National
Aeronautics and
Space
Administration

SW Architectural Modeling and Assurance
with AADL

NASA SARP TIM
August 21-24, 2012

Pl: Dr. Michela Muinoz Fernandez

Dr. Shang-Wen Cheng, Kenneth Evensen
Dr. Allen Nikora, Dr. Kathryn Anne Weiss

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with
the National Aeronautics and Space Administration. The work was sponsored by the NASA Office of Safety and
Mission Assurance under the Software Assurance Research Program. This activity is managed locally at JPL through
the Assurance and Technology Program Office.

Copyright 2012 California Institute of Technology. Government sponsorship acknowledged.
08/21/2012

Agenda

* Problem statement, background, and overview

 Major accomplishments:

— Software Architecture Modeling and Assurance with AADL
for the JPL SMAP Project

— Software Architecture Modeling and Assurance with AADL
for the JPL Juno Project

— Papers published in 2012
— Plug-in to convert UML to AADL using MARTE profile

* Future plans and direction:
— SMAP
— Juno
— Grace follow-on

e References

08/21/2012 SARP TIM 2012

Problem Statement

 How to accurately represent the behavior of

— ... complex systems by properly selecting the key attributes

— ... particularly when model-based techniques are
increasingly used for their development

« Can new tools and technologies be used in
future missions starting at earlier phases to
reduce risk?

08/21/2012 SARP TIM 2012 3

Enabling Formal Mission Assurance

Aeronautics and

Space
Administration

Historically N ot g
* FSW has been developed w/o
characterizing performance of the real- WSS o
time system being built ... until e .
integration! \
— UML dev’t models insufficient

— Assurance: document-based N d the F t ?'
 Finding execution-related issues at that owan e ruture:
Language) model shows execution

interactions between high-level
system implementation board?50.msap bus access cPei I SyStem components
M predge: bus bridge; — Enables early quality attribute analyses
proc?59: processor proc?50;
iy A - AADL reduce possibility of doing rework
co;z:f;;zz;_al: bus access bridge -> proc? Iater in the IifeCYCIe
bus_access_82: bus access bridge -> EEPRO . .
bus_access_04: bus access bridge > EMC.bl__________ —_ — Increases confidence at gateway reviews, by
usAccessConnectionl: bus access bus_access_cPci -> bridge.bus_access_cPci; .]]
) EusA;;;;sConnectionZ: bus access bus_access_cPci -> bridge.bus_access_cPci; prOV|d|ng |ndependent, Semant|Ca”y accurate
end boar .msap;
analyses

Values to NASA:

Reduction of risk of increased cost due to rework later in lifecycle
* Rigor and formalism added to development lifecycle and assurance activities
+ Formal semantics provide accurate performance analyses at gateways
* Provision of not just software or hardware assurance
* but system assurance, and therefore mission assurance!

Task Background

Objective — Demonstrate use of AADL to analyze quality attributes
of integrated spacecraft flight software architecture

— |In the context of verification and validation activities

— Using Architecture Analysis & Design Language (SAE AS5506/A)

» Strict Formalisms and Semantics

« Formal analysis framework to conduct early assessment of project
quality attribute requirements using Figures of Merit

— Applying Architectural Modeling for Aerospace Software
Engineering (AMASE) — IEEE-1471 compliant

Project — Soil Moisture Active Passive (SMAP)
— JPL, proposed Earth-orbiting mission, exp. launch 2014

Continuation of research work
— FYO09 — Developed framework using an MDS example
— FY10/11 — Apply framework to real JPL flight project, SMAP

— FY11/12-Apply framework to another real JPL flight project on its
way to Jupiter-Juno

08/21/2012 5

Software Architecture Modeling and Assurance with -
AAD L Aeronautics and

Space

for the JPL SMAP Project Administration

AADL architecture model has consistently augmented SMAP FSW
gateway deliveries (hence not shelf-ware)

— Showed: detailed design continually consistent with software architecture
— Demonstrated preliminary implementation also consistent

Assurance able to provide independent resource analysis
— Conducted CPU resource analysis, presented at SMAP FSW PDR
— Results indicated large CPU margin

Provided performance analyses to SMAP FSW Team
— Bus Bandwidth Analysis
— Memory Resource Analysis
— Deadlock Analysis (UPPAAL)
— Reachability Analysis (UPPAAL)

Applicability
— Real-time embedded software systems — the types of systems NASA builds!

