
 1

 LOW-THRUST ORBIT TRANSFER DESIGN FOR DAWN 
OPERATIONS AT VESTA 

Daniel W. Parcher* 

Upon arrival at the asteroid Vesta, scheduled for July of 2011, the Dawn space-
craft will target a series of four distinct mapping orbits, each providing a unique 
opportunity to observe Vesta. The unknown, and potentially complex, Vesta 
gravity field presents challenges for designing low-thrust transfers between the-
se mapping orbits while maintaining spacecraft safety from Vesta occultation of 
the Sun. This paper provides a description of the orbit transfers designed for 
Vesta operations along with a discussion of the constraints and methods used to 
design these transfers. The effect of alternate gravity fields on the viability of the 
designs and the design method is also considered. 

INTRODUCTION 

In July of 2011 the Dawn spacecraft is scheduled to begin a year of orbital operations at Vesta, 
the 2nd most massive main-belt asteroid. Dawn is a NASA Discovery mission that uses solar-
electric low-thrust ion propulsion for both interplanetary cruise and orbital operations about its 
two targets – Vesta and Ceres. During its mission, the Dawn spacecraft will orbit both bodies and 
perform a series of observations. Vesta and Ceres are protoplanets whose formation is thought to 
have been interrupted by the formation and presence of Jupiter1. With apparently different com-
positions, observations of Vesta and Ceres are designed to provide a complimentary understand-
ing of the conditions and processes present during the formation of the solar system1.  

Dawn launched in 2007 and, after an initial checkout period2, began thrusting to achieve a 
successful Mars gravity assist in February of 2009, and subsequently toward rendezvous with 
Vesta. At Vesta, the Dawn spacecraft will target a series of four distinct polar mapping orbits 
(shown in Figure 1), each providing a unique opportunity to observe the asteroid. 

Dawn carries two spectrometers, the Visible and Infrared Mapping Spectrometer (VIR), and 
the Gamma Ray and Neutron Detector (GRaND)3,4, which will be used to determine Vesta’s sur-
face mineralogy and detect key elements that will give insight into Vesta’s formation5. The 
spacecraft’s Framing Camera will be employed to obtain mapping images to develop visual and 
topographical maps of Vesta5 in addition to obtaining optical navigation images. Finally, the de-
termination of Vesta’s gravity field will also improve understanding of Vesta’s internal structure 
and formation. 

                                                      
* Member of the Engineering Staff, Guidance Navigation and Control Section, Jet Propulsion Laboratory, California 
Institute of Technology, Mail Stop 264-820, 4800 Oak Grove Drive, Pasadena, California 91109-8099. E-mail: Dan-
iel.W.Parcher@jpl.nasa.gov. Phone (818) 393-0457. 
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eter. The uniform density gravity model, with its strong gravitational harmonics, was intended to 
be a conservatively challenging gravity field for transfer design and orbit stability. The core-
based gravity field was selected as a higher-likelihood gravity field whose weaker gravity har-
monics would offer a presumably less challenging, but more representative trajectory design. 

For this analysis, the Dawn spacecraft characteristics (see Spacecraft Power in the Appendix) 
and thruster performance (see Thrust and Massflow in the Appendix) were used. See Reference 
10 for additional discussion of Dawn spacecraft characteristics. 

VESTA MAPPING ORBITS 

Four mapping orbits are planned at Vesta at three different orbital altitudes, all at or near polar 
inclination.  Each orbit starts instantaneously circular but has growing eccentricity resulting from 
the Vesta gravity model. The following sections introduce the four mapping orbits. The first and 
highest-altitude mapping orbit is Survey. 

Survey 

The Survey mapping orbit (see Figure 1) has a target radius of 3000 km, but Vesta’s gravity 
field may cause growing oscillations in radius. The Dawn project’s baseline gravity field, the uni-
form-density model described earlier, results in deviations in radius of up to 5 km by the end of 
Survey. Survey is 6 orbits in duration, corresponding to 17 days for the modeled gravitational 
parameter. 

Survey orbit has no groundtrack requirement, but requires an initial Sun-β angle of 10o. The β 
angle is the angle between the orbit plane and the Vesta-Sun line as illustrated in Figure 2. The 
10o target provides desired lighting conditions for VIR observations while avoiding entering Ves-
ta’s shadow.  A 3000 km circular polar orbit with a 10o β angle could describe any of four possi-
ble orbit planes. Two of these orbits cross the lit-side equator on the morning (AM) side of the 
Vesta-Sun line (see the AM polar orbit plane in Figure 2), one with the Vesta-Sun component of 
the angular momentum vector pointed toward the Sun (+) and one pointed away (-).  The two 
other orbits cross on the evening (PM) side (see Figure 2). The four combinations are referred to 
as +AM, -AM, +PM and -PM.  

