

American Institute of Aeronautics and Astronautics

1

Enabling Future Robotic Missions with Multicore Processors

Wesley A. Powell1, Michael A. Johnson2, and Jonathan Wilmot3
NASA Goddard Space Flight Center, Greenbelt, MD 20771

Raphael Some4, Kim P. Gostelow5, Glenn Reeves6, and Richard J. Doyle7
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

Recent commercial developments in multicore processors (e.g. Tilera, Clearspeed,
HyperX) have provided an option for high performance embedded computing that rivals the
performance attainable with FPGA-based reconfigurable computing architectures.
Furthermore, these processors offer more straightforward and streamlined application
development by allowing the use of conventional programming languages and software tools
in lieu of hardware design languages such as VHDL and Verilog. With these advantages,
multicore processors can significantly enhance the capabilities of future robotic space
missions. This paper will discuss these benefits, along with onboard processing applications
where multicore processing can offer advantages over existing or competing approaches.
This paper will also discuss the key artchitecural features of current commercial multicore
processors. In comparison to the current art, the features and advancements necessary for
spaceflight multicore processors will be identified. These include power reduction, radiation
hardening, inherent fault tolerance, and support for common spacecraft bus interfaces.
Lastly, this paper will explore how multicore processors might evolve with advances in
electronics technology and how avionics architectures might evolve once multicore
processors are inserted into NASA robotic spacecraft.

I. Introduction
obotic spacecraft, regardless of mission, generally conform to a generic architecture, which can be divided into
the spacecraft infrastructure and the spacecraft payload. As illustrated in Fig. 1, the spacecraft “bus” provides

the basic infrastructure of the spacecraft and consists of a mechanical structure, a power generation and distribution
subsystem, a propulsion and attitude control subsystem (including guidance/navigation sensors), a radio
communication subsystem, and a command and data handling subsystem (including the flight control computer,
memory storage, and data acquisition for a suite of “housekeeping” sensors). Attached to this bus infrastructure is
the payload, consisting of the science and exploration instruments which are the spacecraft’s raison d’etre.

In this paper, we examine the spacecraft computing system, which, to date, on most spacecraft, is a relatively low
performance, but extremely high reliability computer. Its task, for the most part, has been to execute carefully
crafted sequences provided by a team of experts on the ground that is responsible for mapping out the spacecraft’s
minute-to-minute activities and uploading these sequences on a periodic basis via the radio communication system.
This paradigm, however, is extremely costly, limiting in mission capabilities, and greatly reduces the potential
science and exploration return on mission investment. In most cases, what can be done with the limited computing
resources available in current spacecraft has been done, and we are reaching the limit of mission complexity and
spacecraft capability achievable with standard spacecraft control computer technology.

1 Assisitant Chief for Technology, Electrical Engineering Division, Code 560.
2 Chief Technologist, Applied Engineering and Technology Directorate, Code 500.
3 Software Engineer, Flight Software Systems Branch, Code 582.
4 Technologist, Avionics Section, M/S 3450.
5 Flight Software Engineer, Software Guidance & Control and Flight Software Validation, M/S 321-150.
6 Chief Engineer, System and Software Division, M/S 301-230.
7 Deputy Manager, Solar System Exploration Technology Office, Solar System Exploration Directorate, M/S 321-
550, and AIAA Associate Fellow.

R

American Institute of Aeronautics and Astronautics

2

Demands for onboard computing will
be significantly increased for many future
National Aeronautics and Space
Administration (NASA) robotic space
missions. This is largely driven by the fact
that increases in instrument sensor data
rates are not being matched by increases in
downlink bandwidth. In addition, future
mission concepts call for autonomous
decision making which further drives
onboard processing needs.

Several options currently exist for
onboard computing, offering varying levels
of performance. Radiation hardened
spaceflight processors such as the BAE
RAD750 are based on PowerPC processors
and offer performance up to 240 MIPS[1]
(million instructions per second) range.
Other vendors offer multiple unhardened
PowerPC processors with various redundancy schemes, which offer increased performance at the expense of power
and programming complexity. For applications requiring less performance and lower power, processors embedded
with a System-On-a-Chip (SOC) are a viable approach. With this approach, moderate performance processors such
as LEON and ARM variants, or lower performance processors such as MISC, can be implemented either in radiation
hardened application specific integrated circuits (ASICs) or field proigrammable gate arrays (FPGAs). Applications
for these processors are typically coded with high-level software languages, and with the exception of the lower
performance processors operate on real-time operating systems such as VxWorks or RTEMS (Real-Time Executive
for Multiprocessor Systems).

