ atmospheres

and by comparing them to models this can be indicative of conditions in the atmospheres. The calculations done by

KINETICS include both the chemistry and transport processes in the atmosphere e.g. Winds.

As the different pieces of the code have been compiled together in Fortran it became clear that the program

could be more efficient. Therefore, there has recently been a push to integrate Message Passing Interface (MPI) into

the program in order for the computation process to become more optimized. MPI is a programming method that

makes it possible to run multiple processes, or segments of code, simultaneously instead of one at a time. One of the

more appreciable differences between a regular, series computational program and one that runs parallel processes

using MPI is the amount of time the server spends solving the problem it was given. With a program as vast and as

complicated as KINETICS if it were run in series it would take an extremely long time to run, not to mention the

 1

stress that would be put on the physical hardware itself. Many of the subroutines within the KINETICS code have

already been converted to an MPI format, however there is still a lot of inefficiency in the program.

In order to make the program more efficient my task was to outline all the variables called from three of the

major subroutines. The purpose of this is to be able to more easily determine which variables need to be scattered

and when that needs to occur. Being able to scatter only certain variables and at the right time can drastically

increase the efficiency of the program.

II. Tasks

My main task for the first few weeks of the internship term was to become familiar with KINETICS. Once I

knew the basics my task for the remainder of the term was to dissect the main subroutines to understand how the

many variables are used.

A. MPI for the FORTRAN Programmer

The first thing I had to do was read the manual entitled “MPI for the FORTRAN Programmer” which describes

MPI in relation to the KINETICS code. This manual helped me to understand MPI and the commands that are found

throughout KINETICS. For example, shown below are two examples of methods to parallelize code that I learned

about though the manual. The first method is to have all the processes run the entire program. The second method is

the have just a single process running, break up sections of the program to be calculated by multiple processes, and

then to gather the results into a single process. The second method is the one that is widely used within KINETICS.

Fig. 1 An Illustration of Types of Multiple Processing Programs

B. KINETICS Subroutines: MARCH, RAD, and JALT

After I read through the manual I began going through the KINETICS code itself using the text editor Emacs.

There were three main subroutines that I needed to evaluate: MARCH, RAD, and JALT. Each of these subroutines

has a separate part in performing the overall chemistry modeling of the program.

 2

KINETICS begins the model with starting conditions of parameters, such as the density, pressure and

temperature structure of the atmosphere and also the initial abundances of the molecules. Then the model integrates

over time to compute the way that the abundances of molecules in the atmosphere change. These integrations are

done by the MARCH subroutine.

RAD calculates the radiation field in the atmosphere. This is necessary because the Sun’s ultraviolet (UV) field

will irradiate molecules near the surface of the atmosphere, and this will dissociate them. Transport processes can

then move the dissociation products lower down into the atmosphere, where they are protected from the UV field

and can reform molecules.

JALT calculates the photodissociation rates, or the rates that compounds are broken down by photons, as a

function of position in the atmosphere. Because different molecules dissociate at different wavelengths, the model is

given the full spectrum of the Sun. Since the dissociation cross-sections as a function of wavelength it calculates the

dissociation rates as a function of wavelength.

One of the deliverables required from each of the main subroutines was a flowchart showing how all the

subroutines, common blocks, and functions in MARCH, RAD, and JALT fit together within the subroutine. These

flowcharts can be found in Appendix 1. The other deliverable was a table listing how every variable called by the

different segments of the subroutine was defined, how it was used internally and externally, and whether or not the

variable needed to be scattered before the call to the subroutine and gathered when returned to CHIEF.

1. Process for outlining the variables

The first step in outlining the variables called in MARCH, RAD, and JALT was to find where each variable was

initialized. Depending on whether the variable was initialized internally in CHIEF or externally determines whether

the variable is scattered, or broadcast from a higher subroutine to a lower one, or not. For example, if a variable was

calculated in INPUT and saved as an AIPT then it will need to be scattered. If it were calculated in CHIEF or within

the subroutine in question then there is no need to scatter that variable, or else the program is less efficient.

 The next step was to determine how the variable was used within the subroutine and also outside of it. If

the variable was changed within the subroutine and then used externally as an input then the variable was to be

gathered, that is, it needed to be sent to original placeholder of the variable and the change needed to be received. If

the variable was not used externally at all or was not altered then gathering would be unnecessary.

 3

After all this information was collected for all the variables in tables they were sorted so that variables that

either need to be scattered, gathered, or both were placed at the top of the chart. This will make it easier for future

programmers to implement the changes that need to be made.

III. Future Work

The work that is still required to make KINETICS more efficient is to expand on the information about how the

variables were initially defined. Also, whether or not the variables are updated elsewhere needs to be documented,

as well as the flags for when the update takes place. All of this information will be used to determine where the

variables to be scattered will eventually be broadcast to the correct subroutine.

Appendix 1: Flowcharts

MARCH Flowchart

 4

JALT Flowchart

RAD Flowchart

 5

Acknowledgments

Acknowledgments are due to my mentors Karen Willacy and Mark Allen. Also to the Summer Undergraduate

Research Fellowships (SURF) program for giving me this opportunity and to the California Institute of Technology

and William Carey International University for housing me over the summer.

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was

sponsored by SURF and the National Aeronautics and Space Administration.

 6

