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Abstract-Multi-date acquisitions of high-resolution imaging 
satellites (e.g. GeoEye and WorldView), can display local 
changes of current economic interest.  However, their large 
data volume precludes effective manual analysis, requiring 
image co-registration followed by image-to-image change 
detection, preferably with minimal analyst attention.  We have 
recently developed an automatic change detection procedure 
that minimizes false-positives.  The processing steps include: (a) 
Conversion of both the pre- and post- images to reflectance 
values (this step is of critical importance when different sensors 
are involved); reflectance values can be either top-of-
atmosphere units or have full aerosol optical depth calibration 
applied using bi-directional reflectance knowledge. (b) 
Panchromatic band image-to-image co-registration, using an 
orthorectified base reference image (e.g. Digital Orthophoto 
Quadrangle) and a digital elevation model;  this step can be 
improved if a stereo-pair of images have been acquired on one 
of the image dates. (c) Pan-sharpening of the multispectral data 
to assure recognition of change objects at the highest 
resolution.  (d) Characterization of multispectral data in the 
post-image ( i.e. the background) using unsupervised cluster 
analysis.  (e) Band ratio selection in the post-image to separate 
surface materials of interest from the background. (f) 
Preparing a pre-to-post change image. (g) Identifying locations 
where change has occurred involving materials of interest. 
 
I. INTRODUCTION 
 

The remote sensing community has been more concerned 
with the co-registration of images than the comprehensive 
image rectification issues of the photogrammetry 
community1,2,3,4.  Terrain effects have been considered of 
minor impact by the remote sensing community until 
recently, when (a) higher resolution systems became 
available, (b) a greater emphasis on satellite data integration 
with GIS for business applications occurred, and (c) change 
detection and data fusion studies became more prevalent.  
For example, studies on the impact of mis-registration on 
change detection analysis have shown that a mis-registration 
of only one pixel can cause up to 50 percent error in some 
change detection applications5, and in most applications, 
change detection is confused by misregistration6,7,8,9,10,11. It is 
the adverse impact of the independent variable of terrain 
upon pixel position knowledge that continues to demand 
attention despite our good understanding of satellite 
ephemerides (position and attitude) and sensor geometric 

properties.  Many high-resolution sensor systems with push 
broom imaging designs (e.g. Ikonos, Quickbird, GeoEye and 
WorldView) regularly acquire off-nadir views of as much as 
35 degrees, and are impacted by relief off-sets. 
The development of JPL’s automatic orthorectification and 
mosaicking system AFIDS12,13,14,15 (Automatic Fusion of 
Image Data System) has relied upon two key recent 
developments.  The first is the general availability of digital 
elevation models (DEMs) with 1 arc second posting 
(nominally 30 m) for much of the world’s landmasses 
between 60.3 degrees N/S from the Shuttle Radar 
Topography Mission 16.  This permits the preparation of 
orthorectified satellite imagery using similar techniques to 
those developed by the photogrammetry community for 
aerial photographs.  The second is the preparation of 
orthorectified images for much of the world’s 
landmass17,18,95.  These two developments provide the key 
datasets necessary to prepare images from which subsequent 
high-resolution satellite imagery datasets having a pixel 
resolution approximating 1m can be automatically 
orthorectified to sub-pixel accuracy. 
 
II. CO-REGISTRATION 
 

The recent advance in image processing capability to 
automatically co-register two satellite images to sub-pixel 
precision, using AFIDS, has made it feasible to minimize 
false positives associated with miss-registration and 
incorporate temporal changes at the pixel level into thematic 
classes of changes known to be associated with the materials 
of interest. 

The AFIDS software package provides an automated 
process for co-registering selected satellite images from a 
multi-date satellite dataset having overlapping coverage of 
the same region. The images should not contain massive 
differences such as cloud, seasonal, or time-displacement 
variations, but, otherwise, the assumptions are non-
restrictive. Given the constraints, human selection of 
tiepoints is not required, and each image will be resampled 
only once. Mapping and orthorectification (correction for 
elevation effects) of satellite imagery defines an exact 
projective solution because the data are not obtained from a 
single viewpoint (as with a framing camera), but as a 



continuous process along the orbital path. The basic 
technique we use first involves correlation and warping of 
raw satellite data points to the USGS Digital Orthophoto 
Quads (DOQ) or Controlled Image Base (CIB) (1 or 5m) 
databases to give an approximate mapping. The Rational 
Polynomial Coefficients (RPCs)20 associated with a National 
Imagery Transfer Format (NITF) image provides the initial 
mapping from pixel coordinates to georeferenced 
coordinates. Digital elevation models (DEMs) then correct 
perspective shifts due to height and view-angle.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Use of RPC’s for image registration. Two cycles are made (first) 
following the black arrows for one full cycle, then following the red arrows. 
The incoming image is projected to the coordinate system of the base 
(reference) image. Local correlations are performed to identify registration 
errors. These errors are then used to update the RPC’s. Using the new 
intermediate RPC’s, the process is repeated again leading to a set of final 
RPC’s. 

