
The Evolution of Software and Its Impact on Complex System Design in 
Robotic Spacecraft Embedded Systems 

 

Roy Butler 

SYS-800, Summer 2012 

Stevens Institute of Technology 

 

Release 1.2 

 

  



Abstract 

 

The growth in computer hardware performance, coupled with reduced energy requirements, has 
led to a rapid expansion of the resources available to software systems, driving them towards 
greater logical abstraction, flexibility, and complexity.  This shift in focus from compacting 
functionality into a limited field towards developing layered, multi-state architectures in a grand 
field has both driven and been driven by the history of embedded processor design in the robotic 
spacecraft industry.   

The combinatorial growth of interprocess conditions is accompanied by benefits (concurrent 
development, situational autonomy, and evolution of goals) and drawbacks (late integration, non-
deterministic interactions, and multifaceted anomalies) in achieving mission success, as 
illustrated by the case of the Mars Reconnaissance Orbiter.  Approaches to optimizing the 
benefits while mitigating the drawbacks have taken the form of the formalization of 
requirements, modular design practices, extensive system simulation, and spacecraft data trend 
analysis.  The growth of hardware capability and software complexity can be expected to 
continue, with future directions including stackable commodity subsystems, computer-generated 
algorithms, runtime reconfigurable processors, and greater autonomy. 
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I. Growth of Hardware Resources and Software Complexity 

 

Computer hardware transistor density, which has increased by approximately a factor of two 
every eighteen months since the mid 1960’s, in accordance with Moore’s Law, has led to general 
purpose commodity hardware with price-to-performance ratios driving out the use of custom 
hardware in all but the most specialized cases.1 A corollary to Moore’s Law, with special 
relevance to mobile embedded applications, is Koomey’s Law which states that the number of 
computations per joule doubles over the same period.2 

The rapid expansion of available hardware resources, in terms of CPU instruction speed, 
memory availability, and network bandwidth, has fueled the growth of software systems in both 
size and complexity.  Where programmers once had to focus on packing use into every digital bit 
and limiting the scope of their algorithms, they are now free to extend features utilizing higher 
level coding languages, more complex frameworks, and networked groups of systems, backed by 
the expectation that the next generation of hardware will provide greater performance. 

Custom, task-specific hardware can be simultaneously co-designed with software to implement 
pre-specified, performance-critical algorithms in silicon, yielding optimal power-to-performance 
ratios.  This approach is still practiced for the critical sections of systems, commonly in 
communication links and digital signal processing.  Where flexibility or an upgrade path is 
needed in these subsystems, FPGAs (Field Programmable Gate Arrays) can be utilized to 
reconfigure circuits and reapportion functions between the hardware and software, even post-
deployment.3, 4 

Counting the Software Lines of Code in a project is a useful, if imperfect, metric to measure the 
growth of complexity over time in all of the systems we use: from word processors, to operating 
systems, to automobiles, to robotic spacecraft; the growth trend is clear and consistent [Figure 
1].5, 6, 7, 8 

 





II. Accompanying Evolution of Spacecraft Systems 

 

Space technology, focusing on the areas of system control, sensors, and telecommunications, is a 
key contributor to the evolution of hardware and software design applied to the fields of robotics 
and embedded systems.  Simply defined, robotics is the field of automated control of machines 
with moving parts and embedded systems are self-contained, special purpose computers, limited 
in size and serviceability, compared to a common PC.  Applications in the space environment 
operate under additional power constraints, harsh thermal and radiation conditions, and light-
time delayed ground interaction with personnel.9 

Spacecraft system control, encoded in sequences of events, has evolved from hard-coded tables 
defined in hardware entirely ahead of launch, towards conditional event sequences in software, 
modifiable over the course of the mission should the need or new opportunity arise.  Important 
events, including thruster burns and instrument activations, also once hard-coded and/or 
triggered from the ground, can now be software defined and incorporate greater condition-based 
state in determining activation due to the increase in computational power and memory provided 
by the hardware.10, 11 

Sensor design, while still specialized in the aerospace industry, has evolved from simple timed 
analog captures towards complex on-board data acquisition management, digitization, data 
processing, and science return evaluation.  An example from the past is the Soviet space 
program’s Mars-3 spacecraft, which recorded images on a limited film supply according to timed 
sequences.  Upon its planetary arrival in December 1971, which ill-fatedly coincided with heavy 
dust storm activity, a sizable portion of its science return was wasted imaging the nearly opaque 
Martian atmosphere.12  With the move to rewritable digital storage systems and on-board 
observation quality analysis, modern platforms like the Mars Exploration Rovers can take, store, 
and prioritize continuous data over the course of a mission for return to Earth.13 