The orientation selected for Survey orbit is +AM. The β angle naturally drifts due to Vesta’s 
motion about the Sun. The AM selection of the orbit causes the natural β angle drift to be posi-
tive, increasing the β angle. This is a desirable feature given that orbits with low β angles enter 
Vesta’s shadow. Since Dawn is a solar powered spacecraft, entering Vesta’s shadow has been 
identified as a potential risk to spacecraft systems health, prompting a flight rule against entering 
shadow throughout the Vesta mission. The positive β angle drift during Survey leads to a final β 
angle of 15.4o.  



Th
plane 
This f
to ach

 

High 

Th
tween
groun
illustr
The g
10-orb
pends
each 
crossi
mode
HAM
Equat
mapp

F

he selection o
and rotationa

flexibility in 
hieve Survey 

Altitude Ma

he Vesta High
n 925 and 97
ndtrack repeat
ration of the g
groundtrack re
bit cycle. Thi
s on the dete
equator cross
ing, with eve
l makes even

MO design sho
tor crossings 
ing images of

Figure 2 - Ill

of a +AM, po
al direction of
the initial ph
orbit11. 

apping Obit  

h Altitude Ma
75 km and a 
ts every 10 o
groundtrack f
equirement im
is relationship
rmination of 
sing must be
enly-spaced 3
nly spaced equ
own in Figur

spaced as e
f the entire lit

ustration of 

olar, circular o
f Survey.  Th

hase of Survey

apping Orbit 
duration of 6

orbits with ne
for the first 10
mplies that Ve
p dictates the 
f Vesta’s rota
e spaced no g
36o crossings 
uator crossing
re 4 has a ma
evenly as pos
t surface. 

Beta Angle, 
Direction, a

 4

orbit with a 1
ere is no requ
y reduces the

(HAMO), sh
60 orbits at a
early evenly-s
0-orbit cycle o
esta must rota
12.3 hour or

ational rate. D
greater than 
being the g

gs impossible
aximum spaci
ssible offer t

and 4 combi
nd AM/PM O

10o initial β a
uirement for t
e amount of s

hown in Figur
a 12.3 hour o
spaced equato
of the HAMO
ate an integer 
rbital period, 
During the re
42o longitude
oal. The uni

e to be achiev
ing of 37.5o

the best chan

inations of +/
Orbits 

 

angle fully de
the initial pha
statistical thru

re 3, has a ta
orbital period
or crossings. 
O design show

number of tim
a value which

epeating grou
e from the n
form-density 

ved without m
between equ

nce to return

/- Angular M

efines the orb
ase of the orbi
usting require

arget radius be
d. The HAM
Figure 4 is a

wn in Figure 3
mes during th
h therefore de

undtrack cycl
nearest equato

Vesta gravit
maneuvers. Th
uator crossing
n uninterrupte

Momentum 

bit 
it. 
ed 

e-
O 
an 
3. 
he 
e-
le, 
or 
ty 
he 
gs. 
ed 



 

In 
drift t
determ
zen β 

 

F

F

addition to t
throughout th
mined by the 
angle offers 

Figure 3 - Ves

Figure 4  - H

the groundtra
he orbit. Achi
assumed grav
consistent illu

sta High-Alti

High Altitude

ck requireme
ieving this fr
vity field (92
umination thr

itude Mappi
Vesta I

e Mapping O

 5

ents, HAMO 
ozen β angle
.65o for the g

roughout HAM

ing Orbit at 9
Inclination.

rbit Ground

also has a β
e requires a sl
groundtrack sh
MO imaging.

