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ABSTRACT 
 

The Support Vector Machine (SVM) is a powerful algorithm, useful in classifying data in to species. The SVMs 
implemented in this research were used as classifiers for the final stage in a Multistage Automatic Target 
Recognition (ATR) system. A single kernel SVM known as SVMlight, and a modified version known as a SVM 
with K-Means Clustering were used.  These SVM algorithms were tested as classifiers under varying conditions. 
Image noise levels varied, and the orientation of the targets changed. The classifiers were then optimized to 
demonstrate their maximum potential as classifiers. Results demonstrate the reliability of SVM as a method for 
classification. From trial to trial, SVM produces consistent results. 
 
Keywords: Support Vector Machine (SVM); Automatic Target Recognition (ATR); neural network; false alarm 
reduction. 
 

 
1. INTRODUCTION 

 
Computer vision is a unique field of study pertaining to the development of systems that automatically draw useful 
information from images.  The information encoded in an image can be valuable in many applications, allowing a 
computer to understand an environment on a visual level, to recognize objects, and to perform operations 
autonomously.  Applications of computer vision range from medical image analysis to autonomous guidance and 
maneuvering of spacecraft. Automatic Target Recognition (ATR), the ability of a computer vision system to 
recognize, and identify specific objects is of particular importance, and of substantial difficulty. Targets must be 
identified under varying conditions, and in various orientations with minimum false alarms.  Furthermore, ATR 
algorithms must be computationally efficient if they are to operate in real time.  
 
 

 
 
 
Figure 1: System block diagram of a two-stage ATR system: First stage: pre-processing and target detection using correlations; 

Second stage: Feature extraction and classification. 
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To address the issue of speed versus accuracy in the ATR system, Jet Propulsion Laboratory has developed a 
multistage ATR system that quickly scans an image for potential targets, and subsequently weeds out misclassified 
targets [1-3]. As illustrated in Figure 1, the input image is first preprocessed to enhance the image quality.   
 
To quickly identify subsets of the image that contain targets, the ATR system uses a Grayscale Optical Correlator 
(GOC) in combination with an Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter [4-5].  
These subsets are considered Regions of Interest (ROIs) and serve to reduce the amount of data that is passed to the 
final stage of the ATR system. To reduce the dimensionality of the data being classified, the Principal Component 
Analysis (PCA) is used to further reduce the ROI into 18 features. The final stage of the ATR system uses a machine 
learner to classify each previously extracted feature as a target, or non-target. This paper documents the use of two 
types of Support Vector Machines that are used as final classifiers in an automatic target recognition system [6]. 
 

2. METHODOLOGY 
 

In an ATR application, a classifier is very important in ensuring the correct identification of the true targets while 
rejecting false positives.  We discuss the optimization of the SVM as a classifier.  In our experiment, a grid-search 
was performed on an interval of possible parameter values to find the optimal setting for the SVM kernel parameter 
γ, and the regularization parameter C. The interval [a,b] was divided evenly into n steps for each of the SVM 
parameters. At each of the subsequent steps, parameter values were set, and the SVM classifier was tested. Once 
optimal parameters were selected, the process was repeated with the grid-search interval centered at the previously 
selected best value. This time the search interval was reduced, and the resolution of the grid search was increased. 
This sweep search was performed on SVM, and K-means Clustering with SVM (K-Means SVM) classifiers to 
determine the best possible fit during classification.  
 
Once optimal parameters were found, testing was done to see how precise the parameter selection needed to be. The 
optimal parameters were tested and performance scores were recorded. The highest performing parameters were 
used as baseline values to measure the degree of precision necessary when setting C, and γ. To test nessecary 
precision, the optimal C, and  γ were set, and alternately, each parameter was modified. This process was repeated 
multiple times, modifying the parameters each time by a factor of two. 
 
2.1 Support Vector Machine Classification 
In order to distinguish classes in highly enmeshed data, as can be the case with ATR, Support Vector Machines 
examine a set of labeled instance pairs in a multidimensional feature-space. SVM attempts to separate the data in to 
classes by creating a separating hyperplane along the maximal margin of class separation [7], as illustrated in Fig. 2.  
 

