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Introduction

* How can we use the Moon and post-launch
AV to explore the solar system?

— Increased mass or smaller launch vehicles!
— Flight time increase vs. benefit gained
— Operational considerations

 Combined results of recent studies are
presented here
— Energy benefits of lunar flybys
— Effectiveness of post-launch AVs

— Approaches to develop an operational launch
period
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e LUNAT departure mode schematic
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Lunar flybys used to set spacecraft in heliocentric drift-away orbits
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& &==="  Solar-perturbed lunar flyby pairs

 Method: find trajectory
segments that start and end at
the Moon under solar
gravitation perturbation

e Find full trajectory family by
continuation in solar orientation
of initial flyby and V.,
— Very sensitive to solar

orientation, not very sensitive
toV,_
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Trajectory types can be
categorized by:

— Direction of each flyby (eg:
inbound, outbound)

— Number of months between
flybys

Ending flyby then oriented to
maximize Earth-relative C3
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e Double lunar flyby (DLF)
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s ISEE-3/ICE example (1983)
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Triple lunar flyby departure

e Last flyby on double lunar
flyby trajectory can set up
additional flyby

— Must be retrograde to re-
encounter the Moon

— Constrained by perigee —
. g i
altitude (
— Improves performance by ./

about 1+ C3 units
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Triple lunar flyby (TLF)
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Max C3 for powered-Earth Eoi family
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Outbound-to-inbound, 5-month trajectory
Impulsive AV at perigee
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Planned Nozomi trajectory (1998)
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Example powered-DLF trajectories
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* Need realistic launch period
duration of ~3 weeks

* Dedicated launch methods:
— Phasing loops
— Variable initial period and/or flyby
sequence
— High apogee with solar
perturbation

e Secondary launch methods:

— Flyby sequence with lunar primary

— Additional launch vehicle (LV) and
spacecraft AV

* Boosted GTO useful for SEP
spacecraft
— LV AV of 900 m/s after primary
separation, 20 min post-perigee
* Reaches lunar flyby for AV < 300
m/s around apogee
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Boosted-GTO in worst-case orientation
with near-apogee AVs to reach the
Moon

Variation in total duration to first flyby
spans a lunar period
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Optimized SEP trajectory, going from

boosted GTO to Earth escape

SEP thrust arcs near apogee (in red) transfer from boosted-GTO to lunar flyby
Non-resonant apo-peri-apo transfer and 3m resonant inclined transfer set up

final flyby
In general, longer flyby sequence potentially needed to account for primary

payload launch date uncertainty
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Summary

* Flybys and modest post-launch AV
significantly improve mission performance
— Lunar flybys increase energy
— Earth flybys change outbound direction

— Post-launch AV:
* Chemical burns at perigee
 Heliocentric SEP thrust arcs

* Operational launch constraints are tractable,
for:
— Dedicated and secondary launches
— Chemical and SEP spacecraft
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