For high performance onboard digital signal processing applications, processing can be implemented directly
within the logic of a radiation hardened FPGA such as the Actel RTAX series or the Xilinx Virtex-5QV or,
alternatively, an ASIC. With this approach, performance in excess of 300 GOPS (billion operations per second) is
possible on a single FPGA device[2]. While several high-level tools exist that allow rapid modeling of these
applications, the actual coding is typically done using a hardware description language such as VHDL (Very High
Speed Integrated Circuit Hardware Description Language) or Verilog.

In general, across all processing options, there is a trend where one can trade performance for application
development complexity. Current radiation hardened spaceflight processors are limited in performance, but offer a
relatively simple application development process using common software programming languages and operating
systems. Radiation tolerant processors in redundant configuration offer higher performance and can use these tools
and operating systems, but require added complexity to handle voting mismatches and resynchronization. FPGA or
ASIC based computing provides very high performance, but at the cost of a complex application development
process using hardware description languages.

A radiation hardened multicore processor is an attractive alternative to these approaches that could provide
increased performance for future processing requirements and allow application development using standard
software languages and tools. With the emergence of commercial multicore architectures and radiation hardened
integrated circuit design libraries, such a device is now feasible.

Commercial industry adopted multicore processor architectures after it proved difficult to push operating
frequencies above a few Gigahertz. To circumvent this limitation, these processors use multiple cores operating at a
lower frequency. Multicore architectures should be viable well into the future as improvements in semiconductor
fabrication technologies (reducing feature sizes) will allow an increasing number of processing cores to be
implemented on a single device. As a point of reference, the Tilera TilePro64 multicore processor offers a
theoretical maximum of 384 GOPS[3] (billion operations per second). However, multicore processors do present
some challenges as developing software that can fully utilize the processing resources can be difficult. There is, at
present, a lack of parallelizing compiler support and tools that can optimally allocate threads across multiple
processors. Furthermore, the achieved processing performance can be very sensitive to memory locality as off-chip
memory access can incur significant performance penalties.

Figure 1. Robotic Spacecraft Architecture.

American Institute of Aeronautics and Astronautics

3

II. Classes of Multicore Applications
Multicore processors are well suited for applications that allow the computation to be distributed among multiple
processing nodes. We call out one category – general spacecraft computing – and three special application classes—
Short-Duration Real-Time Burst Calculations, High-throughput Science Data Processing, and Intensive Search-
Based Reasoning— that seem particularly amenable to future multicore processor-based spaceflight systems. The
latter three also seem well-suited for implementation via other processing technologies (e.g. FPGAs).
Characteristics of these application classes are documented in Table 1. The following discussion identifies examples
of spaceflight systems within each application class.

Table 1. Classes of computation for spaceflight multicore applications.

Class of
Application Mission Applications Objective of

Computation Flight Computing Concept

Short-Duration
Real-Time Burst
Calculations

Science/Exploration: Entry,
Descent & Landing, non-
cooperative Autonomous
Rendezvous and Docking, real
time reaction to internal or
external science or
engineering stimuli

Achieve most robust
results within available
time constraints as
input to control
decisions

High peak power needs;
significant margin for
remainder of mission;
stringent fault tolerance and
real-time requirements

High-throughput
Science Data
Processing

Science: High resolution
sensors, e.g., Synthetic
Aperture Radar (SAR),
Hyperspectral

Downlink images and
products rather than
raw data

Distributed, dedicated
processors at sensors; perhaps
less stringent fault tolerance

Intensive Search-
Based Reasoning
(may be Non Real-
Time)

Science/Exploration: Mission
planning, fault management,
model-based reasoning

Accomplish
opportunistic science;
mitigate execution
failures via contingency
planning; detect,
diagnose and recover
from faults and
unanticipated events

Multicore may be needed to
enable onboard capabilities
due to computational demands

General Spacecraft
Computing

Core spacecraft functionality:
Telecom; file system;
commanding and sequencing;
attitude control; …

All the functions
required to run a
spacecraft.

Utilize the capacity offered by
multicore; message-passing
and partitioning to achieve
fault containment regions.
Redundancy in cores allows
for fault recovery, multiple
algorithms to achieve the same
result.

A. Short-Duration Real-Time Burst Calculations
Gamma-ray bursts (GRBs) are intense flashes of gamma rays that occur several times daily and typically last for

only a few seconds. The Swift spacecraft is dedicated to the study of gamma-ray burst science and exemplifies a
scenario that requires autonomous detection of, and real-time reaction to, external (or internal) stimuli.

As illustrated in Fig. 2, Swift is comprised of three instruments, each operating in different wavelengths— the
Burst Alert Telescope (BAT), the X-ray Telescope (XRT), and the Ultraviolet/Optical Telescope (UVOT). Once the
wide field-of-view detectors on BAT detect a GRB, the spacecraft must be repointed to align the other two narrower
field-of-view telescopes with the event. Short GRB durations and their unpredictable times of occurrence render a
human-in-the-loop architecture ineffectual. Instead, a high-throughput onboard data processing system determines

American Institute of Aeronautics and Astronautics

4

the location of the burst and autonomously reorients the
spacecraft to bring the burst area into the XRT and UVOT
fields-of-view[4].

