
Model-based Systems Engineering: Creation and

Implementation of Model Validation Rules for MOS 2.0

Conrad K. Schmidt1

Jet Propulsion Laboratory, Pasadena, CA, 91109

Model-based Systems Engineering (MBSE) is an emerging modeling application that is
used to enhance the system development process. MBSE allows for the centralization of
project and system information that would otherwise be stored in extraneous locations,
yielding better communication, expedited document generation and increased knowledge
capture. Based on MBSE concepts and the employment of the Systems Modeling Language
(SysML), extremely large and complex systems can be modeled from conceptual design
through all system lifecycles. The Operations Revitalization Initiative (OpsRev) seeks to
leverage MBSE to modernize the aging Advanced Multi-Mission Operations Systems
(AMMOS) into the Mission Operations System 2.0 (MOS 2.0). The MOS 2.0 will be delivered
in a series of conceptual and design models and documents built using the modeling tool
MagicDraw. To ensure model completeness and cohesiveness, it is imperative that the MOS
2.0 models adhere to the specifications, patterns and profiles of the Mission Service
Architecture Framework, thus leading to the use of validation rules. This paper outlines the
process by which validation rules are identified, designed, implemented and tested.
Ultimately, these rules provide the ability to maintain model correctness and synchronization
in a simple, quick and effective manner, thus allowing the continuation of project and system
progress.

Nomenclature

AMMOS = Advanced Multimission Operations System

API = application programming interface

DocGen = OpsRev’s document generation toolkit

DSN = Deep Space Network

FGCS = Flight Ground Communications Service

ISO = International Organization for Standardization

MBSE = Model-Based Systems Engineering

MOS = Mission Operations System

MOS 2.0 = OpsRev’s next generation Mission Operations System

MSAF = Mission Service Architecture Framework

OpsRev = Operations Revitalization Initiative

SysML = Systems Modeling Language

1 Software Systems Engineering Intern, Systems Engineering Section 313: System Behaviors Group K

26 April 2013 1

I. Introduction

urrently, the Advanced Multi-Mission Operations System (AMMOS) is the system that allows data from

spacecraft to be downlinked to the Deep Space Network (DSN) and then distributed out to those interested in

either the spacecraft’s science or flight information (Stakeholders). The AMMOS experienced much success in the

1990’s and early 2000’s with the many smaller orbiter and flyby missions (low to moderate complexity, planning

and sequencing) such as Mars Odyssey and Stardust.[1] In the past decade, increased technology has yielded more

ambitious mission objectives calling for larger and more complex projects. Missions such as the Mars

Reconnaissance Orbiter and the vastly complex landing missions such as Phoenix and the Mars Science Laboratory

required more operational flexibility and system architecture.

 Taking the necessary steps to alleviate competing pressures, the Operations Revitalization Initiative (OpsRev) at

NASA’s Jet Propulsion Laboratory (AMMOS provider) seeks to leverage advances in technology, practice of

software systems architecting and systems engineering using model-based approaches to modernize the AMMOS.

By doing so, OpsRev hopes to evolve the AMMOS into the MOS 2.0 making it the premier multimission tools and

services suite available to mission customers.[2]

II. Background

 Model-based Systems Engineering (MBSE) is an emerging modeling application that is used to enhance the

system development process. MBSE concepts and implementation benefit in the following areas:

• Mission Documentation - Centralization of information in models allows for the control of project and

system data that would otherwise be stored in extraneous locations. Additionally, since model

documentation is localized within the model, model-based documents are instantly synchronized with

model revision, giving way to expedited generation.

• System Communication – Models provide a one-stop-shop for system information. With instant

synchronization, every member of the project will be provided with current, unambiguous information

from anywhere.

• Knowledge Capture – Models built using fundamental patterns and principles allow for the reuse of

system information for not only project modification but also future missions.

• Validation and Verification – By being built on a set of architecture principles and structures, models

are self-reporting, using validation rules to evaluate system consistency, correctness and completeness.

 Based on MBSE concepts and the employment of the Systems Modeling Language (SysML), extremely large

and complex systems are modeled from initial conceptual designs through all system lifecycles. In keeping with the

MBSE concept of cohesiveness, the framework patterns of the model are developed in parallel. [3,4]

III. Objectives

 In conjunction with the MBSE principles of model validation and verification, primary contribution of this work

was to quantify the completeness and cohesiveness of the OpsRev MOS 2.0 models’ adherence to both SysML and

C

26 April 2013 2

the OpsRev-designed Mission Service Architecture Framework (MSAF). In order to accomplish this task, proficient

knowledge of key concepts, languages and tools was needed. Therefore, as tertiary objectives, becoming familiar

with the concepts of MBSE, SysML, the programming language Jython and finally the object-oriented visual-design

modeling tool MagicDraw aided greatly to the project’s outcome.

