
The Evolution of Software and Its Impact on Complex System Design in
Robotic Spacecraft Embedded Systems

Roy Butler

SYS-800, Summer 2012

Stevens Institute of Technology

Release 1.2

Abstract

The growth in computer hardware performance, coupled with reduced energy requirements, has
led to a rapid expansion of the resources available to software systems, driving them towards
greater logical abstraction, flexibility, and complexity. This shift in focus from compacting
functionality into a limited field towards developing layered, multi-state architectures in a grand
field has both driven and been driven by the history of embedded processor design in the robotic
spacecraft industry.

The combinatorial growth of interprocess conditions is accompanied by benefits (concurrent
development, situational autonomy, and evolution of goals) and drawbacks (late integration, non-
deterministic interactions, and multifaceted anomalies) in achieving mission success, as
illustrated by the case of the Mars Reconnaissance Orbiter. Approaches to optimizing the
benefits while mitigating the drawbacks have taken the form of the formalization of
requirements, modular design practices, extensive system simulation, and spacecraft data trend
analysis. The growth of hardware capability and software complexity can be expected to
continue, with future directions including stackable commodity subsystems, computer-generated
algorithms, runtime reconfigurable processors, and greater autonomy.

Contents

I. Growth of Hardware Resources and Software Complexity

II. Accompanying Evolution of Spacecraft Systems

III. Trade-Offs in Systems Design

IV. Dealing with Software Complexity

V. Future Directions

VI. Summary

I. Growth of Hardware Resources and Software Complexity

Computer hardware transistor density, which has increased by approximately a factor of two
every eighteen months since the mid 1960’s, in accordance with Moore’s Law, has led to general
purpose commodity hardware with price-to-performance ratios driving out the use of custom
hardware in all but the most specialized cases.1 A corollary to Moore’s Law, with special
relevance to mobile embedded applications, is Koomey’s Law which states that the number of
computations per joule doubles over the same period.2

The rapid expansion of available hardware resources, in terms of CPU instruction speed,
memory availability, and network bandwidth, has fueled the growth of software systems in both
size and complexity. Where programmers once had to focus on packing use into every digital bit
and limiting the scope of their algorithms, they are now free to extend features utilizing higher
level coding languages, more complex frameworks, and networked groups of systems, backed by
the expectation that the next generation of hardware will provide greater performance.

Custom, task-specific hardware can be simultaneously co-designed with software to implement
pre-specified, performance-critical algorithms in silicon, yielding optimal power-to-performance
ratios. This approach is still practiced for the critical sections of systems, commonly in
communication links and digital signal processing. Where flexibility or an upgrade path is
needed in these subsystems, FPGAs (Field Programmable Gate Arrays) can be utilized to
reconfigure circuits and reapportion functions between the hardware and software, even post-
deployment.3, 4

Counting the Software Lines of Code in a project is a useful, if imperfect, metric to measure the
growth of complexity over time in all of the systems we use: from word processors, to operating
systems, to automobiles, to robotic spacecraft; the growth trend is clear and consistent [Figure
1].5, 6, 7, 8

II. Accompanying Evolution of Spacecraft Systems

Space technology, focusing on the areas of system control, sensors, and telecommunications, is a
key contributor to the evolution of hardware and software design applied to the fields of robotics
and embedded systems. Simply defined, robotics is the field of automated control of machines
with moving parts and embedded systems are self-contained, special purpose computers, limited
in size and serviceability, compared to a common PC. Applications in the space environment
operate under additional power constraints, harsh thermal and radiation conditions, and light-
time delayed ground interaction with personnel.9

Spacecraft system control, encoded in sequences of events, has evolved from hard-coded tables
defined in hardware entirely ahead of launch, towards conditional event sequences in software,
modifiable over the course of the mission should the need or new opportunity arise. Important
events, including thruster burns and instrument activations, also once hard-coded and/or
triggered from the ground, can now be software defined and incorporate greater condition-based
state in determining activation due to the increase in computational power and memory provided
by the hardware.10, 11

Sensor design, while still specialized in the aerospace industry, has evolved from simple timed
analog captures towards complex on-board data acquisition management, digitization, data
processing, and science return evaluation. An example from the past is the Soviet space
program’s Mars-3 spacecraft, which recorded images on a limited film supply according to timed
sequences. Upon its planetary arrival in December 1971, which ill-fatedly coincided with heavy
dust storm activity, a sizable portion of its science return was wasted imaging the nearly opaque
Martian atmosphere.12 With the move to rewritable digital storage systems and on-board
observation quality analysis, modern platforms like the Mars Exploration Rovers can take, store,
and prioritize continuous data over the course of a mission for return to Earth.13