— Very useful in the rigorous analysis of these systems, as primary notation

— Even if only UML, independent AADL models increase confidence and
reduce risks in the avionics software architecture

08/21/2012 6

National

Software Architecture Modeling and Assurance with AADL "™
for the JPL Juno Project minitration

Problem statement:

— How to avoid or minimize Juno command errors?

+ By modeling the Juno spacecraft and applying new tools, some errors could have
been revealed in real time.

« Substantial modeling of the Juno Spacecraft (primarily
Avionics view):
— C&DH, science, telecom, flight software
« Have stored models in model repository (library)
— Subversion server maintained by SQA
 Developed a series of reliability plugins for OSATE

— Will use on JUNO, then SMAP:

« End to end data flow: data latency analysis-> revealed
scenarios where commanding errors can occur.

« Data generation and memory analysis revealed the scenario
when data overflow would occur- could have prevented loss of
science data.

08/21/2012 7

National

Software Architecture Modeling and Assurance with AADL 5. *"
for the JPL Juno Project-data latency analysis e

« Example of one data latency analysis (proof of concept):

« JADE Mass Memory Overflow during High Voltage Checkout
(ISA 50603, criticality 3).

During the activities to close out the day on 11/17, the configuration for the JADE
instrument was changed from LVENG to HVENG after discussion with the Mission
Manager: the jad_hveng_hvenable.log sequence was sent at 04:13, which put JADE in a
mode which produced telemetry at approximately 18 kbps. This filled their 541 Mbits soft
partition (SP07) at approximately 12:43 UTC. The question of data rate production rate in
the new configuration was asked, but was not answered or not answered properly. The
new configuration produced data which overfilled the instruments memory partition leading
to remaining data being discarded.

* Immediate fix: Start of activities on day 5 was delayed for 75 minutes while the memory
partition emptied enough to proceed with commanding, and a determination was made that
the JADE instrument and spacecraft were in an state to proceed with the day’s activity. The
error triggered a separate anomaly, which added to the delay, but was found to not interfere
with continuing checkout (ISA 50604 Discarded Frames and Data Volume for SPO7 Much
Greater than Production Rate).

» Proximate cause: Command Product content not fully understood/communicated for use at
different time.

08/21/2012 8

Software Architecture Modeling and Assurance with AAD
for the JPL Juno Project-data latency analysis

National

Space

Aeronautics and

Administration

eno AADL - Juno/aaxl/Juno_Main_ _juno_lnstance.aax| - OSATE - /Users/mmfernan/Documents/OSATE WKS =
[l |AE @ENE 8| dEE|eow|aa[x]|ope m|REE %0 (S EEE]]SIB][H][]R] | % AADL
JQ- 19185 % o o

2 AADL Navigator 53 \ = % ¥ = O|(EZ Juno_Main.aax| f@gJuno_Main_mission_juno_lns(ance.aaxl = SEl.aadl W = O[5 Outline &2 =0

L7 Basic_Speed_System
L7 ExampleModels
07 Exercises
L7 Fault_management
¥ @ Juno [Juno)
v (g aadl
» [y packages
» (4 propertysets
[® Juno_Main.aadl 158 7/24/12 4:38 PM mmfernan
a Juno Model_RevA.pptx 151 7/19/12 11:07 AM kevensen
[@ Junotest.aadl 82 4/13/12 11:36 AM kevensen
[5) TODO.txt 134 6/29/12 3:29 PM mmfernan
v faaxl
v [packages
£ CommandDataHandlingJuno.aaxl
JunoBusses.aax|
JunoErrorModels.aax!
JunoHardware.aax!
JunoPorts.aax!
JunoScience.aax!
JunoSoftware.aax|
£ JunoTelecom.aax!
%5 JunoTelecom.aaxIdi 146 7/18/12 1:39 PM mmfernan
v (5 propertysets
£ ReliabilityProperties.aax!