The wireless telecommunication field has rapidly advanced, from low-gain “bent pipe” one-shot 
repeater capability of transmissions to the modern digital high-gain, intelligent noise reduction, 
store-and-forward data transmission, including conditional bandwidth and retransmission 
features, all made possible through the greater computational abilities at the nodes and 
upgradable software-defined protocols.  Such capabilities would have greatly assisted the Mars-3 
mission, which also faced issues with its transmitter heating unsafely during extended use, 
necessitating it to send back its image data at lower fidelity resolution (255 vs. 1000 line 
mode).14 

What began as single purpose, specialized hardware systems for these functions has grown to 
become complex software architectures running atop mostly commodity-based spacecraft 
embedded processors.  This, as will be described, is not always a benefit as these now complex 
interacting subsystems increase the range of possible failures, as well. 



 

III. Trade-Offs in Systems Design 

 

The combinatorial growth of interprocess conditions is accompanied by benefits (concurrent 
development, situational autonomy, and evolution of goals) and drawbacks (late integration, non-
deterministic interactions, and multifaceted anomalies) in achieving mission success, as 
illustrated by the case of the Mars Reconnaissance Orbiter. 

The Mars Reconnaissance Orbiter is a deep space satellite, launched in 2005, circling Mars with 
an array of science instruments, including cameras, spectrometers, and radar.  Its design and 
operation was a joint effort of JPL and Lockheed Martin, under NASA contract, as the next step 
in a coordinated Mars program to determine the planet’s geological past, including the inferred 
loss of surface water and the majority of its atmosphere.  Data from the mission includes gravity 
modeling, surface mapping, subsurface stratigraphy, and weather monitoring.  The satellite also 
serves as a telecommunications relay to landed assets, presently the MER “Opportunity” and 
recently-landed MSL “Curiosity” rovers.15 

 

Concurrent Development vs. Late Integration 

The upfront definition of subsystem and instrument interfaces allows for the concurrent 
development of software and hardware by separate teams.  Benefits of this approach include a 
shorter production cycle and therefore, potentially reduced staff costs.  Drawbacks are the 
possibility of late integration accompanied by reduced verification, should rework cause delays 
to one or more of the instruments making it unavailable when originally estimated.  There is a 
tendency to assume non-critical (but still serious) problems can be dealt with during integration 
or even post-launch with software updates, which while often true, results in a loss of the cost 
benefit and adds operational complexity through the introduction of hazard states through which 
the system cannot be operated until the situation is resolved. 

Such events were experienced in the development of the Mars Reconnaissance Orbiter project, 
when FPGAs for several subsystems required replacement, delaying several of the instruments 
for integration.  This led to a rushed schedule to meet its launch window for Mars, which if 
missed would have resulted in a possibly unfundable two year delay.  Nominal electromagnetic 
interference testing was performed, but extensive characterization and testing of instrument 
interference with its Electra UHF relay radio was delayed until post-launch, given that the 
Software-Defined Radio (SDR) could receive software updates to incorporate any necessary 
band filters.  This assumption has held true to a great extent and relay with Martian rovers has 



been an on-going success, but at the cost of a great amount of follow-on software development 
and test.16, 17 

 

Autonomy vs. Determinism 

Building situational autonomy into spacecraft software, a sense of self-health, objective state 
awareness of relevant conditions, and flexible science operations timelines are among the 
benefits complex software can provide given a fixed set of hardware resources, all of which lead 
to intelligent spacecraft fault-tolerance and an increase in the amount and quality of science data 
return. 

Rather than running exclusively to timed schedules, current spacecraft like the Mars 
Reconnaissance Orbiter use ephemeris data to provide them with navigational information 
(location, trajectory), from which they optimally recognize and initiate events.  A command that 
would be proposed in a time-only domain with the form: 

 “Photograph at an 8 degree angle at 11:00” 

can now be more accurately defined, producing better results in a computed evaluation 
incorporating both the time and spatial domains with the form: 

 “Photograph target X, centered, when closest on next orbit” 

This flexibility and overall performance can be further increased by running different classes of 
code (i.e. instrument control, communications, and data management) in separate on-board 
software virtual machines, each restricted to their sandbox of task-relevant commands.  While in 
reality these may all possibly execute on the same CPU, their non-interacting nature allows for a 
separation of concerns in planning between their respective ground team personnel.  Many recent 
missions, including the Mars Reconnaissance Orbiter, implement this architecture using JPL’s 
Virtual Machine Language abstraction.18 