Depicted in Fig. 2, entry, descent, and landing (EDL) is
another autonomous spaceflight capability that requires
significant burst processing capability. Mission success hangs in
the balance of a successful EDL sequence, and for destinations
such as Mars, light-time delay forces the question of autonomy.
Increasingly, EDL algorithms are vision-based algorithms that
involve, e.g., identifying and tracking terrain features to avoid
hazards and achieving pinpoint landing accuracy. Future
proximity operations concepts for primitive bodies missions also
are expected to make heavy use of vision-based algorithms. As
a rule, these algorithms are computationally intensive and push
beyond a general-purpose processor level of capability. The
Autonomous Landing and Hazard Avoidance Technology (ALHAT) project within the Exploration Technology
Development and Demonstration Program (ETDDP) has benchmarked a set of Lidar-based algorithms for a lunar
lander as requiring approximately two more orders of magnitude flight computing capacity than had been baselined.

Applications in the burst calculation class are typically mission-critical. To the extent they are performing
calculations within a limited timeframe as input to control decisions, they have the most stringent fault tolerance
requirements.

B. High-Throughput Science Data Processing
Long-standing race conditions exist between capabilities for sensors and instruments to collect data and

capabilities to efficiently communicate and meaningfully process that data. The throughput of modern science
instruments can be astounding. The HyspIRI (Hyperspectral Infrared Imager) instrument is projected to collect 3.2
terabytes per day while the DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) synthetic aperture
radar (SAR) instrument is projected to collect 4.9 terabytes per day, to cite just two examples. Such high data
throughput can challenge downlink capabilities even for Earth orbiters. However, multicore offers the possibility to
trade downlink capacity with onboard computing capacity; specifically, to generate appropriate onboard science data
products (e.g., images, advance statistical summaries of raw data) with smaller data footprints that can fit within
downlink limitations. Figure 4 depicts a notional onboard processing flow for hyperspectral image data that could

Figure 3. Entry, Descent, and Landing Concept of Operations.

Figure 2. Swift Spacecraft.

American Institute of Aeronautics and Astronautics

5

be implemented via multicore
computing. Multicore support for
this application class would likely
involve decentralized, dedicated
processing at the instrument, with
less stringent fault tolerance
requirements than for core
spacecraft functions. To
summarize, multicore opens up the
trade space to offer more flexibility
in finding suitable system solutions
among flight computing, science
instrument data throughput, and
downlink capabilities.

C. Intensive Search-Based Reasoning
Autonomous functions on future space missions can be expected to become more common and necessary,

especially for deep space missions, as flight systems venture further into remote environments that are at least partly
unknown. Multicore flight computing will have a role to play to support certain onboard model-based, search-
intensive reasoning capabilities such as planning, scheduling and resource management, as well as fault
management. As an example, multicore can increase the very pace of a mission by improving the so-called
thinking-to-driving ratio of Mars rovers. Currently, for Spirit and Opportunity, that ratio has been approximately
15:1. In other words, during mobility periods, the Mars Exploration Rovers are “thinking” much more than they are
moving. With multicore, that ratio can approach 1:1, or ideally, the rover “thinks” while it moves. Such onboard
computing capacity has implications for science: processing navigation images for interesting science signatures
while traversing; and for fault management: more frequent collection and processing of navigation images for
hazards or fault conditions. More generally, future flight systems will increasingly have need for fail-operational
fault management, rather than traditional fail-safing, to grapple with challenging operational environments and/or
severe mission duration constraints. Multicore can support the implied computations..

D. General Spacecraft Computing
This class of software currently comprises the majority of software on a spacecraft and includes functions such

as telecom, resource and device control, attitude control, power switching, file system management, commanding
and sequencing, and a myriad of other activities necessary to keeping a spacecraft operating. In many instances,
these activities are programmed as threads that communicate and coordinate through message passing interfaces,
allowing them to function easily in a multicore system. Among the non-real-time applications, we should expect
several would share a given core. But of special note are the real-time applications, such as attitude control, which
require predictable, rate-group style organization with strict adherence to deadlines. Elsewhere in this paper we
refer to partitions that may be established within a multicore chip, and certainly a real-time partition is required if
we are to host attitude control and similar applications on multicore. Given a partition capability, including timely
access to spacecraft sensors and actuators, and thus, a means to establish fault containment regions and memory
partitions, real-time and non- real-time applications supplying the spacecraft’s core functionality should operate well
in a multicore environment..

E. Multicore Application Considerations
Software architectures used to instantiate specific applications will vary considerably. How well the software
architecture maps to the multicore architecture directly impacts how efficiently the application will be executed.
The following questions are particularly relevant to the issue of efficiency. Some of these issues are addressed in the
following discussion on multicore architectural features.

