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The Dartslab team at NASA’s Jet Propulsion Laboratory (JPL) has a long history of developing physics-based 
simulations based on the Darts/Dshell simulation framework that have been used to simulate many planetary robotic 
missions, such as the Cassini spacecraft and the rovers that are currently driving on Mars.  Recent collaboration 
efforts between the Dartslab team at JPL and the Mission Operations Directorate (MOD) at NASA Johnson Space 
Center (JSC) have led to significant enhancements to the Dartslab DSENDS software framework.  The new version 
of DSENDS is now being used for new planetary mission simulations at JPL.  JSC is using DSENDS as the 
foundation for a suite of software known as COMPASS that is the basis for their new human space mission 
simulations and analysis.  In this paper, we will describe the collaborative process with the JPL Dartslab and the JSC 
MOD team that resulted in the redesign and enhancement of the DSENDS software.  We will outline the 
improvements in DSENDS that simplify creation of new high-fidelity robotic/spacecraft simulations.  We will 
illustrate how DSENDS simulations are assembled and show results from several mission simulations. 

I. Introduction and Background 

A. Prior History the Dartslab DSENDS simulation frameworks at JPL 
DSENDS is a physics-based engineering simulator for space missions developed by the Dartslab5 team at 

NASA’s Jet Propulsion Laboratory [1].  DSENDS models the spacecraft as a multi-body system where the 
spacecraft position, attitude, articulation and body flexibility states (and their rates) interact with gravity, 
atmospheres, terrain, and on-board spacecraft devices in response to ground commands and flight-software directed 
sensing and control actions. DSENDS is a deployment of the Dshell multi-mission simulation framework [2]. It was 
originally designed to provide functionality for Entry, Descent and Landing (EDL) problems but has since been 
generalized to provide capabilities relating to spacecraft ascent, orbit, proximity operations, rendezvous descent and 
surface operations (e.g. roving). 

 The DSENDS tool is in use at JPL for technology/concept development – all the way from Pre-Phase A analysis 
to flight operations. It is used by NASA/JPL missions for performance studies, cross-validation of other simulations 
and tools, and flight-critical EDL mission operations including lander targeting. It has been used by NASA/JPL 
Technology Programs, Program Offices, and Mission Analysis teams as a high-fidelity simulator to support proposal 
development, as an integration platform and test-bed for studies, and as tool for algorithm and software 
development. 

As part of JPL’s end-to-end Mission systems it interoperates with JPL’s Interplanetary Mission design and 
navigation software Monte [2]. In flight-operations it is used to verify the actions of mission actions (e.g. determine 
the landing footprint), perform targeting operations (e.g. to design interplanetary trajectory correction maneuvers). 

DSENDS development started with the 1991 development of the DARTS dynamics engine. The Dshell 
framework was initially developed in 1992 for the Cassini mission, with development of the DSENDS deployment 
commencing in 2000. In 2007 DSENDS was used in the Mars Phoenix EDL Mission Operations and more recently 
it was used for the Mars Science Laboratory EDL operations. It is currently in use at JPL by the Low Density 
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Supersonic Decelerator (LDSD) project for design of their integrated test campaign. It has also been selected by 
JSC-MOD as the basis for their next generation flight dynamics tool for all ascent, descent, orbit, proximity-
operations, and rendezvous simulations.  

To users, DSENDS provides a modern scripting language (Python) to enable data-driven building of applications 
at run-time, easy configuration setup & initialization, and automated testing. The underlying Dshell framework 
heavily leverages various Open Source software resources. High computational performance is achieved using C++ 
implementations of module functions and fast algorithms, with auto-generation of the hooks from the C++ level to 
Python. Visualization and introspection tool configurations are dynamically generated from the simulation 
configuration. 

B. Motivation for improvements to the DSENDS framework 
Due to the production nature of the first users of DSENDS, the software package delivered to them was fairly 

stable and static.  Changes were typically due to bug fixes and mission-specific enhancements or models.  In the 
meantime, the Dartslab team had improved the simulation framework software, including enhancements to 
multibody modeling (Ndarts [3], [4]), 3D visualization (using Ogre [6]), very large scale terrain modeling 
(SimScape [6]).  Having to maintain an older version of the software while active development is going on the latest 
version is inefficient and error-prone.  A path forward that would allow the DSENDS user base to migrate to a 
current version of the software was needed. 