The wireless telecommunication field has rapidly advanced, from low-gain “bent pipe” one-shot
repeater capability of transmissions to the modern digital high-gain, intelligent noise reduction,
store-and-forward data transmission, including conditional bandwidth and retransmission
features, all made possible through the greater computational abilities at the nodes and
upgradable software-defined protocols. Such capabilities would have greatly assisted the Mars-3
mission, which also faced issues with its transmitter heating unsafely during extended use,
necessitating it to send back its image data at lower fidelity resolution (255 vs. 1000 line
mode).14

What began as single purpose, specialized hardware systems for these functions has grown to
become complex software architectures running atop mostly commodity-based spacecraft
embedded processors. This, as will be described, is not always a benefit as these now complex
interacting subsystems increase the range of possible failures, as well.

III. Trade-Offs in Systems Design

The combinatorial growth of interprocess conditions is accompanied by benefits (concurrent
development, situational autonomy, and evolution of goals) and drawbacks (late integration, non-
deterministic interactions, and multifaceted anomalies) in achieving mission success, as
illustrated by the case of the Mars Reconnaissance Orbiter.

The Mars Reconnaissance Orbiter is a deep space satellite, launched in 2005, circling Mars with
an array of science instruments, including cameras, spectrometers, and radar. Its design and
operation was a joint effort of JPL and Lockheed Martin, under NASA contract, as the next step
in a coordinated Mars program to determine the planet’s geological past, including the inferred
loss of surface water and the majority of its atmosphere. Data from the mission includes gravity
modeling, surface mapping, subsurface stratigraphy, and weather monitoring. The satellite also
serves as a telecommunications relay to landed assets, presently the MER “Opportunity” and
recently-landed MSL “Curiosity” rovers.15

Concurrent Development vs. Late Integration

The upfront definition of subsystem and instrument interfaces allows for the concurrent
development of software and hardware by separate teams. Benefits of this approach include a
shorter production cycle and therefore, potentially reduced staff costs. Drawbacks are the
possibility of late integration accompanied by reduced verification, should rework cause delays
to one or more of the instruments making it unavailable when originally estimated. There is a
tendency to assume non-critical (but still serious) problems can be dealt with during integration
or even post-launch with software updates, which while often true, results in a loss of the cost
benefit and adds operational complexity through the introduction of hazard states through which
the system cannot be operated until the situation is resolved.

Such events were experienced in the development of the Mars Reconnaissance Orbiter project,
when FPGAs for several subsystems required replacement, delaying several of the instruments
for integration. This led to a rushed schedule to meet its launch window for Mars, which if
missed would have resulted in a possibly unfundable two year delay. Nominal electromagnetic
interference testing was performed, but extensive characterization and testing of instrument
interference with its Electra UHF relay radio was delayed until post-launch, given that the
Software-Defined Radio (SDR) could receive software updates to incorporate any necessary
band filters. This assumption has held true to a great extent and relay with Martian rovers has

been an on-going success, but at the cost of a great amount of follow-on software development
and test.16, 17

Autonomy vs. Determinism

Building situational autonomy into spacecraft software, a sense of self-health, objective state
awareness of relevant conditions, and flexible science operations timelines are among the
benefits complex software can provide given a fixed set of hardware resources, all of which lead
to intelligent spacecraft fault-tolerance and an increase in the amount and quality of science data
return.

Rather than running exclusively to timed schedules, current spacecraft like the Mars
Reconnaissance Orbiter use ephemeris data to provide them with navigational information
(location, trajectory), from which they optimally recognize and initiate events. A command that
would be proposed in a time-only domain with the form:

 “Photograph at an 8 degree angle at 11:00”

can now be more accurately defined, producing better results in a computed evaluation
incorporating both the time and spatial domains with the form:

 “Photograph target X, centered, when closest on next orbit”

This flexibility and overall performance can be further increased by running different classes of
code (i.e. instrument control, communications, and data management) in separate on-board
software virtual machines, each restricted to their sandbox of task-relevant commands. While in
reality these may all possibly execute on the same CPU, their non-interacting nature allows for a
separation of concerns in planning between their respective ground team personnel. Many recent
missions, including the Mars Reconnaissance Orbiter, implement this architecture using JPL’s
Virtual Machine Language abstraction.18