1) Does the application require frequent and fast access to a large off-chip data volume or can the application
largely be executed on-chip (in place)?

2) How well can the application be parallelized?
3) Are the processes distributed among the nodes largely independent or is significant inter-processor

communication necessary?

Figure 4. Hyperspectral Image Processing

American Institute of Aeronautics and Astronautics

6

4) Are these processes identical or heterogeneous?
5) Does the application require a dynamic processing (e.g. tasks and memory allocation) model?
6) How much processing latency is acceptable?
7) Is floating-point processing necessary?

III. Key Multicore Architectural Features
Commercial multicore processor architectures are proliferating at a rapid pace. Applications and processing
paradigms drive architectures. As the range of processing applications and requirements expands, so does the span
of architectures. In space-based systems, as in any multiprocessing system, they key elements are:

1) Processor core instruction set architecture (ISA)
2) Heterogeneity vs. Homogeneity of cores
3) Number of processor cores
4) On-chip Inter-core communication network
5) On-chip memory (cache) architecture, size, distribution and access method
6) Off-chip memory architecture and interface
7) Off-chip bus/network interconnect interface

The specific characteristics of the above key elements will determine the applicability of the processor to real-
time systems, scientific parallel processing, large space searches, and model-based analytical processing. Similarly,
the inherent robustness of the computer and suitability for application of different fault tolerance techniques is
directly determined by these architectural features.

Many currently popular, commercially available multicore processors comprise a small number (2 to 8) of cores
based on previous generation unicore processors. The primary advantage of these types of machines is that they
require minimal new development both in hardware and software, thus providing a rapid path to market and a
familiar software suite at the cost of potential enhancements in efficiency and throughput that might be achieved
using newer ISAs and interconnects more tailored to the multicore environment. Provision of a relatively
straightforward entry path to multicore computing for both developers and users has given researchers time to begin
the process of understanding the potential of multicore computing and to experiment with different approaches.
While most of these multicore processors are built around general-purpose ISAs, there are also examples of Digital
Signal Processors (DSPs) in this category. DSP ISAs and unicore architectures, having a long history of
accommodating multiprocessing architectures such as parallel and systolic arrays, are more easily adapted to the
multicore environment and highly efficient multicore DSPs are readily available.

Current state of the art general-purpose multicore processors, such as the Tilera product line, offer many tens of
processors with the latest generation machines providing up to 100 cores on a chip. In this case, a custom ISA was
developed as well as custom on-chip interconnect. This level of customization enabled high efficiency for the target
application area, (video processing) while standard off-chip memory and I/O interfaces allowed relatively
straightforward board level product development. As the family moves towards more general-purpose computing,
changes in ISA, interconnect, and hardware support for previously software-implemented functions are required,
and thus the family architecture is evolving. Other computing system developers are making similar trades as they
evolve their product lines to penetrate the growing range of applications and markets.

As users are quickly finding out, the use of multicore machines for unintended applications results in significant,
and often unacceptable, losses in efficiency. We have recently experimented with a range of commercial multicore
computers; porting a variety of operating systems and applications to these machines and measuring power
efficiency and compute throughput and scalability while concurrently analyzing the architectures for fault tolerance
capabilities and suitability for use in mission critical and extreme environment applications.

As will be discussed in the following sections, space-based applications require additional unique features at the
fundamental semiconductor and circuit technology levels, as well as, at the ISA and architectural levels. Designing
multicore processors for space will entail unique architectural trades to accommodate a broad range of unique and
general-purpose applications a well as high reliability in extremely challenging environments.

American Institute of Aeronautics and Astronautics

7

IV. Desired features of a spaceflight multicore processor
NASA has been looking at multicore processors as a means to enable advanced mission capabilities and as a way

of reducing the size, mass and power of the avionics systems. Currently, mission designers must deploy federated
computing systems to provide the sufficient computational power and fault detection, isolation, and recovery (FDIR)
functions. Using this approach with standalone processors has significant negative impacts to system complexity,
size, weight, and power (SWaP) and increases overall mission cost. Multicore systems have the potential to
consolidate computing functions, reduce the number of special purpose FPGAs and maintain fault FDIR
functionality, all while dramatically improving computational performance for next generation capabilities.