950 km Initia

dtrack: First 

angle target 
lightly off-po
hown in Figu
. 

al Radius, w

Cycle (10 or

 

of 30o with n
olar inclinatio
ure 4). The fro

 

ith Polar 

rbits) 

no 
on 
o-



Low A

Af
the lo
suscep
find a
HAM
fied th
(rangi

On
tion a
ed du
durati
the 39
accep
is also

Op
target
mapp
of spa
perfor
occur
eclips

In 
achiev

         
* Estim
possibl
future a
† Shado
indicat

F

Altitude Map

fter HAMO, t
owest mappin
ptible to pertu
a LAMO with

MO when Vest
he LAMO orb
ing between 4

nce Vesta’s g
at Vesta. LAM
uration design
ion of LAMO
9o β angle at w
ptable scenario
o the most dan

ptimal lightin
t is a comprom
ing orbit to h
acecraft safety
rming scienc
r each week 
se12. 

addition to 
ve global gro

                     

mates of availabl
le arrival at Sur
anomalous scena
ow occurring at 
te that shadow ca

Figure 5 - Ves

pping Orbit 

the Dawn spa
ng orbit durin
urbations in o
h a frozen β a
ta’s gravity f
bit shown in 
405 and 521 k

gravity field is
MO is the long
ned to use all
O are as much
which shadow
o for the miss
ngerous of th

ng conditions 
mise between
have planned 
y rather than 
e observation
to correct p

the above re
oundtrack cov

                     

le time at Vesta 
rvey orbit and la
arios, or design c
39o is based on 
an occur at highe

sta Low-Alti

acecraft will t
ng Vesta oper
orbit characte
angle resilien
field is better 
Figure 5, whi
km radius bas

s well determ
gest mapping
l extra availa
h as 120 days
w occurs at th
sion, LAMO,

he mapping or

occur at LAM
n spacecraft sa
Orbit Mainte
science obje

ns and data t
perturbations

equirements, 
verage in the

   

use current spac
atest possible de
changes reduce t
a Vesta shape m
er β angles than 

tude Mappin
I

 6

transfer to the
rations. Due t
eristics.  A sep
t to perturbat
understood. 

ich has a radi
sed on the uni

mined, finding
g orbit at 70 d
ble time at V

s*. The frozen
hat orbital rad
 the longest a
rbits for space

MO β angles
afety and scie
nance Maneu
ctives, since 
transfers. LA

and thereby

LAMO’s gro
e first 60 day

cecraft power, th
eparture from V
the time availab

model with a sphe
39o. 

ng Orbit at 4
Inclination 

e Low Altitud
to its low rad
parate stabilit
tions. This stu
Currently, th
ius of approx
iform-density

g a stable LAM
days in nomin
Vesta. Curren
n LAMO β an
dius†. Because
and most dyn
ecraft health. 

lower than 4
ence objective
uvers (OMMs
thrusting is g

AMO orbit m
y prevent th

oundtrack req
ys, with a m

hruster, and mas
Vesta. The 120-d
ble for Vesta scie
erical 265 km ra

460 km Initia

de Mapping O
dius, LAMO 
ty study12 wa
udy will be re

he stability stu
ximately 460 k
y Vesta gravit

MO will be a
nal duration, p
nt estimates o
ngle target is 
e entering sha
amic of the m
 

5o, and thus t
es. Also, LAM
s). This, again
generally inco

maintenance m
e spacecraft 

quirements ar
maximum of 6

ss estimates to p
day LAMO also
ence.  
adius. More deta

al Radius, wi

Orbit (LAMO
is particularl

as performed t
epeated durin
udy has ident
km from Vest
ty field).  

 

a critical opera
plus an extend
of the potenti

45o, very nea
adow is an un

mapping orbit

the 45o β ang
MO is the onl
n, is a functio
ompatible wit
maneuvers wi

from nearin

re designed t
6o longitudin

project the earlie
o assumes that n

ailed shape mode

ith Polar Ves

O), 
ly 
to 
ng 
ti-
ta 

a-
d-
al 
ar 
n-
ts, 

le 
ly 
on 
th 
ill 
ng 

to 
al 

est 
no 

els 

sta 



 7

spacing in equator crossings during that time. The global coverage with closely spaced equator 
crossings is designed to maximize surface coverage for GRaND. 

High Altitude Mapping Orbit 2 

After LAMO, the Dawn spacecraft will enter its final mapping orbit at Vesta, the High Alti-
tude Mapping Orbit 2 (HAMO-2). The HAMO-2 characteristics are very similar to HAMO, in-
cluding the 950 km radius and the repeating groundtrack (see Figure 4), but the orbit is designed 
to occur as late as possible in the mission to achieve the most favorable lighting conditions. The 
main difference between HAMO-2 and HAMO is the β angle target, which is 30o for HAMO and 
45o for HAMO-2. Again, a β angle lower than 45o would be preferable to optimize lighting condi-
tions. However, in this case, it was the duration of the transfer that required the β angle to be 
raised, since achieving a lower β angle required extensive flight time, as discussed in further de-
tail below. 