Problems with an autonomous approach arise when assumptions about the relationship between
multiple spacecraft operations and their context are inaccurate or misunderstood. Two
observations by separate instruments may collide, physically or logically. For instance, a
spacecraft roll angle to take a visual observation may interfere with the best target angle for UHF
radio relay with one of the rovers. Checks for logical conflicts can be built into the ground-built
sequence planning process, but these then need to evolve and be updated as operations change,
as well as having reduced the on-board optimization. Issues have also arisen with shared
spacecraft data storage space and downlink budgets, as the separate instrument operations teams
mostly make their plans independently, which then get merged for on-board execution.
Occasionally, the combination of heavy observation periods by multiple instruments coupled
with a possible Deep Space Network (DSN) receiver antenna outage can result in the saturation

of on-board science data storage, to which not all of the instruments were designed to handle
graciously.19

System Evolution vs. Stability

The ability of spacecraft system software to evolve via updates while in flight allows for new
opportunities and mission goals to be achieved, as collected data leads to new insights into how
to perform operations and also when new responsibilities are added to the mission (i.e. relay
support of a new rover).

One example on the Mars Reconnaissance Orbiter is with its Compact Reconnaissance Imaging
Spectrometer (CRISM) instrument, which was originally designed to determine planet surface
element chemistry. Its standard operations have recently been extended to include atmospheric
“limb scans” for tracking changes in Oxygen levels on the day and night sides of the planet
across the seasons.20 This has facilitated atmospheric composition and flow research, including
comparison with simultaneous data sets taken with the spacecraft’s Mars Climate Sounder
(MCS) instrument, which measures atmospheric humidity, dust, and temperature profiles using
thermal imagery.

Finally, relay telecommunication for the Mars landers was designed to allow change over time.
The Mars Exploration Rovers “Spirit” and “Opportunity” were already on the planet when Mars
Reconnaissance Orbiter arrived, but since then the Phoenix lander and Mars Science Laboratory
rover missions have reached the planet. These later missions have extended their radio protocols
to include features like Adaptive Data Rate, where two communicating radios may
autonomously adjust their bandwidth in the presence of clear or high error-rate channels and
Auto Retransmit, where dropped data over UHF will be recognized and sent again without
requiring ground intervention.21

The drawback to allowing system evolution comes from the loss of stability in a predetermined
baseline operations plan. New anomalies become harder to characterize and compare with the
old, because all things have not remained equal – operating in different states and scenarios than
before. This also incurs maintenance in keeping contingency plans up-to-date, as the methods in
recovering from anomaly to a new baseline state change, so previous experience may not apply.
This has been the case on Mars Reconnaissance Orbiter, necessitating changes to its safe mode
recovery operations.

IV. Dealing with Software Complexity

Approaches to optimizing the benefits while mitigating the drawbacks have taken the form of the
formalization of requirements, modular design practices, extensive system simulation, and
spacecraft data trend analysis.

Formalization of Requirements

Requirements design enumerates specifications derived from the mission needs, goals, and
objectives - allocating at which level they need to be addressed in a top-down dependency tree.
The rationale for each requirement, especially in the case of numeric quantities, is necessary to
allow proper weighting in their respective trade space and to provide for background knowledge
propagation across the teams. Requirements provide the logic behind what needs to travel
between subsystem interfaces, as well as the complete framework within which decisions are
made, before anything is built, about whether those interfaces are necessary and sufficient to the
purpose of the overall mission.

Top-level requirements start with the system: what does it need to do. Then, each descending
level defines what parts are necessary to fulfill the level above, branching into subsystems, and
components, while leaving implementation specifics to the respective engineering teams. Every
entry should be traceable to fulfilling a set of higher-level needs above it and creating the
necessity of a set of needs below it at a more detailed level [Figure 2]. Changes made to a
requirement then get traced up and down the chain to measure the effects and whether they are
compatible with the remainder of the system. 22

Properly defined and managed requirements are the means by which a complex project is
created, composed of numerous subsystems of which no single person or team can be an expert.
It is a reference table, on which mission scope and subsystem design trades can take place with
visibility into how the part affects the whole, allowing a reasoned approach to work its way
throughout a system too large to contemplate at once.