During an early phase of the Altair crewed Lunar Lander development, the development team investigated
deploying a fault tolerant multicore processing architecture. By using the high performance computing capabilities
for general automation, vision processing, landing hazard avoidance, Automated Rendezvous and Docking
(AR&D), as well as normal Guidance Navigation & Control (GN&C) and Command & Data Handling (C&DH)
functions, the team was able to reduce significantly the overall SWaP and provide for future commonality with other
systems within the Constellation program. And while this study focused on a crewed mission, these benefits would
apply equally to robotic space missions. Currently, several vision based autonomous landing systems providing
pinpoint landing, hazard recognition and avoidance, and real time navigation based on terrain analysis are under
development for both human and robotic missions. In addition, there are multiple efforts under way aimed at
developing autonomous science capabilities and autonomous onboard mission planners for robotic missions based
on multicore processor architectures. Using these projects as a basis, the following general features have been
defined to be highly desirable in future general-purpose multicore computers. It should be noted that the following
paragraphs relate to general-purpose computing solutions, not digital signal processors or other types of specialized

computing architectures, and that the perspective of the authors is to provide guidance to computing system
developers utilizing current or emerging technologies for products to be fielded in the next few (3-6) years. Figure 5
depicts a notional multicore computer system at the board, multicore processor device, and processor core levels.
The following discussion explores the desired feature set by type of feature (e.g., performance, fault tolerance)
architectural allocation (e.g. processor, memory, I/O), and level of implementation (e.g., processor, system).

A. General Performance
While onboard processing performance requirements can vary substantially from mission to mission, the desired
features described below would accommodate most foreseeable applications.

Figure 5. Notional Multicore Computing System.

American Institute of Aeronautics and Astronautics

8

1) Processing Throughput

The processor should be capable of providing at least 40GOPS and 20GFLOPS (billion floating-point
operations per second) throughput to support these highly compute-intensive real time applications. While
computing platforms of lesser capability will be of interest to some missions, this high level of computational
capacity will provide the most generically useful, cross-mission capability. The computing system design
should provide sufficient memory and I/O bandwidth to support this throughput capability.

2) Power Management

The processor should be capable of scaling its power and energy consumption with required throughput. For
many applications, the required throughput will vary dramatically throughout the mission either due to pre-
planned mission phasing or because of unexpected events that require immediate response, e.g., real time
execution of a model based mission planner due to discovery of a science opportunity or potentially mission
threatening hazard. Two modes of power/performance scaling should be made available: clock control and core
power up and down. To accommodate real-time events, these mechanisms should respond rapidly, i.e, on the
order of microseconds to milliseconds, not seconds. To provide maximum utility in extremely energy
constrained missions, the adjustability should be fine grained (i.e., at the level of individual cores and a few
megahertz clock rates). Typical spacecraft processors nominally dissipate approximately 5 watts while
spacecraft computers will typically dissipate approximately 10 to 15 watts maximum. While somewhat higher
power levels are acceptable for some earth orbiting missions, deep space missions are extremely power
constrained and expected to become more so in many future missions. Thus, in addition to power scaling as
discussed above, the processor design should provide a generally useful operating configuration (at least 1GOP,
external memory interface and one high speed external I/O) for not more than 5 watts.

3) Processor Core Implementation

The system should, in general, be homogeneous in nature, with the possible exception of cores controlling off-
chip I/O. Processor cores should all implement the same instruction set. This provides ease of programming,
fault tolerance, and space qualification. While custom heterogeneous architectures can provide significantly
higher efficiency, the specific application must be very well known and ubiquitous to justify special purpose
heterogeneous designs. In the longer term, heterogeneous architectures may become advantageous, but at
present this does not seem a winning strategy.

4) Internal Interfaces

It is extremely difficult, at this point, to define the optimum architectural tuning point of processing core
throughput, memory capacity per core, inter-core network speed or topology, on or off-chip memory, and I/O
bandwidth. The optimum architecture will vary dramatically with application. The driving requirement at this
time is to enable support of a broad range of applications, and thus, a broad range of architectural tuning points
within a given processor and computing system design. In the future, benchmark applications will need to be
developed to accurately assess the adequacy of specific architectures against anticipated mission needs. At
present, we can, however, state that each processor core should have sufficient local memory, implemented as
either local memory or cache, to ensure that the need to access off-board memory for both typical spacecraft
applications and for scientific parallel computations (such as are typically performed by cluster computers for
ground base science data analysis) is minimized. Similarly, the inter-core interconnect should be sufficiently
fast that the need to access off-board memory or I/O does not unduly delay processing in worst case real time
scenarios, which might include multiple cores re-loading local memories with new instructions and data.
Additionally, we anticipate increasing inter-core message traffic among computations spread over the chip
which need to be supported by the interconnect. We expect message-passing to become increasingly important
compared to shared memory for general-purpose programs for fault containment reasons as well as simplicity.
Strategies such as network partitioning to minimize contention and collisions may be beneficial in some
architectures. Use of emerging technologies such as through-silicon-vias and chip stacking may provide

American Institute of Aeronautics and Astronautics

9

considerable flexibility in both local core memory capacities and core interconnect topologies. By similar
reasoning, it would seem that provision of multiple memory ports and multiple high speed I/Os distributed
about the multicore processor chip would provide the best overall throughput and the highest probability of
being able to achieve a balance of processor throughput, memory bandwidth, and I/O for a broad range of
applications.