Problems with an autonomous approach arise when assumptions about the relationship between 
multiple spacecraft operations and their context are inaccurate or misunderstood.  Two 
observations by separate instruments may collide, physically or logically.  For instance, a 
spacecraft roll angle to take a visual observation may interfere with the best target angle for UHF 
radio relay with one of the rovers.  Checks for logical conflicts can be built into the ground-built 
sequence planning process, but these then need to evolve and be updated as operations change, 
as well as having reduced the on-board optimization.  Issues have also arisen with shared 
spacecraft data storage space and downlink budgets, as the separate instrument operations teams 
mostly make their plans independently, which then get merged for on-board execution.  
Occasionally, the combination of heavy observation periods by multiple instruments coupled 
with a possible Deep Space Network (DSN) receiver antenna outage can result in the saturation 



of on-board science data storage, to which not all of the instruments were designed to handle 
graciously.19 

 

System Evolution vs. Stability 

The ability of spacecraft system software to evolve via updates while in flight allows for new 
opportunities and mission goals to be achieved, as collected data leads to new insights into how 
to perform operations and also when new responsibilities are added to the mission (i.e. relay 
support of a new rover). 

One example on the Mars Reconnaissance Orbiter is with its Compact Reconnaissance Imaging 
Spectrometer (CRISM) instrument, which was originally designed to determine planet surface 
element chemistry.  Its standard operations have recently been extended to include atmospheric 
“limb scans” for tracking changes in Oxygen levels on the day and night sides of the planet 
across the seasons.20  This has facilitated atmospheric composition and flow research, including 
comparison with simultaneous data sets taken with the spacecraft’s Mars Climate Sounder 
(MCS) instrument, which measures atmospheric humidity, dust, and temperature profiles using 
thermal imagery. 

Finally, relay telecommunication for the Mars landers was designed to allow change over time.  
The Mars Exploration Rovers “Spirit” and “Opportunity” were already on the planet when Mars 
Reconnaissance Orbiter arrived, but since then the Phoenix lander and Mars Science Laboratory 
rover missions have reached the planet.  These later missions have extended their radio protocols 
to include features like Adaptive Data Rate, where two communicating radios may 
autonomously adjust their bandwidth in the presence of clear or high error-rate channels and 
Auto Retransmit, where dropped data over UHF will be recognized and sent again without 
requiring ground intervention.21 

The drawback to allowing system evolution comes from the loss of stability in a predetermined 
baseline operations plan.  New anomalies become harder to characterize and compare with the 
old, because all things have not remained equal – operating in different states and scenarios than 
before.  This also incurs maintenance in keeping contingency plans up-to-date, as the methods in 
recovering from anomaly to a new baseline state change, so previous experience may not apply.  
This has been the case on Mars Reconnaissance Orbiter, necessitating changes to its safe mode 
recovery operations. 

 

  



IV. Dealing with Software Complexity 

 

Approaches to optimizing the benefits while mitigating the drawbacks have taken the form of the 
formalization of requirements, modular design practices, extensive system simulation, and 
spacecraft data trend analysis. 

 

Formalization of Requirements 

Requirements design enumerates specifications derived from the mission needs, goals, and 
objectives - allocating at which level they need to be addressed in a top-down dependency tree.  
The rationale for each requirement, especially in the case of numeric quantities, is necessary to 
allow proper weighting in their respective trade space and to provide for background knowledge 
propagation across the teams.  Requirements provide the logic behind what needs to travel 
between subsystem interfaces, as well as the complete framework within which decisions are 
made, before anything is built, about whether those interfaces are necessary and sufficient to the 
purpose of the overall mission.  

Top-level requirements start with the system: what does it need to do.  Then, each descending 
level defines what parts are necessary to fulfill the level above, branching into subsystems, and 
components, while leaving implementation specifics to the respective engineering teams.  Every 
entry should be traceable to fulfilling a set of higher-level needs above it and creating the 
necessity of a set of needs below it at a more detailed level [Figure 2].  Changes made to a 
requirement then get traced up and down the chain to measure the effects and whether they are 
compatible with the remainder of the system. 22 

Properly defined and managed requirements are the means by which a complex project is 
created, composed of numerous subsystems of which no single person or team can be an expert.  
It is a reference table, on which mission scope and subsystem design trades can take place with 
visibility into how the part affects the whole, allowing a reasoned approach to work its way 
throughout a system too large to contemplate at once. 