Figure 2 Requirements Traceability

Modular Design Practices

Modular design practices in both hardware and software, through high internal cohesion and
loose external coupling of component design, reduce dependencies and clarify the state space,
aiding in the development and integration of the overall system. They also allow for the use of
swappable, lower functionality fail-safe components, to be activated in the event of significant
on-board errors in order to maintain baseline spacecraft power, thermal, and communication
status while the anomaly is investigated and resolved through ground staff personnel
intervention.

Two useful methods for breaking the complete system down into modules of high cohesion and
loose coupling are to define the system in terms of sequential binding or functional binding.
Sequential binding can be achieved by flowcharting the events performed by the spacecraft (i.e.
take observation, transmit data to Earth), then defining modules around the logical flow blocks of
the diagram. A functional binding representation can be obtained from a data-centric point of
view: “Where is this piece of data used?” Those data commonly used in conjunction (i.e. solar
array parameters, battery state) form groupings around which modules can be designed. The
sequential binding and functional binding methods can be used in combination and they apply to
both hardware and software.23

Once modules are created using workflow or data-centric abstractions, complexity can be
stemmed in the software realm by restricting inter-module calls to the form of message passing.
That is, when one module requests a service from another, it does so in the form of a message,
which the second module can evaluate whether or not to comply with based on tracked state and

a range check of parameters (design-by-contract). This differs in kind from direct function calls
between modules and allows the framework for containing and recognizing errors within a
portion of the system and handling the situation accordingly, rather than allowing a rapid spread
of faulty state throughout the entire software collection.24

Spacecraft safety and health are also served by modular design, through the implementation of
redundant modules to perform critical activities: one or more standard modules for nominal
mode activities and alternate, minimal functionality modules to protect key systems while
relying on the least on-board state as possible, for off-nominal mode spacecraft preservation.
Having redundant standard modules, especially in the case of hardware, allows for failure of
components over the course of the mission, since these are mostly non-serviceable in the space
environment. 25 The existence of swappable modules varying in degree of functionality often
continues to take shape in software post-launch, including the refinement of the nominal and
minimal cases, as well as for the development of more complex technology demonstration
software deployments, once the mission’s primary objectives have been met.

System Simulation

Simulation evolves through the project development phases starting with mission design
software (i.e. SOAP, STK) for early phase feasibility studies, mid-phase engineering design and
test software (i.e. CAD, LabVIEW), evolving into an operations phase complete spacecraft
system hardware-in-the-loop testbed with flight computer and instrument engineering models.
As verification of hardware interfaces and software performance is completed, validation of the
overall system to meet the mission design requirements takes place, prior to launch. Then, over
the course of the mission, beginning with launch itself, spacecraft command sequences of
important events are run through the testbed ahead of time to validate operation plans, software
interactions, and hardware timing. The testbed can also be used in the proactive generation of
contingency plans, to test recovery mechanisms following intentional software-injected (or even
hardware-injected) failures.26

Creating an individual spacecraft subsystem, whether it is a physical sensor instrument, sequence
control software, or the underlying power system is a bit of a dilemma due to the lack of pre-
existing interfacing subsystems, given separated teams and parallel design schedules. Herein lies
the importance of specifying hardware and software interface agreements ahead of
implementation, so that each team can build their portion around a low to moderate fidelity
simulator of all other interacting portions. Assuring a shared understanding of “what’s on the
other side” is crucial early on, as differences and problems grow harder and more costly to work
out further into design, as components have solidified and been built on top of internal
dependencies.

As individual teams’ work on the development of their engineering model prototype completes,
the units and spacecraft testbed system and bus are integrated, yielding the initial hardware-in-
the-loop simulator for nominal sequences to be executed. Any incompatibilities are
characterized and reworked in the interfacing subsystems. Development and integration of flight
units increases at this phase as the spacecraft itself is built around the testbed model, with the
addition of flight-only components (i.e. complete solar panels, fuel system and thrusters).

From launch and onwards, the ground testbeds are used to validate nominal sequences, software
updates, and resolve anomalies. This reduces flight risk and provides a test environment for
system evolution to incorporate new features and achieve emerging mission objectives. It also
allows the engineering team to compare differing approaches to anomaly resolution in a safe
environment, in order to determine ground control’s best course of action.

Data Trend Analysis

Tracking and analyzing trends in spacecraft engineering data provides insight into processes and
can aid in drawing correlations and causality between parameters and events. Generic data
including timing, resource utilization, power and thermal fluctuations should be reviewed and
retained to form a baseline of the expected spacecraft flight performance envelope. Anomaly
investigations can then start with these data, find what deviates, and then dive deeper into the
lower states of involved subsystems (i.e. if the CPU spikes heavily whenever the power state
reaches a certain level, what telemetry data changes uncharacteristically before and afterwards?).