5) External Interfaces

As described above, the processor should provide high speed I/O, but it is difficult at this time to specify
optimum or prioritized I/O protocols. At the computer system level, however, it is clear that multiple 10Gb/s
interfaces, compatible with standard spacecraft and commercial standards, should be provided. The current
standards such as 1553B, SpaceWire, and TTGbE (Time Triggered Gigabit Ethernet) will not be sufficient to
support future spacecraft requirements, so that while they must be accommodated by some means, a next
generation protocol at the 10Gb/s level is needed and the computer design should accommodate easy addition of
new interface standards as they become available.

6) Time Management

Distribution of “system time” is also a hard requirement for space-based computing systems, both for fault
tolerance and for normal operation. To accommodate this requirement, the processor should provide a low
latency, deterministic mechanism for distributing system time across the array of processor cores and provide an
external interface to synchronize with other local computing systems.

B. General Reliability
The system needs to be fundamentally reliable for long missions. Typical missions can last 10 years or longer,

and some missions have lifetimes of 30 years or more. The processor chip and the computer system must provide
long life time and high reliability in the space environment. Typical mission environments include low earth orbit,
geosynchronous orbit, the lunar and Martian surfaces, and deep interplanetary space. Due to the long life
requirements, device packaging, board designs, and packaging implementations, and semiconductor component
design and quality are critical.

1) Packaging

Spaceflight electronics packaging requirements are far more demanding than those for most commercial off-
the-shelf devices. The packaging must first be able to withstand mechanical stresses during launch, which can
generally be handled by good mechanical design. Once on orbit, the thermal environment of space demands
that packaging withstand wider temperature extremes and frequent thermal cycles throughout a mission, as well
as, provide adequate thermal dissipation in vacuum. Even prior to launch, electronics packaging must also
allow detailed inspections during board-level assembly. For large integrated circuits, such as microprocessors,
these requirements typically are addressed by using hermetically sealed ceramic column grid array packages.

2) Thermal

While typical ambient or cold plate temperatures are normally within the 0O to 40OC range, due to the difficulty
of establishing good thermal paths, junction temperatures can reach well over 100 OC. However, cases also exist
(i.e. after start up) where a computer must operate near 0OC. Component and board level designs must
accommodate these wide temperature variations.

3) Ionizing Radiation

The ionizing radiation environment can vary dramatically from mission to mission and can even be highly
variable within a single mission. To operate reliably in their intended environment, spaceflight electronics must
mitigate both the long term and transient effects of this radiation. Long term effects result from total ionizing
dose (TID), which can cause threshold shifts and increases in leakage current. With the possible exception of
the Jovian system, the Van Allen Belts and a few other special cases, total ionizing dose has not been a

American Institute of Aeronautics and Astronautics

10

significant issue. However, transient single event effects (SEE) can manifest in many ways and can be a major
contributor to the unreliability of space computing systems. Single Event Latchup (SEL) is a potentially
destructive high current state and, in general, all spaceflight electronics must have immunity to this. Other
SEEs include Single Event Upset (SEU), Single Event Transient (SET), and Single Event Functional Interrupt
(SEFI), which are non-destructive but can cause either data errors or operational interruptions. Depending on
the criticality of the application, a spaceflight computer must also be either prevent or mitigate these effects.
While a variety of fault tolerance approaches have been developed to handle these errors, the components
themselves should provide high levels of radiation tolerance thereby minimizing reliance on fault tolerance
techniques.

4) Part Qualification

The system level reliability of spaceflight missions is significantly determined by the reliability of the
individual electronic parts. To ensure the high reliability of these parts, qualification programs are required to
ensure that the parts are fabricated, assembled, and tested in a controlled manner. These qualification steps call
for extensive lot-level testing and inspection steps that go well beyond the standard practice for commercial
fabrication processes.

C. Fault Isolation and Recovery
While reliability is preferable to an over-reliance on fault tolerance, the reality is that no component or system is

immune to fault induced errors. Highly reliable systems must implement at least some fault tolerance. The fault
tolerance measures should, therefore, be inherent in the design of both the processor and the computer system, while
imposing minimal overhead in throughput, mass, power, and volume. It is our experience that, if fault tolerance is
built into the system from the processor and components through the system level, it is possible to achieve high
efficiency levels. But it is also our experience that the converse is true: if fault tolerance is not designed in at the
outset, it will be impossible to achieve highly efficient, high coverage fault detection, isolation, location, and
recovery.