. platform:/resource/Juno/aax|/Juno_Main_mission_juno_Instance.aax|

v < System Instance Juno_Main_mission_juno_Instance => System Imp| mission.juno
» (O earth: System Instance earth
» O juno: System Instance Spacecraft.juno
» <4 End To End Flow Instance science_d|_jade

4 Port Connection Instance: Juno_Main_mission_juno_Instance.earth.ul_to_sc -> Juno_Main_mission_juno_Instance.juno.telecor|
4 Access Connection Instance: Juno_Main_mission_juno_Instance.juno.cdh_a.SFC.bridge -> Juno_Main_mission_juno_Instance.]
4 Access Connection Instance: Juno_Main_mission_juno_Instance.juno.cdh_a.SFC.bridge -> Juno_Main_mission_juno_Instance.]
< Access Connection Instance: Juno_Main_mission_juno_Instance.juno.cdh_a.SFC.bridge -> Juno_Main_mission_juno_Instance.]

(O earth: System Instance earth
v (O juno: System Instance Spacecraft.juno
v O cdh_a: System Instance CDH.juno
v (O SFC: System Instance board750.juno

< bridge: Bus Instance bridge
(9 proc750: Processor Instance proc750
31 EEPROM: Memory Instance EEPROM.juno
=1 EMC: Memory Instance EMC

flows

telem_source: flow source telem;
end jade;

device implementation jade.juno

flows
sci_hs_source: flow source science_hs;
telem_source: flow source telem;

end jade.juno;

sci_hs_source: flow source science_hs {Throughput->18000 bitsps;};

£33 SDRAM: Memory Instance SDRAM
(O GIF: System Instance gif.juno

@ gifcard: Device Instance gifcard.juno
(O AAC: System Instance aac.juno

[0 aaccard: Device Instance aaccard.juno
(O DTCI: System Instance dtci.juno

O dtcicard: Device Instance dtcicard.juno
(O ULDL: System Instance uldl.juno

@ uldicard: Device Instance uldlcard.juno
(O CMIC: System Instance cmic.juno

[0 cmiccard: Device Instance cmiccard.juno
(O CPS1: System Instance cps1.juno

O cpslcard: Device Instance cpslcard.juno
(O NVM: System Instance nvm.juno

[@ nvmcard: Device Instance nvmcard.juno
flash: Memory Instance flash.juno

[i Juno_Main_mission_juno_Instance.aax!
£ Juno_Main.aax!

£ Junotest.aax!

» (3 reports

L7 MsapAadl|

C7 SmapAad|

inst_telem: in event data port;

inst_science: in event data port {Source_Data_Size-> 541000000 bits;};

flows
science_sink: flow sink inst_science;

> iobus: Bus Instance iobus.juno

JW: Process Instance flight_software.juno
3 os: Thread group Instance os.juno
heap: Thread Instance heap.juno
crc: Thread Instance crc.juno
clock: Thread Instance clock.juno

v =i Plugin_Resources
AADL_Project.aadl (Modified)
AADL_Properties.aad| (Modified)
SEl.aadl (Modified)
UppaalProperties.aad|

Description

v - Infos (2 items)

» <4 Port Connection Instance: Juno_Main_mission_juno_Instance.juno.cdh_a.DTCl.dtcicard.cdh_science_lowspeed.uvs_cmds -> |
» <4 Port Connection Instance: Juno_Main_mission_juno_Instance.juno.cdh_a.DTCl.dtcicard.cdh_science_lowspeed.mag_cmds ->
» 4 Port Connection Instance: Juno_Main_mission_juno_Instance.juno.cdh_a.DTCl.dtcicard.cdh_science_lowspeed.waves_cmds -
» 4 Port Connection Instance: Juno_Main_mission_juno_Instance.juno.cdh_a.DTCl.dtcicard.cdh_science_lowspeed.jiram_cmds ->
» 4 Port Connection Instance: Juno_Main_mission_juno_Instance.juno.cdh_a.DTCl.dtcicard.cdh_science_lowspeed.junocam_cmds¢
» 4 Port Connection Instance: Juno_Main_mission_juno_Instance.juno.cdh_a.DTCl.dtcicard.inst_telem -> Juno_Main_mission_junc
» 4 Port Connection Instance: Juno_Main_mission_juno_Instance.juno.cdh_a.DTCl.dtcicard.inst_science -> Juno_Main_mission_ju 4

compress: Thread Instance compress.juno
file: Thread Instance file.juno

events: Thread Instance events.juno

evr: Thread Instance evr.juno

fsw_state: Thread Instance fsw_state.juno
fsw_stats: Thread Instance fsw_stats.juno
idle: Thread Instance idle.juno

v 4 System Instance Juno_Main_mission_juno_Instance => System Impl miss;