When the JSC Missions Operations Directorate team approached us, they needed a new simulation framework.  
With the retirement of the Space Shuttle, the MOD team was transitioning into a dynamic role of supporting various 
vehicles with rapidly changing missions.  This required agile new simulation tools that are adaptable to a wide range 
of human space flight missions.  The JSC MOD Flight Dynamics team evaluated a variety of options and completed 
a 6-DOF simulation benchmarking effort, and determined that DSENDS “offers the most capable and flexible 
simulation path for the division”.  

In the process of training the JSC MOD team in the use of latest version of DSENDS, it became apparent that 
there were some parts of DSENDS that needed improvements for their use cases.  For instance, DSENDS could only 
support one spacecraft at a time.  This led to a collaborative effort to refactor and improve DSENDS. 

C. Collaborative development 
In order to collaboratively develop a new version of DSENDS, in 2011 we formed a joint JPL-JSC development 

partnership led by JPL (although most of the development team was from the JSC MOD). Our goal was to refactor 
much of the simulation software underlying DSENDS so that it would meet the needs of both the JPL and the JSC 
MOD teams.  The primary focus was on creating a new module "DshellCommon" that constitutes a complete re-
write of the corresponding functionality of the previous version of DSENDS.  There were also extensive changes to 
the underlying software to incorporate the framework enhancements outlined in the previous section, as well as 
changes to increase the usefulness, usability, and robustness of the software. 

Our development team used Agile methodologies [7] including Scrum principles  [8] to define short-term 
incremental releases on a two-to-three week development cycle.  Each cycle typically involved a review of the prior 
DSENDS functionality and code, planning of how to adapt or rewrite the code, implementing the desired re-coding, 
and writing relating regression tests.  

Due to inter-center complications of sharing a software repository, the team in each center maintained a separate 
software repository (using subversion).  The JPL team took responsibility for merging changes from both sides 
based on JPL-JSC team discussions and consensus building, and committing the changes to both software 
repositories.  Most of the software evolution took place in the DshellCommon module.  The JPL team made sure 
that all changes worked in the JSC environment and the JPL environment (which was evolving independently of the 
JSC environment).  Every several months, the JPL team put together a consolidated package of all the modules and 
provided it to JSC as a new baseline package.   This prevented divergence of the code base over time. 

We also conducted a face-to-face Technical Interchange Meeting (TIM) once every 6 months to discuss progress 
in the software development, talk about technical issues, and plan development strategy for the coming months. 

This collaborative process has worked extremely well and has produced a new very useful and high-quality 
version of DSENDS.  The new version of DSENDS was derived from earlier versions of DSENDS but is essentially 
a new implementation that supports a wide range of spacecraft and mission related scenarios.  Not only is the JSC 
MOD team using the new DSENDS, but the JPL Dartslab team has transitioned to the new DSENDS for all current 
and new work. 
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D. The end product: A new DSENDS 
The new version of DSENDS is significant step up from earlier 

versions of DSENDS in terms of flexibility, usability, robustness, 
and general software quality.  DSENDS is made of several parts as 
shown in this figure on the right.  From the bottom up, these 
components are: 

 Dartslab core SW, libraries - Underlying software libraries 
such as vector libraries, terrain modeling libraries, 
visualization libraries, etc. 

 Darts multibody code – Darts multibody dynamics engine. 
 Dshell - The Dshell framework of classes for models, data 

flow management, parameter handling, integration, data 
logging, etc. 

 Dartslab models - Library of reusable models for system hardware and subsystems. 
 DSENDS models - Models for simulations involve aerodynamics and other EDL-related capabilities. 
 DshellCommon - Simulation executives, run-script handling code, and classes for "assemblies" (a higher 

level model construct which construct and connect sets of 
related primitive models). 