One of the most important desired features is the ability to hardware partition functions from one another on
different cores. This applies to all of the use cases discussed in section II. With the support of super/hypervisor level
software, hardware partitioning would allow individual cores to be reloaded, restarted, crash, and contain software
errors all without affecting other cores. Mixing science data processing software from different vendors or even
loading critical Guidance Navigation & Control software into an adjacent low criticality science processing core
would be possible and certifiable. This partitioning allows the software system composability (separation of
concerns) benefit of a federated system to be retained while still meeting future mission needs for high performance
and lower SWaP avionics. Without the ability to run-time partition cores and system resources, a multicore
processer may become just a niche product and not be generally applicable to a wide range of missions.

The processor chip should be designed with fault tolerance of the processor cores and external I/O in mind. This
can be done in various ways, but it should be done power efficiently and with minimal operational overhead. At a
minimum, the following issues should be considered in developing a fault tolerant machine.

1) Error Detection and Correction

Basic fault tolerance mechanisms such as error detection and correction codes should be provided at the
processor level, i.e., at the internal chip interconnect and on-chip memories.

2) Memory Partitioning

The system should optionally provide the capability to partition memory and I/O such that it is not possible for
a core to corrupt memory or I/O that it does not “own”. The processor internally, and the computer at the system
level, must be able to guarantee this partitioning in the presence of faults. However, there may also be special
cases where a set of processors may need to share local memory to optimize performance.

American Institute of Aeronautics and Astronautics

11

3) Scrubbing

The processor and the system should provide some means of detecting and scrubbing latent faults or errors to
preclude a buildup of undetected errors that could result in system failure due to an accumulation of errors
beyond the ability of the built in fault tolerance to handle.

4) Core-to-Core Communication

The processor should be capable of fault tolerantly and efficiently enforcing a message passing interconnect
paradigm. If it were possible to achieve high efficiency in a purely message passing interconnect, this would be
preferred, but it is not clear that this is the case, especially for certain applications that naturally map well into a
shared memory computing model. Thus, a general-purpose processor, in the near term, should provide both
modes of communication but be able to guarantee message passing only (i.e., that a processing core cannot,
even under fault conditions, write into another processor’s memory area) within specified regions of the core
array. Similarly, this mechanism should also be extended to external memory and I/O.

5) Internal Redundancy

It is often desirable (or necessary) to implement a multiply redundant fault tolerance scheme such as triple
modular redundancy. To support these fault tolerance modes, the processor should provide the ability to tightly
synchronize processing cores.

6) External Synchronization

It will, for some applications, be necessary to implement redundancy at the system level. Synchronization to an
external timing source is therefore also desired at least at the processor level.

7) Redundant I/O

Fault tolerance at the spacecraft level requires the spacecraft computer to provide multiply redundant I/O ports.
This is at least a computer system level requirement, but depending on architecture, may be required at the
processor level as well.

8) External Memory

The computer memory system will require error detection and correction of computer memories. Toleration of
whole memory chip failures and multiple bit errors is needed as well.

V. Software Considerations
The efficient and cost-effective development of the software that is to run future multicore systems requires

tools. Of course, we still need the usual compiler-linker-loader with standard binary formats for the hardware
architecture at hand. But with multicore, we have the additional issue of distributing the programs to the cores that
will use them – a possible wrinkle in the loader part of the problem, or possibly addressed through some other
facility that communicates with the cores. But whatever the solution, the programmer expects that getting the
program into the correct memory cells and moving the code from one core to another will be done handled by
functions supplied with the system. We also note that other tools that have become standard, such as language-
sensitive editors and platform-aware debuggers, are also expected. These are the minimum.

In particular, the job to be done by debuggers is more complex, and more necessary, than has previously been
the case. Simply stated, multicore makes possible more paths through a given collection of code than equivalent
code run on a single-core, multi-tasking system. One reason is because task priorities in a single-core system often
constrain the order in which a given set of tasks will be allowed to run, while with multicore, priorities among tasks
hold only within a single processor. So, if two tasks happen to be running on separate cores, they may interact and
their executions interleave in ways unanticipated by the programmer.

Most debugging takes place in a sequential environment. This means that the programmer wants to control, in a
repeatable way, the order in which cores as well as tasks will run. The programmer will want to run, and re-run, the

American Institute of Aeronautics and Astronautics

12

same sequence of execution over and over again, to discover his bug. Debuggers are a proven time-saving tool, and
in multicore, the situation is certainly no less complex.

Another important tool for code testing is simulation. Multicore simulators, both binary compatible and not,
have their costs and uses. But a simulator is essential and is especially useful if it is capable (for the task at hand) of
sufficiently accurate performance prediction. More and more, programmers and projects employ simulation for
testing code and for testing entire systems. The cost of simulation is much lower than the cost of testing on actual
hardware and has become an expectation of developers and managers alike.

