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The Regenerative Fuel Cell Concept

->
o
1

A
VN4
It
_ _ . ] _ A v Q
I H2
720, : Y2 O,
1
v > G{:Dﬂ o I o @_’ Q
I ‘ E’.D_ Electrolyte % : g Electrolyte zi
2 Oh : (=)
H,O : H,0
! T i N T
e e ; - -
IR L rowm

Discharge Cycle Charge Cycle

|
* The byproduct water recovered from the fuel cell reaction can be stored and

electrochemically converted back into the required fuel cell reactants
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Conceptual Lunar Outpost Surface System

Power Support Uit (PS1D
{ Supports / scavenges from

C. R. Mercer, A. L. Jankovsky, C. M. Reid, T. B. Miller, and M. A. Hoberecht, Energy Storage Project, Final
Report, NASA/TM-2011-216963, 2011
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Key Performance Parameters, Energy Storage Project
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Customer Need Performance Parameter SOA Current Threshold | Goal™ q
(alkaline) | Value* Valug** (@ 3 kW)
(NFTPEM) | (@ 3 kW)
System power density
Fuel Cell | 49W/kg | 44 Wikg 88 Wikg 136 W/kg
Altair: RFC (without tanks) | n/a n/a 25 Wikg 36 Wikg
3 kW for 220 hr Fuel Cell Stack power density n/a 51 Wikg 107Wikg | 231 Wikg
continuous, 5.5 kW peak.
Fuel Cell Balance-of-plant mass n/a 2kg 21kg S kg
Lunar Surface Systems: MEA efficiency @ 200 mA/cm?
TBD KW for 15 days For Fuel Cell | 73% 72% 73% 75%
continuous operation Individual cell voltage | 0.90 V 0.89V 0.90V 092V
Rover: TBD For Electrolysis | n/a 83% 84% 85%
Individual cell voltage | n/a 1.48 1.46 1.44
“Based on non-flow-through test
hardware with 4-cells and heavy For RFC (Round Trip) | nfa 60% 62% 64%
end plates, scaled to 3 KW
**Threshold and Goal values based SYSIE,‘H'I efﬁ-:iency @ 200 IT'INCI"I'IZ
on full-scale (3 kW, 300 cm?) fuel Fuel Cell | 71% 654% T1% T4%
cell and RFC technology.
Parasitic penalty | 2% 8% 2% 1%
""*Includes high pressure penalty
on electrolysis eficiency 2000 psi
Regenerative Fuel Cell™™ | n/a n/a 43% 54%
Parasitic penalty | n/a n/a 10% 5%
High Pressure penalty | n/a n/a 20% 10%
Maintenance-free lifetime | Maintenance-free operating life
Altair: 220 hr (primary) Fuel Cell MEA | 2500 hr 13,500 hr 5,000 hr 10,000 hr
Surface: 10,000 hr (RFC) Electrolysis MEA | n/a n/a 5,000 hr 10,000 hr
Fuel Cell System (for Altair) | 2500 hr n/a 220 hr 220 hr
Regenerative Fuel Cell Sﬁtem n/a n/a 5.000 hr 10i000 hr



NASA Fuel Cell Stack Development
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Fuel Cell Technology Progression to Simpler Balance-of-Plant

M. A. Hoberecht, NASA PEMFC Development Background and History, {Presented at NUWC, Newport, RI,
2010
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Advanced MEAs for Non-Flow-Through (NFT)
Fuel Cell Systems
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* MEAs developed for NASA NFT Stacks tested in conventional fuel cell
hardware

* MEA performance is a strong function of MEA thickness this is more
pronounced in NFT hardware

« MEA Performance in NFT hardware, 0.88 Volts at 200 mA/cm?, 30 PSIG
Balanced Pressure Reactants
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Advanced NASA Fuel Cell MEA, Vendor Tested
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*Membrane thickness crucial at high current densities, N115, 5 mil, N212, 2 mil
*MEA Performance, 0.92 V at 200 mA/cm? 80 °C
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@ MEA Development, Optimization of RuO, Layers on Fuel
Cell Anode
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* RuO, deposition at the anode improves catalysts membrane interface can
lower MEA high-frequency resistance (HFR) on the order of 1 mQ with N212

* Deposition to be optimized, will increase cell voltages by 5 mV at 200
mA/cm? for MEAs fabricated with N212
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Cell Voltage (V)

The Effect of Thermal Processing
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Oxygen Evolution: Doped Ruthenium Oxide Catalyst

The Effect of Iridium Concentration on Ir-d-RuQ, Catalysts
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Heat-treatment required to activate the doped ruthenium catalyst

Expected Reaction: M +RuO,—»MO,RuO, , (x = 0.05)

Ir-black dominates the performance of non-heat treated Ir-black mixed with RuO,
The 9% iridium-doped ruthenium catalyst performed the best of all iridium-doped

ruthenium oxide compositions fabricated
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Electrolysis MEA Testing
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*Advanced catalysts can meet the performance requirements of future NASA
electrolysis systems

*MEA Performance, 1.42 V at 200 mA/cm? 70 °C
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Fuel Cell Powered ATHLETE Mobility System
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* Hydrogen docking stations can provide a pathway for robotic vehicles
to traverse several kilometers while operating on fuel cell power.
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Presentation Summary

« Regenerative fuel cells provide a pathway to energy storage system
development that are game changers for NASA missions

* The fuel cell/ electrolysis MEA performance requirements 0.92 V/
1.44 V at 200 mA/cm? can be met

« Fuel Cell MEASs have been incorporated into advanced NFT stacks
« Electrolyzer stack development in progress

* Fuel Cell MEA performance is a strong function of membrane
selection, membrane selection will be driven by durability
requirements

* Electrolyzer MEA performance is catalysts driven, catalyst selection
will be driven by durability requirements

* Round Trip Efficiency, based on a cell performance, is approximately
65%
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