 User code and run scripts – Python libraries and run scripts 
written by the user to make use of all the lower levels to 
model and simulate complete systems. 

 
The JSC MOD team uses the DSENDS software as the core of 

their system called COMPASS (Core Operations, Mission 
Planning, and Analysis Spacecraft Simulation).  This block diagram 
illustrates how COMPASS uses the underlying DSENDS 
framework. 

This is the same as the previous layout except that JSC has 
implemented a variety of models and assemblies in the item labeled 
‘COMPASS Components’ related to specific vehicle hardware and 
simulation scenarios they plan to support as part of their mission. 

 

II. Simulations with DSENDS (How does it work?)  

E. What kind of systems can DSENDS model? 
In short, the DSENDS can model any type of space, aerial, marine surface, or underwater vehicle.  The fidelity 

of the model is only limited by how detailed the implementers are willing model out the multibody system and the 
various hardware and software components.   

DSENDS can handle arbitrary multibody systems including chain, tree, and closed-chain topologies.  The Darts 
multibody dynamics code, winner of 1997 NASA Software of the Year Award, can handle closed loops with 
constraint embedding so that a minimum number of coordinates are used [4], [4].  Darts can also model bodies that 
are flexible using modal descriptions of the flexible-body dynamics.  

DSENDS can model actuators that inject forces into the multibody system (such as a thruster) as well as sensors 
that can read information out of the multibody system (such as joint encoder).   DSENDS also supports many 
different models for specific types of hardware (IMUs, etc.).  If the user has special subsystems they need to model, 
they can create new Dshell models (in C++) and use them in simulations just like any existing model. 

DSENDS includes higher-level models called Assemblies that set up sets of primitive models, connect their data 
flows appropriately, and initialize the primitive model parameters as needed.  DshellCommon and other modules 
include a library of Assemblies that model typical spacecraft subsystems (such as a robot arm that includes bodies, 
joints, joint motors, encoders, etc.) 

DSENDS can model aerodynamic forces acting on arbitrary bodies in a simulation.  This has been used to 
perform launch vehicle breakup analysis to determine vehicle dispersion on vehicle failure. 

User code and run scripts 

DshellCommon 

Dartslab Models DSENDS 

Dshell 

Darts multibody code 

Dartslab core SW, Libraries 

Figure 1 - DSENDS Components 

Dartslab Models 

User code and run scripts 

DshellCommon 

Dartslab Models 

Dshell 

Darts multibody code 

Dartslab core SW, Libraries 

COMPASS Components 

Figure 2 - JSC MOD COMPASS Components
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DSENDS can handle simulations involving multiple spacecraft and multiple planetary bodies.  The spacecraft 
can be independent or attached to each other.  Spacecraft can detach from their parent body and attach to any other 
body at run time. 

DSENDS provides a wide range of planetary bodies (Earth, Moon, Mars, etc.) as well as sophisticated 
atmospheric models based on the latest NASA planetary atmospheric codes.   DSENDS can also model small bodies 
such as asteroids with a polygonal model that captures the variable gravity of oddly shaped bodies very accurately. 

DSENDS provides tools for finite state machines that can control the sequencing and behavior of the simulation 
to construct and execute a very sophisticated mission simulation sequence. 

DSENDS can run parameter sweeps or Monte Carlo simulations involving thousands of separate runs to 
determine dispersions.  This capability was used extensively to plan entry trajectories and Entry, Descent, and 
Landing strategy for the Mars Phoenix and Mars Science Laboratory missions. 

DSENDS provides tools for 3D visualization of all parts of a simulation (spacecraft, planets, trajectories, etc.)  
The user can control the view point of the visualization “camera” to better watch and understand the simulation.  
Once a simulation is developed, the 3D visualization can be captured in a movie. 

F. What is "under the hood" of DSENDS? 
Underneath the surface of DSENDS, there are many excellent features and capabilities.  Simulations based on 

DSENDS are physics-based.    The figure on the right shows the basic functionality of the DSENDS simulation 
framework.   