         
 

Figure 2: Illustration of the principles of SVM: SVM separates classes along their maximal margin of separation. Support 
vectors are selected to set the maximal margin between class clusters. [8,9] 

 
 
 

The number of features representing each labeled data point determines the dimensionality of feature-space. In our 
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misclassifying a point. The parameter C relocates a sample point closer to the center of its class. The particular C, 
and γ values that are best for a given application are not known, so they must be set prior to operation. The common 
approach for SVM parameter optimization is for arbitrary parameter values to be tested, and the best of the set to be 
used during runtime.  [8] 
 

 
 3. EXPERIMENTAL RESULTS 

 
We used a set of sonar images as our test images.  Performance was measured using a Free -Response Operating 
Characteristics (FROC) curve. The FROC curve displays the relationship between percent accuracy, and total 
number of false positive target detections per image, as shown in Figure 3. When selecting the optimal C, and γ 
parameters, the grid search algorithm tested the SVM classifiers at each iteration, and displayed their FROC curves. 
This method reavealed the performance of the SVM  Classifiers along the range of possible parameter values. 
Increasing the number of iterations, and decreasing the search interval determined the nessecary resolution of a grid 
search for parameters.  
 
This testing illustrates the ability of SVM, and K-Means SVM to detect objects in sonar images. The necessary 
range of a search for SVM parameters was demonstrated. Necessary precision during the parameter search was 
shown to be fairly low. Both SVM classifiers proved to be fairly robust when C, and γ were set to within 10% of 
their optimal value. During K-Means testing, there was some degree of fluctuation in performance which can be 
attributed to the random method of locating K-Means between sub-classes. During each iteration, performance of 
the K-Means SVM classifier fluctuated by up to 25%.  
 

 

 
 
Figure 3: Example of the the Free-Response Operating Characteristics (FROC) curve. Above, displaying the detection accuracy 

vs. average false positives per image of the SVM and k-Means SVM in classifying objects. 
 

 

 

 

 
3.1 Support Vector Machine - Classification Performance 
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We first perform a coarse grid search of the C, and  γ values. Initial C, and  γ values for the SVM classifier were set 
according to Table I, and baseline performance measurements were obtained to compare subsequent optimized 
parameters. These values were obtained by performing an initial search for the parameter's value. When C = 4.72 
and γ = 0.96, the system performance is 61.04% accuracy of correct object detection at 2 false positives per image 
level. 
 
 

Table I: Initial SVM parameters – baseline values, and  performance 
 

C γ Percent Accuracy @ 2 False-
Positives per image 

Number of False-positive per 
image @ 90% accuracy 

4.72 0.96 61.04 24 
  
As shown in the experiment in Figure 4, we sweep the γ value between [0, 30].  The optimal γ parameter was 
obtained around 1.9.  The system performace improved from the inital 61.04% to ~66% at 2 false positives per 
image. Figure 4 shows that a larger than nessecary γ causes diminished classifier performance.  
 
 

 
 

Figure 4: As the Kernel Parameter γ is modified, a change in performance is noted.  The optimal γ value is ~2.3.  The 
performance improved from 61% to 66%.  The performace degraded when γ value deveated from the optimum value 

 
We then optimized the C parameter for error penalty.  As shown in Figure 5, the performance of the SVM classifier 
improved when we optimized the C parameter.  The performace reached a threshold around 70% accuracy when the 
C parameter reached its optimal value ~ 20. Performance stayed fairly consistantly with an increasing parameter 
value, but choosing a higher than necessary C value reduced the classifier's ability to generalize to new data. This 
result illustrates the required grid search range when sweeping for SVM parameters. A search for C parameter 
values larger than 20 were shown not to be benificial. 
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Figure 5: Optimizing the performance as the Regularization Parameter C is modified, an improvement in performance to 70% 
accuracy is noted. The C value is optimum around 20. 

 
Once the optimal values for C, and γ were obtained, the grid search resolution was increased substantially 
around the optimal values. Testing on our sonar images showed that the modification of each SVM parameter of 
up to 10% could cause a change in performance of 1% to 2% on this data set.  
 
3.2 K-Means Clustering With Support Vector Machine - Classification Performance 
 
The K-Means SVM classifier uses two SVM classifiers together to attempt to refine the placement of the separating 
hyperplane between classes of instance pairs. Because there are two classifiers operating, there are a total of four 
SVM parameters to be set.  Figure 6 shows the optimization of γ value in the range of [0, 30].  The optimal value is 
γ = 0.5 at ~ 65% accuracy. 
 

 
Figure 6:  Optimizing the K-means SVM: As the Kernel Parameter γ is modified, a change in performance is noted.  The 

accuracy reaches ~65%. 
 
 
 
As shown in Figure 7, when the C parameter was changed for the K-Means classifier, the overall performance 
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of the classifier was recorded. There was some degree of variation in performance with each iteration. Shown 
below in Figure 7 are performance recordings that fluctuate between 58 and 68 percent accuracy with 2 false 
positives per image.  The optimal C value is C = 12 at 67.3% accuracy.  We can see the fluctuation of the 
performance when C parameter is changed. 
 
 

 
 

Figure 7: As the Regularization Parameter C is modified, a change in performance is noted. 
 