4 _Port Connection Instance: luno Main mission iuno Instance.iuno.science.science cdh hiahsoeed.iade science -> luno Mait ¥ || rtsimif: Thread Instance rtsimif.juno <
(= =] i € 5]

i In end-to-end-flow jade_hs_end_to_end_a and component nvmcard.juno, feature inst_science will fillin 8 H 20 M 55 S

08/21/2012

Software Architecture Modeling and Assurance with Natona
AADL
for the JPL Juno Project-data latency analysis

« Decision point on changing the data production rate during JADE
high voltage checkout:

The data latency reliability plugin for OSATE could have been run

:> in real time and it would have revealed the data overflow that was
going to happen 8hr 20min 55sec later (before the next downlink
could occur)

Beginning and end of track for day 322:
« DOY BOT (UTC) EOT(UTC)
¢ 322 17:30 04:20

 JADE commanding error could have been avoided
:> preventing loss of science return

08/21/2012 SARP TIM 2012 10

National
Aeronautics and

Papers 2012

« “Assuring Software Fault Management with the Architecture
Analysis and Design Language,” Kenneth Evensen, and Dr. Michela
Munoz Fernandez. Infotech@Aerospace Conference 2012.

Obijective:

-To demonstrate a model based framework targeted at assuring software
fault management components

* Four Principles

— Architecture Analysis and Design Language (AADL) is a formal,
declarative modeling notation

— AADL Error Annex is a formal notation for modeling dependability

— Building models of software systems helps conceptualize complex
mechanisms (e.g. fault management)

— Assurance is an independent activity with the objective of
increasing confidence in a system

08/21/2012 SARP TIM 2012 11

National

Papers 2012-What is Fault Management i
Assurance? e

« Gaining increased confidence that a system
can and does handle propagated faults and
repairs

* |dentifying potentially risky areas of the
system and communicating that to the project

« We can automated tools (developed at JPL)
In OSATE to assure a system can behave
reliably

Papers 2012-What Can we address with
coverage?

What percentage of possible propagations,
occurring anywhere in the system, could
affect the software?

What percentage of actual propagations,
occurring anywhere in the system, affect the
software?

What percentage of actual propagations,
occurring anywhere in the system, are
handled by the software?

What percentage of actual propagations
originating in software, are handled by
hardware

08/21/2012

13

National
Aeronautics and

Papers 2012-Missing a repair

o Software Centric
- Hardware “expects” an in propagation
- Expected that software propagates out a repair

Random Fail

Component Fail

Component
Repair

Component Fail

1 Percent of actual propagations expected by hardware, not addressed by software 100% - Count (1) -
08/21/2012 14

National
Aeronautics and

Papers 2012- Repair added

e« AADL Error Model of “task” was missing
“Component Repair”

—_

andom Fail omponent Fail
Repair
Component Fail =
Component
Repair

Component
Repair

Component Fail

i1 Percent of actual propagations expected by hardware, not addressed by software 00% - Count (0) -

08/21/2012 15

Papers 2012- Example — Satellite with a
camera

National
Aeronautics and
Space
Administration

satellite.camerasat

read pics

o

cmd_seq

cmd seq

08/2172012

read pics
shap — read pics /
—_—— ; camera_thread,
/ /
pics_out
_Qi cs_in_
battery N

Lok -- "
,’ control thread ,’
/ /
ma- Toimink
/ .

Papers 2012-CAMERA EXAMPLE

The camera has a heater to regulate its
temperature.

Heater initial state: nominally off

1st failure mode: An internal event causes the
heater to be turned on inadvertently.

2" failure mode: The heater is nominally on
and it is erroneously turned off.

Higher instrument temperatures above
Allowable Flight Temperature (AFT) limits will
increase the thermal noise in the detector of
the camera, lowering the signal to noise ratio,
and therefore leading to degraded science
return.

08/21/2012 17

National
Aeronautics and

Papers 2012- Camera — error model .