The high degree of physics fidelity starts with the underlying multibody code, 'Darts'.  Darts is a multibody 
dynamics engine based on spatial operator algebra [9] with O(n) performance that scales well to hundreds or 
thousands of degrees of freedom.  
Since it is an inherently efficient 
algorithm and is implemented in 
C++, in most situations Darts offers 
faster than real-time performance.  
Another key feature is the ability to 
support a wide range of 'Dshell' 
models for various hardware 
devices or subsystems.  The models 
can insert forces or torques into the 
multibody system (actuators) or 
read information out of the 
multibody system (encoders, 
sensors).  The fidelity of the 
simulation is primarily limited by 
the fidelity of the models.  Dshell 
models have the advantage of being 
very efficient since they are written 
in C++.  Connecting models are data flows called 'signals'.  Signals not only allow models to communicate with 
each other, they also define a partial order that allows model sorting (to control order of model execution during 
simulations). 

In order to set up low-level models, data flows, and initialize parameters, we use Python.  Each software module 
is compiled separately and set up so it can be loaded using the Python module import system.  This means that 
simulations can be set up without compiling a large application executable (although this is possible, if desired).  
The users run script can load the necessary modules for their simulation.  Therefore, we can shift away from the 
“application binaries” paradigm and use Python as the bedrock to glue together appropriate mix libraries at run-time. 

Another very useful feature of DSENDS is that it has an underlying data representation called DVar (similar to a 
URL addressing scheme) that allows the user to access all multibody bodies and joints, model parameters, states, 
and signals in a simple consistent way.  This makes operations such as changing simulation parameters and logging 
much simpler and more flexible. 

Dshell also includes the typical simulation capabilities such as selecting integrators, controlling simulation step 
sizes, processing events, and executing the simulations. 

Finally, DSENDS includes a wide range of data analysis tools for run time (such as dials, gauges, and strip 
charts) as well as post-run analysis (such as plotting and data mining). 

Figure 3 - DSENDS Functional Block Diagram 
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G. What does a run script look like? 
 
   The simulation 'run' scripts are Python files that have the following parts: 
 
      1. Setup - importing classes for the simulation executive and paramter definition files (not shown). 

      2. Create the simulation executive: 

 
This creates the simulation executive that will process and execute the rest of the 
simulation specification in the rest of this user run script. 

      3. Configure the simulation configuration and parameterization: 

 
This section of the user run script extracts parameters from the ‘targets’ and ‘bodies’ 
objects.  These are defined by the user in separate Python files (targets.py and 
bodies.py) which are not shown here. 

      4. Create the simulation: 

  
These statements create the simulation objects (such as the spacecraft ‘SC1’) as well 
as set up its initial configuration properly. 

      5. Configure finite state machines to sequence the simulation (not shown). 

      6. Initialize any simulation-specific initial values (not shown). 

      7. Execute the simulation: 

 
Users are free to include loops to execute as many time steps as desired.  They may 
also want to interleave commands (although this can usually be better handled via 
finite state machines). 

  
  

sim.step()

sim.createAssemblies(config) 
sim.bindState() 
sim.resetState(0.0) 

config = { 
  'Mars' : { 
     'class' : 'TargetAssembly', 
     'params' : { 'Target' : targets['Mars'], 
               'Bodies' : bodies['Target']['Bodies'], 
               } 
     }, 
  'SC1' : { 
     'class' : 'VehicleAssembly', 
     'basename' : 'CapsuleBase', 
     'params' : { 'Bodies' : bodies['SC1']['Bodies'] 
                }, 
     'assemblies' : { 
         'grav' : { 
           'class': 'GeneralGravityActuatorAssembly', 
           'context' : { 'body' : 'CapsuleBase' } 
           } 
         } 
     } 
     } 

sim = SimulationExecutive()

 Definition 
for target 
planet 
(Mars)

 

Definition for 
spacecraft 
‘SC1’, 
including 
contained 
gravity model 
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III. Applications of DSENDS (What is it good for?) 

