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Innovation 

•  Three-Body orbits (such as this L1 orbit) are anchored to the Earth and 
Moon. 

•  This permits relative range/Doppler measurements to contain information 
about each spacecraft’s absolute position and velocity. 

•  No ground measurements necessary, whatsoever! 

•  The result is akin to GPS at the Moon, using only a single dedicated 
navigation satellite. 
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Measurement Models 

• Simplified measurement models for range and range-rate. 

• No light time is assumed. 

• Geometric range plus a constant bias and Gaussian noise. 

• Idealized range-rate with Gaussian noise. 

• DSN stations used to track the L1 orbiter 

– Goldstone, California 

– Madrid, Spain 

– Canberra, Australia 

• Ground station tracking GEO 

– Sky Valley, California 
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Filter Model 

• Utilizing a conventional Kalman filter (CKF). 

• Time Update 

– State deviation propagation 

– Covariance propagation 

 

• Process noise is added into an RTN frame define to coincide with 
the SRP direction.  
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Filter Model 

• Utilizing a conventional Kalman filter (CKF). 

• Measurement Update 

– Linearized observation 

– State deviation update 

 

– Covariance Update (Joseph formulation) 

• A posteriori state update 
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LiAISON Navigation: 
Trade Study Overview 

• High fidelity trade study utilizing varying levels of LiAISON tracking 

and ground tracking.  This will answer the questions: 

– “How many ground tracks may we remove and still obtain the same level 

of accuracy for our mission?” – this quantifies the cost-savings by using 

LiAISON over ground-only tracking. 

– “How much improvement may we expect by adding LiAISON to our 

mission?” – this quantifies the improvement in satellite navigation 

accuracy by adding LiAISON. 

– “How does general observation scheduling influence the expected 

accuracy and uncertainty?” – this quantifies the necessity as to when 

observations should be obtained. 

– This research applies directly to GEO missions like TDRSS, but also easily 

applies to LEO missions, lunar missions, and any mission near the Earth 

or Moon. 
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LiAISON Trade Study 

• Quantify the cost and accuracy of 
LiAISON compared to ground-only 
navigation. 
– We’ll illustrate this objective using: 
(A) a continuous LiAISON with sparse Ground 
tracking solution,  and 
(B) a continuous Ground with sparse LiAISON 
tracking solution 

• Determine how many ground tracks may 
be removed and achieve the same 
navigation accuracy.  

– We’ll illustrate this objective using: 
(B) a continuous Ground with sparse LiAISON 
tracking solution,  and 
(C) a LiAISON-supplemented solution. 

– such that both result in similar tracking 
uncertainty. 
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LiAISON Navigation: 
Trade Study Example Results 

•  Example results for tracking a GEO satellite 
using ground stations and LiAISON 

•  We’ve shown that you can reduce the 
number of ground tracks tremendously and 
achieve even better navigation accuracy by 
using LiAISON. 
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More LiAISON data 
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Ground-only GEO nav: 

Near-continuous ground 
observations with little (or no) 
LiAISON:   
>150 meter uncertainty w/o  

     LiAISON 

~25 meter uncertainty w/  

     LiASION 

Cheaper GEO nav: 
1 ground track every 2-3 days,   
1 LiAISON track every 1-2 days:   
~30 meter uncertainty 

Fewer ground tracks, better 
accuracy! 
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•  L1 3D RMS position accuracies (left) and 
uncertainties (right). 

•  Tracking schedule ranges from 
continuous, to 72 hour tracking gaps. 

LiAISON Navigation: 
L1 Results 
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A 
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C 

•  Infinity corresponds to LiAISON or ground tracking 
only (no mixed schedule). 

•  Continuous ground tracking only gives an estimate 
with an uncertainty of 70 meters. 

•  Continuous LiAISON tracking only gives an 
estimate with an uncertainty of 150 meters. 
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LiAISON Navigation: 
GEO Results 
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•  GEO 3D RMS position accuracies (left) 
and uncertainties (right). 

•  Tracking schedule ranges from 
continuous, to 72 hour tracking gaps. 

•  Infinity corresponds to LiAISON or ground tracking 
only (no mixed schedule). 

•  Continuous ground tracking only gives an estimate 
with an uncertainty greater than 150 meters. 

•  Continuous LiAISON tracking only gives an 
estimate with an uncertainty of 30 meters. 
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Tracking Schedule Analysis 

• Trade study was analyzed for four different tracking schedules. 
 – Continuous (0,0)             – Sparse ground (0,72)  

 – Sparse LiAISON (72,0)   – Mixed Tracking (28,49) 
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• Continuous tracking (0,0) of both data types is the best solution. 

• Mixed schedule (28,49) gives about the same uncertainty after 6 
days as continuous ground with sparse LiAISON (72,0). 
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(A) LiAISON vs. (B) Ground Trade 

(A)  Continuous LiAISON schedule 
with some ground: 3 hours on, 72 
hours off 
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(B)  Continuous Ground schedule with 
some LiAISON: 3 hours on, 72 
hours off 
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L1 Satellite:  13.52 m  ±  35.03 m (3") 

GEO Satellite:   4.96 m  ±  5.65 m 

L1 Satellite:  35.01 m  ±  47.17 m 

GEO Satellite:   17.11 m  ±  26.40 m 
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(C) Mixed vs. (B) Ground Trade 

(C)  Mixed schedule. LiAISON: 3 hours 
on, 28 hours off. Ground: 3 hours 
on, 49 hours off. 
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(B)  Continuous Ground schedule with 
some LiAISON: 3 hours on, 72 
hours off 

LiAISON-Supplemented Navigation - Leonard 

L1 Satellite:  66.98 m  ±  88.89 m 

GEO Satellite:   8.09 m  ±  19.13 m 

L1 Satellite:  35.01 m  ±  47.17 m 

GEO Satellite:   17.11 m  ±  26.40 m 
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Measurement Offset Analysis 

• Investigating the diagonal of the Trade Study for measurement 
offset sensitivity. 
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• No-offset has less uncertainty 
when Tracking Gap < 22 hours 

• Resonance at 22 hours is seen in 
both GEO and Halo  uncertainties 
due to observation geometry. 

• No-offset approaches Offset 
uncertainty for Tracking Gaps > 22 
hours 

• Offset analysis for Tracking Gaps 
> 22 hours has little effect on the 
accuracy and uncertainty. 
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Conclusions 

• Relative and absolute positioning of the L1 and GEO satellite is 
possible using only LiAISON. 

• LiAISON is a valuable measurement type to improve radiometric 
measurements from DSN. 

• High fidelity simulations and filter show that supplementing 
radiometric DSN with LiAISON can improve the solution greatly. 

• There exists regions of mixed tracking that produces the same 
uncertainties as continuous tracking. 

• We’ve shown that you can reduce the number of ground tracks 
tremendously and achieve even better navigation accuracy by 
using LiAISON. 

• A simple measurement offset analysis showed that for large 
tracking gaps one could expect the same filter performance. 

• However, for tracking gaps of less than a day, a no-offset in the 
measurement  
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