“camera” has three
error states:

- “heater_failed_on”

- “heater_nominal”

- “heater_failed_off”

Internal error causes Repair cmd
transition to off-
nominal state /

In propagation causes
transition to nominal | | Repair_cmd

state

\

camers Read pics

snap ow_switch

int err on

int err off

08/21/2012 18

National

Papers 2012- Camera thread-ERROR sriizen

ow_switch

rEAA--—v e, “camera” has two error
1 camera_thread,

:i / states:
@A - _VQTcs_out_ - _ “nominal”

_ “fa.il”

« External error causes
transition to fail state

Corrupt data

08/21/2012 19

Papers 2012-ANALYSIS RESULTS |

« None of the two propagations that the
hardware expected to originate from software
were addressed by the software

1 Percent of actual propagations expected by hardware, not addressed by software 100% - Count (2) -

 The output above illustrates that the
appropriate propagations are missing

« It does not show exactly what it is missing

- More detailed results are necessary for sufficient
analysis

08/21/2012 20

National

Papers 2012- ANALYSIS RESULTS I

Administration

e The table below shows the detailed results of
executing the analysis

Source Rule Destination Propagation
software.camera thread | D11 camera (device) repair_cmd (Missing

(thread) Out)
[...] [...] [...] [...]

It lists the binary relationship between the
source, the “camera_thread,” and the
destination, “camera”

« The “Propagation” column indicates that the
missing propagation is a “repair_cmd” out
propagation

e The AADL error model for the “camera_thread”
is missing an out propagation

08/21/2012 21

National

\PPapers 2012-CORRECTION TO THE MODEL 5~

Administration

e The discrepancy is corrected by adding an out
propagation named “repair_cmd” to the AADL
error model in the “camera_thread”

,sn_ap A &OW—iMit:hv read_pics Read pics
1 camera_thread ,’
/ / snap pow_switch

oy Il

Repair_cmd

Repair_cmd [
int_err_on

Corrupt_data

Repair_cmd

int_err_off

08/21/2012 *

National

AN Papers 2012- FINAL ANALYSIS RESULTS =~

Administration

« The “repair_cmd” out propagation is added to
the transition between the “Fail” and
“Nominal” states

- This satisfies both the cases in the “camera’s” AADL
error model, between the “Heater_failed_on” to
“Heater_nominal” transition and the
“Heater_failed_off” and “Heater_nominal” transition

« Executing the “Fault Coverage” tool a final
time produces the desired result. The
percent of actual propagations expected by
hardware, not addressed by software becomes
0%

1 Percent of actual propagations expected by hardware, not addressed by software 00% - Count (0) -

08/21/2012 23

Papers 2012-Summary

 Reduced ambiguity in fault modeling because
component definitions are formal

- AADL Provides foundation for the formal modeling of an
real-time, avionics system

- AADL Error Annex provides formal mechanics for modeling
fault behavior
o Assuring fault coverage increases confidence in
the software fault management’s ability to detect
symptoms
- The software can recognize a fault originating from
hardware

- The software can address repairs expected by hardware (as
seen in the example)

08/21/2012 24

Plug-in to convert UML to AADL
using MARTE profile

« MARTE (Modeling and Analysis of Real Time
Embedded Systems) is a UML profile designed to
handle real-time embedded systems and software
concepts. UML was simply not designed to address
concerns such as scheduling, performance, and time.

« MARTE’s underlying meta-model, based on AADL'’s
meta-model, provides the capability to address these
concerns using UML notation. Various components
from SysML (Systems Modeling Language), such as
blocks and ports, are carried over into MARTE.
MARTE does not introduce any new diagrams, as
part of its meta-model.