With thousands of parameters reported on in modern spacecraft, it’s difficult to simultaneously
hold the important subsets in mind, in order to begin deduction. Statistical software packages
like R can be used to find correlations and plot the derivatives of variables with relation to each
other, providing a visual capture of state changes, which can then be interpreted by the mission
staff. The following example code and inputs [Table 1], and “correlogram” visualization [Figure
3] provides a demonstration of its use.27 It can be quickly inferred that power level, temperature,
radio use, and sun sensing all correlate, while angle (of instrument observations) fluctuates, but
only takes place in the sun’s presence. If this pattern deviates uncharacteristically over periods, a
visual comparison can quickly pick it out without looking through and manually comparing
every row of input, value by value.

R Code R Input (telemetry.dat)
install.packages("corrgram")

library("corrgram")

telemetry <- read_table
 ("c:\\Temp\\telemetry.dat",
 header=T)

attach(telemetry)

names(telemetry)

corrgram(telemetry, order=TRUE,
 lower.panel=panel.ellipse,
 upper.panel=panel.pts,
 text.panel=panel.txt,
 diag.panel=panel.minmax)

time angle obs temp sun radio power
0 0 0 200 1 0 40
5 -12 1 220 1 1 50
10 -6 1 240 1 1 60
15 10 1 260 1 1 70
20 -5 1 280 1 1 80
25 7 1 280 1 1 90
30 12 0 280 1 1 100
35 0 1 280 1 1 100
40 3 1 280 1 1 100
45 7 1 280 1 1 100
50 -7 1 280 1 1 100
55 -4 1 280 1 1 100
60 0 0 280 1 0 100
65 0 0 270 0 0 95
70 0 0 260 0 0 90
75 0 0 250 0 0 85
80 0 0 240 0 0 80
85 0 0 230 0 0 75
90 0 0 220 0 0 70
95 0 0 210 0 0 65
100 0 0 200 0 0 60
105 0 0 200 0 0 55
110 0 0 200 0 0 50
115 0 0 200 0 0 45
120 0 0 200 0 0 40

Table 1 R Code and Input

Figure 3 R Telemetry Correlogram

V. Future Directions

The continued growth of hardware capability and software complexity can be expected, with
future directions including stackable commodity subsystems, computer-generated algorithms,
runtime reconfigurable processors, and greater autonomy.

Standardization of spacecraft subsystems and interfaces is a goal which is already taking place
for Earth-orbiting satellites, that number in the thousands. Deep space missions can leverage
some of these, but given their unique thermal, radiation, and signal delay environments, one-off
solutions continue to take precedence. NASA’s X2000 Program was one initiative working
towards this goal.28

The next stages of flexibility and optimization may be to turn software algorithms onto the hard
problem of algorithm design themselves through genetic programming. This field has already
seen some exploration in the development of link budget and image compression handlers.29
Another phase to this self-modifiability could be on-board development of FPGA circuit bitfiles,
introducing the possibility of runtime reconfigurable processors to most efficiently execute the
operations at hand.30

Fully autonomous spacecraft with active on-board intelligence and the ability to determine
science targets on their own based on the situation observed (i.e. storms, fires) is next step flight
software developers are working towards. Early technology demonstrations have already taken
place, such as on-board NASA’s EO-1 spacecraft with the Autonomous Science Agent software,
after having completed its primary mission.31

VI. Summary

Systems are becoming increasingly more complex, both on Earth and in the robotic spacecraft
embedded systems we send to distant planets. The ability to create such multifaceted systems,
with their inherent ability to evolve, has come from the growth in computer hardware
performance and reduced energy requirements, allowing software functionality to expand in
flexibility and scope. This explosion in growth has benefits and drawbacks, which have been
illustrated through examples of trade-offs during development, operation, and handling change.
Relying on good requirements, modular design, system simulation, and trend analysis are
classical systems engineering approaches – all of which shed insight and apply coherence to the
comprehensive state, managing the increased complexity caused by the proliferation of software.
Commodity subsystems and self-modifiable software are possible next steps towards greater
autonomy and more scientific return from robotic spacecraft.

References

1. Rumelt, R., “Gordon Moore’s Law (POL-2003-03),” Anderson School at UCLA, 2003.

2. Koomey, J., et al., “Implications of Historical Trends in the Electrical Efficiency of
Computing,” IEEE Annals of the History of Computing, Vol. 33, Issue 3, March 2011.