  



 

Figure 2 Requirements Traceability 

 

 

Modular Design Practices 

Modular design practices in both hardware and software, through high internal cohesion and 
loose external coupling of component design, reduce dependencies and clarify the state space, 
aiding in the development and integration of the overall system.  They also allow for the use of 
swappable, lower functionality fail-safe components, to be activated in the event of significant 
on-board errors in order to maintain baseline spacecraft power, thermal, and communication 
status while the anomaly is investigated and resolved through ground staff personnel 
intervention. 

Two useful methods for breaking the complete system down into modules of high cohesion and 
loose coupling are to define the system in terms of sequential binding or functional binding.  
Sequential binding can be achieved by flowcharting the events performed by the spacecraft (i.e. 
take observation, transmit data to Earth), then defining modules around the logical flow blocks of 
the diagram.  A functional binding representation can be obtained from a data-centric point of 
view: “Where is this piece of data used?”  Those data commonly used in conjunction (i.e. solar 
array parameters, battery state) form groupings around which modules can be designed.  The 
sequential binding and functional binding methods can be used in combination and they apply to 
both hardware and software.23 

Once modules are created using workflow or data-centric abstractions, complexity can be 
stemmed in the software realm by restricting inter-module calls to the form of message passing.  
That is, when one module requests a service from another, it does so in the form of a message, 
which the second module can evaluate whether or not to comply with based on tracked state and 



a range check of parameters (design-by-contract).  This differs in kind from direct function calls 
between modules and allows the framework for containing and recognizing errors within a 
portion of the system and handling the situation accordingly, rather than allowing a rapid spread 
of faulty state throughout the entire software collection.24 

Spacecraft safety and health are also served by modular design, through the implementation of 
redundant modules to perform critical activities: one or more standard modules for nominal 
mode activities and alternate, minimal functionality modules to protect key systems while 
relying on the least on-board state as possible, for off-nominal mode spacecraft preservation.  
Having redundant standard modules, especially in the case of hardware, allows for failure of 
components over the course of the mission, since these are mostly non-serviceable in the space 
environment. 25  The existence of swappable modules varying in degree of functionality often 
continues to take shape in software post-launch, including the refinement of the nominal and 
minimal cases, as well as for the development of more complex technology demonstration 
software deployments, once the mission’s primary objectives have been met. 

 

System Simulation 

Simulation evolves through the project development phases starting with mission design 
software (i.e. SOAP, STK) for early phase feasibility studies, mid-phase engineering design and 
test software (i.e. CAD, LabVIEW), evolving into an operations phase complete spacecraft 
system hardware-in-the-loop testbed with flight computer and instrument engineering models.  
As verification of hardware interfaces and software performance is completed, validation of the 
overall system to meet the mission design requirements takes place, prior to launch.  Then, over 
the course of the mission, beginning with launch itself, spacecraft command sequences of 
important events are run through the testbed ahead of time to validate operation plans, software 
interactions, and hardware timing.  The testbed can also be used in the proactive generation of 
contingency plans, to test recovery mechanisms following intentional software-injected (or even 
hardware-injected) failures.26 

Creating an individual spacecraft subsystem, whether it is a physical sensor instrument, sequence 
control software, or the underlying power system is a bit of a dilemma due to the lack of pre-
existing interfacing subsystems, given separated teams and parallel design schedules.  Herein lies 
the importance of specifying hardware and software interface agreements ahead of 
implementation, so that each team can build their portion around a low to moderate fidelity 
simulator of all other interacting portions.  Assuring a shared understanding of “what’s on the 
other side” is crucial early on, as differences and problems grow harder and more costly to work 
out further into design, as components have solidified and been built on top of internal 
dependencies. 



As individual teams’ work on the development of their engineering model prototype completes, 
the units and spacecraft testbed system and bus are integrated, yielding the initial hardware-in-
the-loop simulator for nominal sequences to be executed.  Any incompatibilities are 
characterized and reworked in the interfacing subsystems.  Development and integration of flight 
units increases at this phase as the spacecraft itself is built around the testbed model, with the 
addition of flight-only components (i.e. complete solar panels, fuel system and thrusters). 

From launch and onwards, the ground testbeds are used to validate nominal sequences, software 
updates, and resolve anomalies.  This reduces flight risk and provides a test environment for 
system evolution to incorporate new features and achieve emerging mission objectives.  It also 
allows the engineering team to compare differing approaches to anomaly resolution in a safe 
environment, in order to determine ground control’s best course of action. 

 

Data Trend Analysis 

Tracking and analyzing trends in spacecraft engineering data provides insight into processes and 
can aid in drawing correlations and causality between parameters and events.  Generic data 
including timing, resource utilization, power and thermal fluctuations should be reviewed and 
retained to form a baseline of the expected spacecraft flight performance envelope.  Anomaly 
investigations can then start with these data, find what deviates, and then dive deeper into the 
lower states of involved subsystems (i.e. if the CPU spikes heavily whenever the power state 
reaches a certain level, what telemetry data changes uncharacteristically before and afterwards?). 