08/21/2012 SARP TIM 2012 25

Plug-in to convert UML to AADL

using MARTE profile

National
Aeronautics and
Space
Administration

: Software
Basic context _
. Sensor @ S Motor
cheduler 1)
diagram for > Health 5
o Thread Thread
O
a software system © 8
Poll Sensor Command
Thread Motor Thread
Rung On
Computer Platform ¢
Example in AADL
MARTE Software Organization
SIW
- +owner <<EventData>> Actuator
| | Sl <<EvenyBatx readSensor & actuate
. 1 Se 1 .
«Men‘:‘obr‘)(l)l:zsmon» e actuate B P o
. +semaphore sensorData
myProcess +asks |1.. oci
run health
R «SwMutualExclusionResource <<EventPata>>
«SwSchedulableResource» «block» RTl
«PpUnit» «SwSche:;::BfSesource» «SwSchedulableResource» mySemaphore ”
«TimerResource» ebiocks «TimerResource»
PeriodicThread Thread AperiodicThread oci BusA
{isPeriodic} {concPolicy = concurrent, {isPeriodic = false} health H' i} s <<BusAfcess>>
4 R isPreemptable} 4 v \
/ \ /
/ \
/ S S\ \ <<BusAfcess>>
«SwSchedulableResource» —;
«ResourceUsage» = «SwSchedulableResource» «SwSchEnliuk:(leeResource» v
«ClockType» «ResourceUsage» N CrY DOY
«ResourceUsage» myEEPRO
«SwSchedulableResource» myScheduler myPeriodic myAperiodic S—
«ResourceUsage» {execTime = "2 Ns .. 5 Ns"} {execTime = "2 Ns .. 5 Ns"} {execTime = "2 Ns .. 5 Ns'} BUSATCESS a

«TimerResource»
myHealthMonitor
{execTime ="2 Ns .. 5 Ns"}

-Deadline : Integer =5

-Deadline : Integer = 15

-Deadline : Integer = 10

08/21/2012

SARP TIM 2012

26

Future plans and direction

« Continue working on SMAP models through launch
— Provide analysis updates at appropriate milestone reviews
— Test analysis results against reality using testbed

« Continue working on Juno models
— Complete Juno models
— Apply AADL Error Annex for reliability analyses
— Model the complete end to end data flow including the downlink process
— Incorporate Juno FMECAs into the AADL model

— The current tool only models deterministic events. Propose to explore the
possibility to model non-deterministic scenarios (data generation,
downlink)

— Work with Leila Meshkat on integrating results from Command
Assurance task to build complete reliability model

« Conversion of Grace follow-on UML models into AADL

08/21/2012 SARP TIM 2012 27

National
Aeronautics and

References

« “Assuring Software Fault Management with the Architecture Analysis and Design
Language,” Kenneth Evensen, and Dr. Michela Mufioz Fernandez.
Infotech@Aerospace Conference 2012.

+ “Software Assurance Standard,” NASA-STD-8739.8 w/Change 1. 2004.
« Barbacci, Mario, Mark H. Klein, et al. “Quality Attributes.” CMU/SEI-95-TN-021. 1995.
» Vestal, Steve, Larry Stickler, Dennis Foo Kune, Pam Binns, and Nitin Lamba. AADL -

Documents. Honneywell,16 June 2004. Web. <www.aadl.info/aadl/documents/AADL-
MetaH%20for%20LAS.pdf>.

» Feiler, Peter H., David P. Gluch, and John J. Hudak. The Architecture Analysis &
Design Language (AADL): An Introduction. CMU/SEI-2006-TN-011. 2006.

« OSATE: Open Source AADL Tool Environment. http://www.aadl.info. October 2009.

« SAE Embedded Computing Systems Committee. SAE Architecture Analysis and
Design Language (AADL) Annex Volume 1: Annex A: Graphical AADL Notation,
Annex C: AADL Meta-Model and Interchange Formats, Annex D: Language
Compliance and Application Program Interface Annex E: Error Model Annex. As-2c
Architecture Analysis And Design Lanaguage. 2006.

« Evensen, Kenneth D. and Dr. Kathryn Anne Weiss. “A Comparison and Evaluation of
Real-Time Software Systems Modeling Languages.” AIAA Infotech@Aerospace
2010. Atlanta, GA, Apr. 20-22, 2010.

* Feiler, Peter H., and Ana Rugina. “Dependability Modeling with the Architecture
Analysis & Design Language (AADL).” CMU/SEI-2007-TN-43. 2007.

« Heimerdinger, Walter L., and Charles B. Weinstock. “A Conceptual Framework for
System Fault Tolerance.” CMU/SEI-92-TN-033. 1992.

08/21/2012 28

National
Aeronautics and
Space
Administration

Background slides

08/21/2012 SARP TIM 2012 29

Fault propagation

o Fault propagation follows very specific rules per
SEI TN 2007-TN-043

- Dependability Modeling with the Architecture Analysis &
Design Language (AADL)

e This provides a foundation for assessing
susceptibility of error propagation without
building a single error model!!!