IV. Project Tasks

 To successfully implement the primary task of model validation, the concept of a validation rule was

incorporated. Quite simply, a validation rule is a mechanism that can be applied to the model to verify the model’s

implementation of a predetermined architecture framework, in this project’s instance, the MSAF. Commonly, the

validation mechanism is a programming script that either builds model-based documentation yielding errors, or

cross references model data with a set architecture providing a report.

 Having never been introduced to any of the concepts, languages and tools required for this project, the first

portions of work with the OpsRev team were focused on learning SysML, Jython and the accepted MagicDraw tool.

The tertiary objects of the project were fulfilled by a myriad of tasks designed to not only provide the OpsRev team

supplemental work but to also offer hands-on opportunities to learn and use SysML and Jython.

A. Tool Evaluation
1. MagicDraw 17.0.2 Testing

Method

 MagicDraw is an object-oriented visual modeling tool accepted by JPL to implement SysML modeling work.

Since the OpsRev team is at the forefront of JPL SysML use, they require the most up-to-date tool versions

available. At the onset of this project, the OpsRev team was gearing up to shift their entire modeling and

implementation project from MagicDraw version 17.0.1 to a new 17.0.2 build. Before the team officially migrated

their models and documentation, a great deal of testing was needed to ensure clean model transfer and compatibility.

The testing process involved the identification of current issues, building of small test models, running test scenarios

and finally the documentation of test results. Presenting an excellent opportunity to learn both SysML and

MagicDraw at once, the task was to create simple model testing scenarios as well as building a database comprised

of test results and new build features.

26 April 2013 3

Results

 This task was split into two parts with the first

being the evaluations of 17.0.2’s response to

previous known issues. Working closely with the

MagicDraw manufacturer, nearly 20 previous

faults were successfully tested and documented.

The second part of the evaluation was the

compilation of all new and updated features

within the new build. New features included a

myriad of items such as Diagram Legend, Paste

Style and many others. As both parts were

completed, the resulting data and information was

uploaded to the OpsRev Wiki page. Doing so not

only documented the tests results but also created

a centralized reference location for future new

users of the 17.0.2 build.

 Primary contribution to this effort was the

second part of the task, compiling new features.

This process involved research and cross-

referencing builds 17.0.1 and 17.0.2 at the same time to compare their respective user interfaces. At conclusion,

nearly 30 new and/or modified program features were documented. A snapshot of the OpsRev Wiki displaying the

new and/or modified features of 17.0.2 is given in Figure 1. As of the writing of this report, the material documented

for the testing portions of the evaluation will eventually be used by JPL’s SSCAE (Software Systems Computer

Aided Engineering) during their 17.0.2 testing which will result in JPL-wide distribution of the 17.0.2 build.

B. Model Validation
1. Sequence Diagram Validation

Method

 As a preemptive maneuver, the OpsRev team assigned the task of verifying MagicDraw’s ability to output

sequence diagram specifications via MagicDraw’s application programming interface (API), knowing that such

knowledge would be needed in the immediate future. A sequence diagram is the SysML diagram used to represent

the interactions of model elements in terms of a sequence of message exchanges.[5] The work involved programming

a Jython user-script using the API and OpsRev’s document generation tool DocGen3 to output all the possible

MagicDraw properties for the SysML graphical interaction “Message”. The deliverable of this task was a table

generated using DocGen3 providing the values of each property for every Message instance in a test sequence

Figure 1: OpsRev MagicDraw 17.0.2 new features wiki page.

26 April 2013 4

diagram. The Jython code was built using simple query commands that hacked MagicDraw’s API, extracted the

message properties and then placed the data in a table. The code incorporated a loop recursion for every Message

and compiled all the results in a table.

Results

 According to the MagicDraw SysML specification, there are 11 types of Messages. Each Message type was

compiled onto a test sequence diagram (given in Figure 2). Some of the Messages were given property values while

others were left without information so as to know what information is being extracted. NOTE: Messages are

displayed on the figure as arrows.

Figure 2: Test sequence diagram for validation rule.

Using Jython, the programmed user-script rule, the DocGen3 table shown in Figure 3 was generated for the

corresponding test diagram in Figure 3.

26 April 2013 5

Figure 3: Snippet of sequence diagram validation rule report table.

 The information in the table not only validates that the properties can be queried, but also that what was

extracted from MagicDraw matches the model (diagram) data. This validation rule provided the OpsRev team

valuable information, as never before has sequence diagram information been queried through the API.

Additionally, the rule helped the OpsRev team verify their system scenario sequence diagrams as well as provided

valuable Jython scripting and DocGen3 generation experience.

2. Success Criteria Validation

Method

 The International Organization for Standardization (ISO) is an entity that produces standards across all ranges of

business and technology spectra. The OpsRev team utilizes many of the ISO systems architecture standards for use

in their models. For instance, OpsRev success criteria evaluation views are modeled using an extension of the ISO

42010 standard for architecture description and framework. To ensure that the model abides by this OpsRev

accepted standard, a validation rule was used. This rule checked the success criteria outlined in the MOS 2.0

Architecture Description Document against the extension of the ISO 42010 standardization. Figure 4 shows a

snippet of the ISO 42010 framework with the success criteria extension.