Our real challenge is applications with a real-time component. Of course, a real-time operating system is
essential, and with libraries for:

1) Communication Among Cores, On and Off Board
2) Interrupt Handlers
3) Memory Allocation (in a distributed environment)
4) Device Driver Frameworks
5) Time and Timers
6) File System Framework
7) Logging Support

 This list not meant to be exhaustive and is, in many respects, no different than such a list for a single-core
system. Additional elements, depending on hardware architecture, are support for on-chip communication networks
and associated communication protocols. And of course, the test of a real-time system is performance: do the tasks
meet their deadlines? To answer this question, performance measurement tools will be required.

Finally, standard tools and platforms, such as Eclipse, allow additional tools, languages, and compilers, and all
manner of extensions to tools within an interface known to many suppliers. In fact, not adhering to or not utilizing
standards where they exist is a negative in the world of software and of computers in general.

VI. Long Term Impact of Multicore Processors to Future Missions
In the longer term, provision of high performance multicore based computers onboard spacecraft, as discussed in

section II, will revolutionize robotic (and eventually crewed) space missions. As with terrestrial robotic systems,
providing a space robotic system with intelligent autonomy allows the robot to carry out missions on its own with
minimal direction from humans. Thus, it can react in a timely manner to unexpected events, integrating goal directed
mission planning with situational awareness to quickly determine a course of action without terrestrial intervention.
Not only is this capability greatly enhancing of certain missions, improving spacecraft reliability and robustness,
hence, science and exploration return, but it is also enabling of whole classes of missions in which it is impractical
or impossible to engage human intelligence in time to direct the mission.

Multicore computing will also shift the paradigm for how science information is provided by spacecraft assets.
With the availability of increased onboard processing capabilities, future mission concepts can evolve where higher
level science data products are returned to earth instead of compressed sensor data, and science of opportunity is
pursued as the situation is warranted.

How multicore computing will ultimately be embedded in the spacecraft bus and in the payload is yet to be
determined. The computing architectures and paradigms that will emerge over the next 20 years are similarly
unknown and will evolve, probably in several directions simultaneously. What is clear, however, is that this is an
exciting time for mission designers, scientists, space explorers, and spacecraft system and computer engineers. For
the first time in decades, robotic spacecraft will have computing capabilities similar to those enjoyed by terrestrial
systems. How creative we are in developing the form of those computing systems and how we put them to use, will
determine the extent of the science and exploration we can do in the next 20 years.

VII. Conclusion
Multicore computing offers a significant advance in capabilities over the current state of the art for onboard

processing. Several potential application classes have been identified for multicore computing including; (a) high
throughput science data processing, (b) short duration real-time burst calculations, (c) intensive search-based
reasoning, and (d) general-purpose computing. Several multicore architectural features can influence how well a
processor will perform for a given application. However, this paper has identified sets of desired features (general
performance, general reliability, and fault isolation and recovery) for a spaceflight multicorer processor that would

American Institute of Aeronautics and Astronautics

13

be broadly applicable for future NASA onboard processing applications. Beyond these features of the multicore
processing device and computer, software tools were identified that will be necessary for application development.
With these features and software tools, onboard multicore processing can enable autonomy and advanced science
data processing that can lead to entirely new classes of robotic space missions.

Acknowledgments
This research was carried out both at NASA Goddard Space Flight Center and at the Jet Propulsion Laboratory,

California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The
authors wish to acknowledge the NASA Exploration Technology Development and Demonstration (ETDD)
Autonomous Systems and Avionics (ASA) Project, under which multicore processing architectures have been
studied for spaceflight applications.

References
1Berger, R., Bayles, D., Brown, R., Doyle, S., Kazemzadeh, A., Knowles, K., Moser, D., Rodgers, J., Saari, B., and
Stanley, D., “The RAD750TM- A Radiation Hardened PowerPCTM Processor for High Performance Spaceborne
Applications”, IEEE Aerospace Conference, CP849, Vol. 1, IEEE, Big Sky, MT, 2001, Pages 2263 - 2272 vol.5.

2Richardson, J., Fingulin,S., Raghunathan, D., Massie, C., George, A., Lam, H., “Comparative Analysis of HPC and
Accelerator Devices: Computation, Memory, I/O, and Power”, Fourth International Workshop on High-Performance
Reconfigurable Computing Technology and Applications, New Orleans, LA, 2010, Pages 1-10.

3Bell, S., Edwards, B. , Amann, J., Conlin, R., Joyce, K., Leung, V., MacKay, J., Reif, M., Liewei Bao , Brown, J.,
Mattina, M., Chyi-Chang Miao , Ramey, C., Wentzlaff, D., Anderson, W., Berger, E., Fairbanks, N. , Khan, D.,
Montenegro, F., Stickney, J., “TILE64 - Processor: A 64-Core SoC with Mesh Interconnect”, IEEE Solid-State Circuits
Conference, San Francisco, CA, 2008, Page 88.

4Gehrels, N., and Swift Science Team (1999), “Swift - The Next GRB MIDEX Mission”, Bulletin of the American
Astronomical Society, Vol. 31, Page 1512.