 
The registration process requires several sequential 

steps, each of which conceptually warps the dataset and 
involves resampling pixel values.  However, to avoid 
degradation from multiple resampling, we represent and 
store each warp by an ultra-fine grid of tiepoints.  When 
successive warps are required, the grids are composed 
mathematically into a single grid such that only one re-
sampling occurs. To achieve the full benefits, all relevant 
programs in the processing chain must produce and/or use 
ultra-fine grids.  The relevant programs are: (1) The warping 
program, (2) The elevation correction program,  and (3)  The 
2-D FFT image correlation program21. In addition, another 
program is necessary to convert non-grids into an ultra-fine 
grid format.  For example, the output from correlation is 
rarely a grid, since bland areas may not correlate well 
resulting in gaps.  This program needs at least two 
modalities for converting non-grids to grids: (a) polynomial 
fits and (b) piece-wise linear fits. The final key to the ultra-
fine grid approach is a program that can compose two initial 
ultra-fine grids into a single ultra-fine grid.  Repeated 
applications of this program can then compose all of the 
image processing steps, each of which has its own grid, into 
a single grid.  The Composed Gridding approach avoids 
problems that arise in the classical image processing 
techniques of piecewise transformation or polynomial-based 
geometric correction algorithms, which are known to 

introduce horizontal position errors in even the flattest 
terrain.  The approach does not reduce digital elevation 
models to triangular irregular networks (TINs) commonly 
used in digital photogrammetry to lower ray-tracing 
computation22.  Rather, it employs a new algorithm for 
image-to-image tiepoint generation that can efficiently 
accept up to four million points, or a 2000x2000 matrix grid. 
The procedure allows multiple steps to be performed by a 
toolbox of routines, each outputting an ultra-fine grid. While 
every sensor is a unique case, the toolkit of routines can 
address each type of systematic and erratic components 
associated with horizontal adjustments.  Since the grids are 
floating point numbers, they do not contribute to a 
resampling type error as the composition process takes 
place.  However, care must be taken so that the earlier 
transformations do not introduce errors that cannot be 
removed by later transformations. Our application 
experience has shown that sub-pixel image-to-image co-
registration over entire scenes can be achieved (see Table 1). 
 

TABLE-I 
Image Description Pixels RMSE 

Master to base 
Pixels RMSE 

Second Image to 
Master 

QB-2 Iraq-flat plain 3.06 0.55 
WV-2 Afghanistan-high relief 3.84 0.45 
WV-2 Afghanistan-med relief 1.71 0.196 
WV-1 Idaho-high relief-summer 1.426 to 2.508 NA 
WV-1 Idaho-high relief-winter 1.784 to 3.101 NA 
WV-1 Idaho-high relief-fall 2.837 to 3.643 NA 

 
Precise co-registration of WorldView-2 images (and 

other high-resolution multispectral data) will generally allow 
for more accurate thematic classification of land-cover, 
crops, and changes-of-interest, as temporal and seasonal 
properties of the landscape can be factored in without 
concern for mis-classification due to mis-registration. 
 
III. IMAGE CONDITIONING FOR CHANGE DETECTION 
 
In order to efficiently perform change detection, our focus 
has been to identify changes between two panchromatic 
images, and then discriminate change with multispectral data 
from the second date, and only for the identified change 
areas.  Use of panchromatic imagery to delineate change 
allows change analysis between different sensors and 
satellites, hence allowing more opportunities to detect short-
term changes. To accurately identify and assess changes that 
may have occurred between two high-resolution satellite 
acquisitions, we have found several useful steps that can be 
undertaken to assure more accurate results and limit the 
occurrence of false-positive recordings of change. These 
steps include: (a) Converting imagery to reflectance values 
by converting digital number counts (DNs) to top-of-
atmosphere reflectance units and compensating for aerosol 
optical depth along the off-nadir view path. (b) When 
necessary, mask out areas where terrain relief is known to 
cause excessive mis-registration. (c) When necessary, mask 
out areas where clouds and cloud shadows exist, as they will 
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falsely identify change. (d) Applying across-image 
normalization.  See Figure 2. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Steps Taken to Prepare a Change Areas Image 
 
A. Reflectance Conversion 
Converting DNs to top-of-atmosphere reflectance values is 
required for both multispectral and panchromatic bands 
when the across-track look angle is different between 
acquisitions by the same sensor and when different sensors 
are used in the change analysis processing.  Top-of-
atmosphere reflectance is a calibrated value that incorporates 
sensor dynamic ranges and bi-directional reflectance 
dynamics associated with the sun’s position relative to 
satellite position and look angle to the ground.  Calibrated 
values are available for most high-resolution sensors23,24. 
 
B. Relief Masking (optional) 
Sometimes, areas of steep terrain cannot be effectively 
compensated for horizontal offset due to parallax.  When the 
significant changes of interest are known not to occur in 
high relief areas, high relief areas can be masked out of 
consideration by applying a gradient angle threshold to 
elevation data25. 
 