26 April 2013 6

Figure 4: ISO 42010 framework used in success criteria validation rule.

 For this validation, only the framework incorporating the Analysis, Goal, Qualitative Result, and

Quality/Function Attribute was used. Simply, the framework is read as follows:

“An Analysis evaluates how a view meets a Quality/Function Attribute. In doing so, the Analysis also

evaluates a Goal and outputs a Qualitative Result.”

 A test model was built that

incorporates both correct and

incorrect implementation of the

framework and is presented in

Figure 5. Note how Analyses 2, 5

and 6 have one or more missing

dependencies. This validation rule

incorporated a Jython userscript that

iterated through the group of

Analyses and provided a validation

report on whether or not the model

conformed to the framework. As

with the sequence diagram

validation rule, the output of the

code provided a DocGen3 table

reporting on the validation results.

Results

 The resulting DocGen3 validation report for the test model provided in Figure 5 is displayed in Figure 6 below.

Accurately, the table corresponded to the test model, providing an error message indicating the missing

Figure 5: Test model used for the success criteria validation rule.

26 April 2013 7

dependencies by giving the name of the

associated Analysis. Additionally, the rule

provided the location of the faulty model

element, making model correction easier.

This validation rule saw immediate use in the

MOS 2.0 Architecture Description Document

model, which provides many tables similar to

those in Figure 6.

C. Model Maintenance
1. Document Generation

Method

 Within the realm of the MOS 2.0, there exist the main mission services, such as the Mission Engineering Service

and the Science and Instruments Service. In the early stages of development, the OpsRev team built the Flight

Ground Communications Service (FGCS) as the first deliverable. Since creation, modifications to the document

implementation have resulted in an effort to update the FGCS document products. Previously, the documents

conformed to a less strict DocGen2 document generation

implementation method. This task’s goal was to replace the

older DocGen2 implementation to the newer DocGen3

implementation. The FGCS document products are

displayed in Figure 7 in context with the overarching MOS

2.0 document products. All of the FGCS documents’

content, tables and figures were being generated in an older

model using DocGen2, requiring that the documents be

rebuilt in a new model using the DocGen3 implementation.

Although most of this work was content transfer, it was

imperative to maintain the documents’ adherence to the

MSAF, which defines the documents’ structure. This

adherence was achieved through the use of views and

corresponding viewpoints. Essentially, a view conforms to

a viewpoint, providing a strict method for how the view

operates.

Figure 7: FGCS key decision products in context of
overarching MOS 2.0 document products.

Figure 6: Success criteria validation rule reporting table.

26 April 2013 8

Acknowledgments

 I acknowledge the work of the Ops Revitalization team making this paper possible. Special thanks for support

and guidance with the entire project from my mentor Chris Delp and co-mentors Louise Anderson and Elyse Fosse.

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was

sponsored by the Jet Propulsion Laboratory Summer Internship Program and the National Aeronautics and Space

Administration.

References

[1] Duane L. Bindschadler, Carole A. Boyles, Carlos Carrion, and Christopher L. Delp. “MOS 2.0: The Next

Generation in Mission Operations Systems”. SpaceOps 2010 Conference. Huntsville, AL, USA. 25-30 April 2010.

[2] Delp, Christopher, Duane Bindschadler, et al. "MOS 2.0 - Modeling The Next Revolutionary Mission Operations

System." Jet Propulsion Laboratory, California Institute of Technology. (2010).

[3] Friedenthal, Sanford, Regina Griego, and Mark Sampson. "INCOSE Model Based Systems Engineering (MBSE)

Initiative". INCOSE2007 Conference. San Diego, CA, USA. 24-29 June 2007.

[4] Bindschadler, Duane, Christopher Delp, and Michelle McCullar. "Principles to Products: Toward Realizing

MOS 2.0." American Institute of Aeronautics and Astronautics. (2012).

[5] Friedenthal, Sanford, Alan Moore, and Rick Steiner. A Practical Guide to SysML. Burlington, MA: Elsevier Inc,

2008. 531. Print.

26 April 2013 10

	Model-based Systems Engineering: Creation and Implementation of Model Validation Rules for MOS 2.0
	Nomenclature
	I. Introduction
	II. Background
	III. Objectives
	IV. Project Tasks
	A. Tool Evaluation
	1. MagicDraw 17.0.2 Testing
	Method
	Results

	B. Model Validation
	1. Sequence Diagram Validation
	Method
	Results

	2. Success Criteria Validation
	Method
	Results

	C. Model Maintenance
	1. Document Generation
	Method
	Results

	V. Conclusions
	Acknowledgments
	References