3. Schaumont, P. R., A Practical Introduction to Hardware/Software Codesign, Springer, 2010.

4. Sass, R., Schmidt, A. G., Embedded Systems Design with Platform FPGAs, Principles and
Practices, Morgan Kaufmann, 2010.

5. Brand, S., “The Physicist: Interview with Microsoft’s Nathan Myhrvold,” WIRED magazine,
September 1995.

6. Maraia, V., The Build Master: Microsoft’s Software Configuration Management Best
Practices, Addison-Wesley, 2005.

7. Charette, R., “This Car Runs Code,” IEEE Spectrum, February 2009.

8. Jolly, S., “Is Software Broken?” NASA ASK Magazine, Issue 34, 2009.

9. Sellers, J. J., Understanding Space, an Introduction to Astronautics, 3rd Edition, McGraw Hill,
2005.

10. Stakem, P., The History of Spacecraft Computers from the V-2 to the Space Station, PRB
Publishing, 2011.

11. National Aeronautics and Space Administration, “Voyager Backgrounder (Release #80-
160),” NASA Press Office, October 1980.

12. Ulivi, P., Robotic Exploration of the Solar System, Part 1: The Golden Age 1957-1982,
Springer, 2007.

13. Maimone, M., Leger, C., and Biesiadecki, J., “Overview of the Mars Exploration Rovers’
Autonomous Mobility and Vision Capabilities,” IEEE ICRA Space Robotics Workshop, April
2007.

14. StrykFoto Mars-3 web site, http://www.strykfoto.org/mars3.htm

15. Johnston, M. D., Graf, J., Zurek, R., Eisen, H., Jai, B., “The Mars Reconnaissance Orbiter
Mission,” IEEE Aerospace Conference Proceedings, 2004.

16. Bayer, T. J., “Mars Reconnaissance Orbiter In-Flight Anomalies and Lessons Learned,”
IEEEAC Paper #1451, 2007.

17. Bayer, T. J., “Mars Reconnaissance Orbiter In-Flight Anomalies and Lessons Learned: An
Update,” IEEEAC Paper #1086, 2009.

18. Grasso, C. A., “The Fully Programmable Spacecraft: Procedural Sequencing for JPL Deep
Space Missions Using VML (Virtual Machine Language),” IEEE Aerospace Applications
Conference Proceedings, March 2002.

19. Gladden, R., et al., “NIPCs: The Operational Sandbox of Science Commanding,” AIAA
Paper #2006-5739, 2006.

20. Clancy, R. T., “CRISM limb observations of Mars dayside O2 singlet delta emission during
2010-2011,” European Planetary Science Congress (EPSC), 2011.

21. Edwards, C., et al., “The Electra Proximity Link Payload for Mars Relay
Telecommunications and Navigation,” 54th International Astronautical Congress, 2003.

22. Hooks, I., Farry, K., Customer-Centered Products, Creating Successful Products through
Smart Requirements Management, American Management Association, 2001.

23. Stevens, W., Myers, G., Constantine, L., “Structured Design,” IBM Systems Journal, Vol.
13, No. 2, 1974.

24. Jet Propulsion Laboratory, “JPL Institutional Coding Standard for the C Programming
Language (JPL DOCID D-60411),” Jet Propulsion Laboratory, March 2009.

25. Seale, E., “The Evolution of a SPIDER: Fault Protection, Incremental Development, and the
Mars Reconnaissance Orbiter Mission,” Proceedings of the 2003 IEEE Aerospace Conference,
March 2003.

26. Eickhoff, J., Simulating Spacecraft Systems, Springer, 2009.

27. Wright, D., London, K., Modern Regression Techniques Using R: A Practical Guide for
Students and Researchers, SAGE, 2009.

28. Deutsch, L., Salvo, C., “NASA’s X2000 Program – an Institutional Approach to Enabling
Smaller Spacecraft,” Acta Astronautica, Vol. 46, Issues 2-6, 2000.

29. Miller, J., Thomson, P., “Cartesian Genetic Programming,” Proceedings of the EuroGP2000,
Springer-Verlag, 2000.

30. Meyer, D., “Runtime Reconfigurable Processors,” Chaos Communication Camp
presentation, 2011.

31. Chien, S., et al., “The EO-1 Autonomous Science Agent,” Proceedings of the 2004
Autonomous Agents and MultiAgent Systems Conference, 2004.