With thousands of parameters reported on in modern spacecraft, it’s difficult to simultaneously 
hold the important subsets in mind, in order to begin deduction.  Statistical software packages 
like R can be used to find correlations and plot the derivatives of variables with relation to each 
other, providing a visual capture of state changes, which can then be interpreted by the mission 
staff.  The following example code and inputs [Table 1], and “correlogram” visualization [Figure 
3] provides a demonstration of its use.27  It can be quickly inferred that power level, temperature, 
radio use, and sun sensing all correlate, while angle (of instrument observations) fluctuates, but 
only takes place in the sun’s presence.  If this pattern deviates uncharacteristically over periods, a 
visual comparison can quickly pick it out without looking through and manually comparing 
every row of input, value by value. 

  



R Code R Input (telemetry.dat) 
install.packages("corrgram") 
 
library("corrgram") 
 
telemetry <- read_table 
  ("c:\\Temp\\telemetry.dat", 
  header=T) 
 
attach(telemetry) 
 
names(telemetry) 
 
corrgram(telemetry, order=TRUE, 
  lower.panel=panel.ellipse, 
  upper.panel=panel.pts, 
  text.panel=panel.txt, 
  diag.panel=panel.minmax) 

time angle obs temp sun radio power 
0 0 0 200 1 0 40 
5 -12 1 220 1 1 50 
10 -6 1 240 1 1 60 
15 10 1 260 1 1 70 
20 -5 1 280 1 1 80 
25 7 1 280 1 1 90 
30 12 0 280 1 1 100 
35 0 1 280 1 1 100 
40 3 1 280 1 1 100 
45 7 1 280 1 1 100 
50 -7 1 280 1 1 100 
55 -4 1 280 1 1 100 
60 0 0 280 1 0 100 
65 0 0 270 0 0 95 
70 0 0 260 0 0 90 
75 0 0 250 0 0 85 
80 0 0 240 0 0 80 
85 0 0 230 0 0 75 
90 0 0 220 0 0 70 
95 0 0 210 0 0 65 
100 0 0 200 0 0 60 
105 0 0 200 0 0 55 
110 0 0 200 0 0 50 
115 0 0 200 0 0 45 
120 0 0 200 0 0 40 

 

Table 1 R Code and Input 

  



 

Figure 3 R Telemetry Correlogram 

  



V. Future Directions 

 

The continued growth of hardware capability and software complexity can be expected, with 
future directions including stackable commodity subsystems, computer-generated algorithms, 
runtime reconfigurable processors, and greater autonomy. 

Standardization of spacecraft subsystems and interfaces is a goal which is already taking place 
for Earth-orbiting satellites, that number in the thousands.  Deep space missions can leverage 
some of these, but given their unique thermal, radiation, and signal delay environments, one-off 
solutions continue to take precedence.  NASA’s X2000 Program was one initiative working 
towards this goal.28 

The next stages of flexibility and optimization may be to turn software algorithms onto the hard 
problem of algorithm design themselves through genetic programming.  This field has already 
seen some exploration in the development of link budget and image compression handlers.29  
Another phase to this self-modifiability could be on-board development of FPGA circuit bitfiles, 
introducing the possibility of runtime reconfigurable processors to most efficiently execute the 
operations at hand.30 

Fully autonomous spacecraft with active on-board intelligence and the ability to determine 
science targets on their own based on the situation observed (i.e. storms, fires) is next step flight 
software developers are working towards.  Early technology demonstrations have already taken 
place, such as on-board NASA’s EO-1 spacecraft with the Autonomous Science Agent software, 
after having completed its primary mission.31 

  



VI. Summary 

 

Systems are becoming increasingly more complex, both on Earth and in the robotic spacecraft 
embedded systems we send to distant planets.  The ability to create such multifaceted systems, 
with their inherent ability to evolve, has come from the growth in computer hardware 
performance and reduced energy requirements, allowing software functionality to expand in 
flexibility and scope.  This explosion in growth has benefits and drawbacks, which have been 
illustrated through examples of trade-offs during development, operation, and handling change.  
Relying on good requirements, modular design, system simulation, and trend analysis are 
classical systems engineering approaches – all of which shed insight and apply coherence to the 
comprehensive state, managing the increased complexity caused by the proliferation of software.  
Commodity subsystems and self-modifiable software are possible next steps towards greater 
autonomy and more scientific return from robotic spacecraft. 
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