« NOTE: Error propagation refers to both errors and
repair propagations
e Error states refers to both good and bad states.

08/21/2012 30

National
Aeronautics and

Using AADL

e Using AADL and OSATE
- OSATE - Open Source AADL Tool Environment

Application Software Execution Platform ’

. o o 7
Data port Port Group l'E P
(as a feature of a thread) , /~

[device in
B data D
. out Port Group Connection
memor in out (between two port groups that
pmmm———— Y are each a feature of system)

> Event port

» Event data port Port Group Bundle Port group
(mixed directions and ports)
subprogram processor
: e S - "
Provides

Provides subprogram access |
Requires subprogram access

Requires H

Subprogram Call Ordering

Composite

package

'-—.
-
I m
E]
1 o
1<
1 o
=
1 -
L
.‘-'!-
-
=
=
™
E 1]
{=9
-'--

system

08/21/2012 31

National

"y Software Architecture Modeling and Assurance with AADL seorauicsanc

Space

for the JPL SMAP Project aminstation

 Refined SMAP FSW to model current planned
implementation

« Built tool suite for OSATE to analyze various
figures of merit related to reliability
— Coverage of errors that FSW handles
— Time to criticality

 Worked with Martin Feather to come up with
some visualization ideas for fault coverage

« Worked with Allen on how to measure software
reliability data from MSL testbed

08/21/2012 32

Software Architecture Modeling and Assurance with AADL g tonal
for the JPL SMAP Project Space

* Begin to integrate SMAP hardware FMECA'’s into
AADL Model

— Document procedure for mapping JPL FMECA'’s to AADL
Error Annex

— Getting some 3x help

« Analyze the MSL testbed and ATLO data in order
to estimate inherited reliability

* Bring Myron Hecht to JPL from Aerospace
Corporation

— Has demonstrated tool chain for assessing dependability in
AADL models

« Continue to meet with Lorraine Fesq and John
Day on software fault management

08/21/2012 33

1 National
ve rVI ew o p p roa c Aeronautics and
Space
AMASE: Architectural Modeling for Aerospace Software Engineering

Conceptual Level of Abstraction

ption; Rationale: A conceptual architecture description, or conceptual view of an architecture, is an
abstract description offen used during requirements analysis and specification. Views constructed using this
guideline are meant 1o explain the architecture’s context, und how and why function is mapped to form

Applied AADL Practice Framework in the ey p—

Concerns: Driving Functional and Quality Atribute Requirements, Compliance with Systems Architecture,
Conceptual Integrity
Language: Conceptual Architecture, Form, Function, Concept, Value Delivery

. .
con te xt of an arc h I te CtU re-centric e e,
Architectural Principles and Constraints, Requirements Mapping
i

Methods: Requirements Audit, Peer Reviews, Qualitative Evaluation

ree; AMASE framework - Weiss ‘09,

development process |- S —

Realizational Level of Abstraction

Structural Viewpoint

Description; Rationale: Views constructed using this viewpoint describe (1) how the software is
decomposed into component and interface types and (2) the rules that govern how component and interface
ly organized into collaborating structures. These views will contain descriptions of uny