We also optimize the second SVM parameters in the K-Means SVM.  The C and γ parameters are searched to 
find the optimal performance.  Figures 8 and 9 show the optimization of the accuracy through grid searches of 
the C and γ parameters.  
 

 
Figure 8: Optimization of the γ parameters.  The best performance is achieved when γ = 0.96 at ~66% accuracy. 
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Figure 9: As the Regularization Parameter C is modified, we see multiple optimal C values.  A smaller C paarmeter is 
preferred, C = 1.2 at ~ 7=67% accuracy. 

 
The K-Means SVM seemed to benefit from a grid search on the C and γ parameters for each of its classifiers. 
The charts above demonstrate the performance of the classifier over all. Notice that a γ that is too high reduces 
performance substantially.  
 

 
4. CONCLUSION 

 
The SVM classifier produces consistent results, and is easily optimized. Optimization of SVM parameters increases 
performance, and is efficiently done using a grid search. When tested multiple times with the same kernel 
parameters SVM produced identical classification accuracy, while K-Means SVM results tend to vary. K-Means 
SVM seems to return useful performance measures when sweeping for the γ parameter. This suggests that a grid 
search for the K-Means SVM γ parameter is ueful. Sweeping for the C parameter returned varied performance 
results, all of which were between 58 and 68 percent accuracy with an average of 2 false positives per image. This 
complexity made optimization of K-Means SVM difficult to recognize. Testing showed that a grid search for the 
SVM parameters is a significant improvement to the random parameter selection technique for γ, the same is 
probably true for K-Means SVM C parameters.  
 

 
5. ACKNOWLEDGMENTS 

 
This research was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology under a 
contract with the National Aeronautics and Space Administration (NASA) and was under the sponsorship of the 
NASA Undergraduate Student Research Project (USRP) program through JPL. 
 

 
REFERENCES 

 
 

1. T. Lu, C. L. Hughlett,  H. Zhou, T-H. Chao, J. C. Hanan, “Neural network post-processing of grayscale 
optical correlator,” Proc. SPIE 5908, Optical Information Processing III, 2005. 

2. Tsung Han (Hank) Lin, T. Lu, Henry Braun, Western Edens, Yuhan Zhang, T-H. Chao, Christopher 
Assad, and Terrance Huntsberger, “ Optimization of a multi-stage ATR system for small target 
identification,” Proceedings of SPIE Vol. 7696C, 2010. 

8 

 



3. W. Nicholas Greene, Yuhan Zhang, T. Lu , T-H. Chao, “Feature extraction and selection strategies for 
automated target recognition,” SPIE Symposium on Defense, Security & Sensing Conference, 
Independent Component Analyses, Wavelets, Neural Networks, Biosystems, and Nanoengineering, 
Proceedings of SPIE Vol. 7703, 2010. 

4. Ye, D., Edens, W., Lu, T., Chao, T., “Neural Network target identification system for false alarm 
reduction,” Proc. SPIE   Vol. 7340, 2009. 

5. Johnson, O., Edens, W., Lu, T., Chao, T. "Optimization of OT-MACH filter generation for target 
recognition," Optical Pattern Recognition XX. Proceedings of the SPIE, Volume 7340, 2009. 

6. Chang, C. C., Lin, C. J., “LIBSVM : a library for support vector machines” ACM Transactions on 
Intelligent Systems and Technology, 2:27:1--27:27, 2011.  

7. B. E. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In 
Proceedings of the Fifth Annual Workshop on Computational Learning Theory, ACM Press,  pages 
144-152, 1992. 

8. Üstün, B,. 2010, “support Vector Machines” from www.cac.science.ru.nl/people/ustun/SVM.JPG, 
Retrieved  2011. 

9. Maven,. “Lib Linear” From: www.bwaldvogel.de/liblinear-java/svm3d_big.png, Retrieved 2011. 
10. Qun C., Qingcai C. Xiaolong W., “Scaling Gaussian RBF kernel width to improve SVM 

Classifications” IEEE 2005. 
11. Hsu C.,  Chang C., Lin C., "A Practical Guide to Support Vector Classification," 

http://www.csie.ntu.edu.tw/~cjlinhttp://www.csie.ntu.edu.tw/~cjlinhttp://www.csie.ntu.edu.tw/~cjlin , 
04/15/2010. 
 

 

 

 

 

 

9 

 

http://www.cac.science.ru.nl/people/ustun/SVM.JPG
http://www.bwaldvogel.de/liblinear-java/svm3d_big.png
http://www.csie.ntu.edu.tw/%7Ecjlin
http://www.csie.ntu.edu.tw/%7Ecjlin
http://www.csie.ntu.edu.tw/%7Ecjlin