H.  JSC MOD applications 
   The JSC MOD team has applied the DSENDS/COMPASS framework to variety of mission scenarios 

including: 
 Ascent scenarios that start fixed on the surface, 

launch, and reach a goal orbit. 
 Rendezvous scenarios that involve two 

spacecraft in orbit.  One spacecraft maneuvers to 
rendezvous with the other (passive) spacecraft 
(such as a spacecraft rendezvousing with the 
International Space Station).   See the figure to 
the right. 

 Descent scenarios that start with a spacecraft in 
orbit, perform a de-orbit thruster firing and track 
the vehicle downwards through entry, parachute 
deploy, and surface landing. 

 Other scenarios such as orbital proximity 
operations and vehicle breakup analysis. 

 

I. MSL Entry Descent and Landing Visualization 
DSENDS has been used in a variety of ways in the Mars Science Laboratory mission (Striep, et al. 2006, vol.43 

no.2).   Entry, Descent, and 
Landing was planned out 
using a prior version of 
DSENDS [10].   During the 
landing on August 5, 2012, the 
MSL Mission Control team 
used an MSL EDL 
visualization tool developed 
by the Dartslab team using the 
new version of DSENDS [12].   
This was visible on of the 
main screens and on screens 
of several controller 
workstations.  A screenshot of 
this visualization tool from the 
actual landing is shown here.  
Here the DSENDS models are 
driven by the real-time 
telemetry data from the MSL relay satellite (Mars Odyssey) instead of by solving of the underlying dynamics. Note 
that because of the availability of the dynamics capability, a physics-based extrapolation of the system trajectory and 
behavior is possible in case of telemetry data drop outs or slow data rates. However in the control room, only the last 
known status and position (from telemetry) were shown on the screen.  In addition DSENDS also uses all the 
geometrical models (terrain, coordinate frames, etc) to display the telemetry data in the most appropriate mode for a 
given mission phase (e.g. inertial display versus surface fixed frame relative display). Also, the current positions of 
the Mars communications satellites (Mars Odyssey and Mars Reconnaissance Orbiter) were shown at all times using 
the standard DSENDS ephemerides updates. The 3-d views of the spacecraft are overlaid with event data as well as 
visual displays in the form of dials and text. 

 

Figure 4 -  MSL EDL Visualization Tool based on the new DSENDS used in MSL 
Mission Control during Mars Entry, Descent, and Landing 
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J. Low Density Supersonic Decelerator (LDSD) visualization 
As the test program for LDSD is developed [10] the various test scenarios are generated in DSENDS and 

displayed using the visualization 
capabilities of the tool [13]. This 
allows the test engineers to design the 
test system (e.g. size the rocket 
motors used to accelerate the test 
article), visualize the trajectory and 
related constraints (e.g. land over-
flight, communication line-of-sights), 
camera placements, etc. 
 
 
 
 
 

K. SEAS Lunar mission designs 
This is an integrated landing and roving simulation with the mission consisting of a descent from lunar orbit, the 

operation of rover on the Aitken basin of the 
moon for the duration of a half lunar day, 
and the subsequent ascent of the spacecraft 
to lunar orbit with the collected samples. 
The rover is operated in both autonomous 
and teleoperated modes (from a crewed 
facility in halo orbit around the Lagrange L2 
point). 

 
 
 

L. Potential for University/STEM version 
A version of the DSENDS aero-flight simulator system developed at the JPL Dynamics and Real-Time 

Simulation Laboratory is also being made available for use in undergraduate and graduate programs at universities. 
Initial users would be students in the Aerospace Engineering department at Georgia Tech. 

IV. Conclusions 
The new version of DSENDS is a powerful, modular, flight-tested, physics-based modeling/simulation tool for 

flight mechanics including standalone simulations & test-beds, large-scale parametric sweeps/Monte-Carlos, 
simulation Services, and visualization.   DSENDS uses a Python-based user interface for easy simulation 
construction and modification.  DSENDS has been used a wide variety of missions and is currently in use at JPL and 
in the Missions Operation Directorate of NASA’s Johnson Space Center. 
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Figure 5 - LDSD Test Visualization 

Figure 6 - SEAS Lunar Mission Analysis 
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