Process Framework Activities

FORMULATION APPROVAL TMPLEMENTATION types can be e
pattems of structural organization that exist in the software that enforce the conceptual architecture principles
Pre-Phase A: | Phase A: Phase B: Phase C: : Phase E: Phase F: Outputs \ and constraints.
Concept | Concepta | Preliminary Design Final Design & | System Assembly. Operations & Closeout Software Architecture Description akeholders: FSW Developers, FSW Management
Studies & Tethnclou Fatlon &Text. Document (SADD) Containing: Concerns: Architectural Principles and Canstraints: Refined from Canceptual Architecture, Reuse,
— Layering, Dependencies
Language: Component Types, Interface Types, Ports, Roles, Patterns, Astificts, Libraries
Modeling Techniques: AADL - Systems and Port Groups
+ Software Stakeholders Analytic Methods: AADL - Semantic Checking and Enforcement
Create + Desired Quality Attributes Source: Earliest reference in Perry and Wolf. Shaw and Garlan, This particular definition is part of the
Foundation o Architectural Eramework AMASE frumework -~ Weiss *09.
for Analysis
Information and Control Flows Viewpoint
Build: Deseription; Rationale: Information and Control Flows are the key value delivery
* AADL (and other) Models ‘mechanisms for acraspace software, and therefore form the basis of the unifying viewpaint.
Create Organized into Views Views consiructed using this viewpoint describe how high-level, Gross-culing requivements
Models that invalve information and contral flow are satisfied by the software. In other words, these
) views characterize the funcrionality of the software system s a whole,
Stakeholders: Systems Engineers, End-to-End Information (ineludes Flight-Ground
interfiace) Systems Engineer, FSW und System Testers, Operations Engineers
Analyze: Concerns: Value Delivery via Information Flow and Cantrol Flow, Requirements
Analyze) 1§ I Satisfuction
Language: Information Flow (sources and sinks), Control Flow, Transfer of Contral, Locus
Models of Control
S — Y
AADL = Flow Paths, End-to-End Flows
4 State Machines / State Charts
] [Analytic Methods:
AADL > Flow Analyses such as Latency and Jitter
: mulation
Analysis Repository Keys Source: AMASE framework - Weiss ‘09
3 3 - froec tlae yi iewpoint —— | Avionics Viewpoint
Componsnt LIk Sy [sterance ichitsc e CUston EropRity Sates ZnalyaiEchicalines - De: iews constructed using this viewpoint describe the run-time Description; Rationale: Views constructed using this viewpoint
Artifactsfor Analysis Architectural Patterns Domain Specific AMASE Framework . Information Flow cture of the software, i.¢. the components that exist at run-time such as threads illustrate the embedded nature of aerospace software - they describe the
AADL Component Models Reusable Models Properties Required for OSATE Tutorials and sub-programs, and the connectors that enable their interactions while the software mapping between the software and the underlying avionics, or flight
Analysis c i the behavior, or logic, of the individual hardware. Views that follow this guideline also address firmware, or
software components, as well as how several components behave in concert to functional allocation to FPGAs
accomplish higher-level behavior. These views also expose any operational modes of Stakeholders: Avionics Engineers, Systems Engineers, FSW und
the software and how the software transitions between those modes. System Testers
Stakeholders: FSW Developers Concerns: Resource (memory, bus bandwidth, etc.) Consumption
Concerns: Synchronization, Interaction, Behavior, Deadlock, Starvation, Livelock, Language: Computer Platform, Deployment, Bus, Memory, Processor,
Execution Times FPGA, Device Drivers, Low-Level Interfaces
Language: Run-Tine Architecture, Components, Connectors, Processes, Threads,
. . Behavior, States, Modes AADL > Buses, Processors, Memary, Devices, Binding Propertics
Described an architecture framework
AADL > Processes, Threads, Sub-Programs, Ports, Cannectors, Configuration Modes Analytic Methods; AADL - Bandwidth Load Analysis, CPU Load
UML - Activity Diagrams, Sequence Diagrams Analyzer, Scheduling Analysis, Memory Utilization
. State Machines / State Charts Source: AMASE framework - Weiss 09
m Analytic Methods:
O r 0 C u e n I n g AADL > Execution Time / Deadline Load Analyzer
AADL Behavior Annex > Simulation, Priority Inversion Checker, Model Checking
Simulation and Fault Injection, Model Checking
Source: Krurchen 4+1 View Model. This particular definition is part of the AMASE
framework — Weiss ‘09,

AMASE - Architectural Modeling
for Aerospace Software Engineering

Cross-Cutting Concerns

Implementation Viewpoint

Description; Rationale: Views constructed using this viewpoint illustrate the itera and increment
nature of software development, i.e. they deseribe (1) how functionality is added to modules and (2) how
modules are integrated into the larger software system, both as a function of time. These views also address
how software modules are assigned to developers for implementation. Views that follow this guideline are
important, because they address a key portion of software architecture its evolution,

Stakeholders: FSW Develape d Project Management, FSW and System Testers

Concerns: Development Planning, Available Functionality, Architecture Evolution

Language: Assignments, Functionality, Modules, Waorkforce Plannis

SysML > Activity Diagrams
08/21/2012 views with colored ovelays depicing uggregation of &

Analytic Methods: Managerial Peer Reviews, Cost and Risk Estimation and Characterization
Source: AMASE framework Weiss *