ORBIT TRANSFERS AT VESTA 

Approach to Survey Transfer 

Survey is targeted by a “transfer” referred to as “Approach”, which is the transition from in-
terplanetary cruise, through capture at Vesta, to Survey. The start of Approach, 97 days before the 
start of Survey, was selected to correspond with the first optical navigation observation of Vesta. 
At the start of the Approach, the spacecraft will be approximately 1.2 million km from Vesta, a 
distance that enables the optical navigation team to begin collecting useable data. An example 
trajectory capturing the final 29 days of Vesta Approach is shown in Figure 6. 

Thrusting during interplanetary cruise and Approach is designed to arrive at Survey in the 
minimum possible time. During the 97 days of Approach, 67 days are spent thrusting, always at 
the maximum thrust capability allowed by the available power. Of the remaining 30 days of Ap-
proach, 22.5 days are spent performing navigation, science, and systems data collection and 
transmission*. These activities require the spacecraft to point to a particular orientation to obtain 
or transmit data, which is generally incompatible with thrusting.  

In addition to thrusting, obtaining and transmitting data, 7.5 days throughout the Approach 
schedule are reserved for 10 Maneuver Expansion Periods (MEPs). MEP’s are coasting blocks in 
the design trajectory that will be available for statistical thrusting during operations. Since the 
design trajectory represents an optimal minimum-time trajectory to Vesta, any statistical devia-
tions would result in late arrival to Survey. MEP’s are therefore needed to provide control author-
ity to correct for statistical deviations while preserving the target Survey arrival date. These 
MEPs are placed and sized according to the results of Monte Carlo analyses of the statistical per-
turbations that will occur during Approach operations11. MEPs are used in this manner for all 
transfers to science orbits. 

In addition to matching Vesta’s orbital phase, a main goal of Approach thrusting is to raise the 
spacecraft aphelion to match Vesta. As aphelion is raised, the Dawn spacecraft progresses toward 
Vesta, until capture (zero orbital energy with respect to Vesta) occurs. At capture, less than 8.8 
days of thrusting remain before Survey orbit is achieved, yet Approach thrust vectors still contain 
a significant out-of-plane component intended to align the orbit plane with the targeted Survey 
                                                      
* These activities include performing radiometric tracking of the spacecraft, collecting optical navigation images, col-
lecting rotational characterization images, performing science instrument calibrations and communicating the results of 
those calibrations, as well as communicating any additional spacecraft systems or instrument telemetry to the ground. 
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CONCLUSIONS 

The Static Dynamic Optimal Control Algorithm, Mystic, was used to generate optimal trajec-
tories in support of Dawn Vesta operations for each of the Vesta science orbit transfers. These 
transfers were designed to achieve spacecraft safety from occultation of the Sun in the event of an 
unplanned thrusting outage. 

Of the four transfers to science orbits, by far the most complex are the HAMO to LAMO and 
LAMO to HAMO-2 transfers. Each includes well over 100 orbits about of Vesta and passes 
through the 1:1 resonance of spacecraft orbital period to Vesta rotation rate. This 1:1 resonance 
enables strong gravitational perturbations to dramatically alter the spacecraft orbital geometry in a 
short time period. The resonance can be leveraged to achieve desired plane changes with minimal 
propellant and flight time, or can be detrimental when such plane changes are undesired.  

A 38.3 day HAMO to LAMO transfer about the uniform-density gravity field requires an ad-
ditional 1.5 days of thrusting when designed for a dense centralized core gravity field due to the 
weaker gravity harmonics. This effect is most noticeable through the 1:1 resonance where gravity 
harmonics are heavily utilized by the optimizer to achieve the desired plane change to increase 
the β angle when transferring from HAMO to LAMO. 

The LAMO to HAMO-2 transfer presented many of the same challenges as the HAMO to 
LAMO transfer, as well as an additional challenge – minimizing the β angle perturbation from the 
resonance. Accordingly, during this transfer, thrusting is required to counteract the natural β an-
gle change imparted by traveling through the 1:1 resonance. Counteracting the remaining β angle 
shift from the resonance requires a controlled decrease in β angle – sending the spacecraft toward 
eclipse. This poses a trajectory design challenge to maintain spacecraft safety in the event of an 
unplanned thrust outage. A low-altitude intermediate β angle target was employed to encourage 
the optimizer to avoid utilizing such unsafe spacecraft states. 
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