C. Cloud Masking (optional) 
Cloud masking is necessary when a scene is partially 
obscured by clouds and cloud shadows occur in otherwise 

clear areas of the image.  Masking these areas from further 
consideration assures that the change detection thresholds 
are not unduly influenced by the reflectance values of these 
regions.  Numerous cloud detection algorithms have been 
developed, but clouds in high-resolution data are most 
effectively detected by a combination of brightness threshold 
and scene texture algorithms26. 
 
D. Across-Image Normalization 
We have found it very useful to apply a filter that normalizes 
between-image bands data for two separate panchromatic 
image acquisitions when change detection is the primary 
goal. This filter is applied in addition to Reflectance 
Conversion. Using an 11x11 filter with a center-hole of 5x5, 
reduces date-dependent atmospheric and view-angle 
variations while allowing for local signature changes 
associated with new materials appearing.  
 
IV. CHANGE ANALYSIS 
 
Change analysis steps applied to the multispectral bands of 
the second date is used to determine if a change signature is 
significant to the investigation.  While a particular change 
detection problem may be application-dependent, change 
analysis of high-resolution multispectral imagery has been 
found to be most effective when the following steps are 
applied: (a) background characterization, (b) spectral 
differentiation, (c) pan-sharpening the multispectral data, (d) 
classification of change pixels, (e) applying a shape and size 
filter, (f) applying a materials proximity filter. Figure 3 
illustrates this second group of steps involved in 
discriminating the type of change detected. 
 
A. Background Characterization 
Background characterization of a scene is used to help 
differentiate the spectral signatures of materials of interest 
from other materials considered as background in the second 
image. Unlike hyperspectral imagery, multispectral 
signatures of materials consist of relatively broad bands that 
need to be differentiated with statistical inference rather than 
direct template matching, and characterization of 
background materials in the image enhances any statistical 
differentiation. The process involves sub-sampling the image 
and computing both the dynamic range statistics for each 
spectral band and applying a k-means unsupervised 
clustering of the multispectral data27.  Characteristically, 
scenes exhibit different spectral characteristics with seasons, 
and in the presence of clouds or haze. 
 
B. Spectral Differentiation 
Spectral Differentiation involves two procedures: (a) Use of 
a Normalized Difference Spectral Index (similar to NDVI28, 
but applied to arbitrary bands) for spectral band-to-band 
signature conditioning further reduced sun angle and 
atmospheric effects while enhancing the spectral 
differentiation among materials. (b) Application of an 
unsupervised clustering algorithm to represent data in a 
finite domain and reduce dimensionality.  The Genetic 
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algorithm is used to optimize the selection of band ratios that 
spectrally differentiate a given material from the scene 
background29,30. Clustering is a fundamental problem in 
pattern recognition, and the Genetic algorithm has been 
found to efficiently associate the spectral band ratios most 
likely to identify target materials of interest from each other 
and the variety of background materials likely to be 
encountered during pattern recognition. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Steps Taken to Prepare Change Discrimination 
 
C. Pan-Sharpening 
Pan-sharpening of multispectral data reduces edge-effect 
spectral pixel mixing between two image dates, thereby 
improving the potential for recognizing “significant” 
changes that may result from the introduction of man-made 
materials.  The recently developed Hypospherical Color 
Space pan-sharpening algorithm applied to WorldView-2 
data has been found most effective31. Others have found in 
controlled experiments that sub-pixel targets with less than 
25% coverage size are not detectable, even when unique 
targets are involved32. 
 
D. Classification of Change Pixels 
For change pixels identified in the prepared Change Areas 
Image, the per-pixel application of a Bayesian statistical 
classifier to the multispectral bands in the Post-image selects 

the most-likely material from the spectral library of 
signatures of interest33.  
 
E. Size and Shape Filter (optional) 
Application of a Connected Components algorithm using a 
size and shape threshold based on the diameter/area ratio can 
be used to remove isolated pixels and long thin objects 
related to shadows and parallax effects between scene 
dates34.  
 
F. Proximity Filter (optional) 
An objects proximity analysis filter can be applied when 
“significant” detection requires the occurrence of two or 
more materials in close proximity to be judged suitable 
candidates35.  
 
 
V. SUMMARY COMMENTS 
 
Automatic and accurate co-registration of high-resolution 
multispectral sensor data over time greatly enhances the 
analyst’s ability to rapidly and objectively discriminate 
significant change.  Also, when change detection processing 
is subdivided into discrete modular steps, it is possible to 
apply alternative support data and algorithms as conditions 
may require.  Examples include:  
1. The use of higher resolution elevation data where mis-

registration due to parallax between images can falsely 
indicate change or abrupt features (walls or trees) create 
shadows.  

2. The application of alternative classification algorithms 
developed in the science community36. 

3. Use of an alternative classifier that includes texture37. 
4. Alternative pan-sharpening algorithms38. 
5. Alternative radiometric correction procedures39. 
6. Alternative orthorectified base imagery. 
Finally, the use of a polar orbiting sun-synchronous satellite 
data (e.g. QuickBird,WorldView, GeoEye) reduces scene-to-
scene illumination differences and shadow changes between 
dates and improves chances to recognize actual change. 
Also, ensuring that image acquisitions have a small 
separation time (days/weeks) reduces the potential for 
keying on change associated with the seasons rather than 
man-made activity. 
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