
SPIN or LURCH:
A Comparative Assessment of Model Checking and Stochastic

Search for Temporal Properties in Procedural Code

John D. Powell
Jet Propulsion

Laboratory
Pasadena CA USA

J ohn.PoweU@jpl.nasa.gov

Abstract

David Owens
NASA IV&V

Facility
FainnontWV

USA
owen@freeshell.org

Tim Menzies
Portland State

University
Portland OR USA

tim@ menzies.us

The difficulty of how to test large systems, such as the one on board a NASA robotic remote
explorer (RRE) vehicle, is fundamentally a search issue: the global state space representing all
possible behaviors of a complex software system is exponential in size. This state space explosion
problem has yet to be solved, even after many decades of work. Randomized algorithms have been
known to outperform their deterministic counterparts for search problems representing a wide range
of applications. In the case study presented here, the LURCH randomized algorithm proved to be
adequate to the task of testing a NASA RRE vehicle. LURCH found all the errors found by an
earlier analysis of a more complete method (SPIN). Our empirical results are that LURCH can
scale to much larger models than standard model checkers like SMV and SPIN. Further, the
LURCH analysis was simpler than the SPIN analysis. The simplicity and scalability of LURCH are
two compelling reasons for experimenting further with this tool.

1. Introduction

As software grows increasingly complex, testing becomes more and more challenging.
Automatic testing by model checking has been effective in many domains including computer
hardware design, networking, security and telecommunications protocols, automated control
systems and others [2, 4, 6]. In this case study we will examine a model of a resource arbitration
(RA) system aboard a NASA robotic remote exploration (RRE) vehicle. The model as built by
automatic translators from design specifications is too large for the available model checking tools.
The difficulty of how to test large systems, such as the one on board the RRE, is fundamentally a
search issue: the global state space representing all possible behaviors of a complex software system
is exponential in size. This state space explosion problem has yet to be solved, even after many
decades of work [4].

LURCH, an approximate (not complete) alternative to traditional model checking based on a
randomized search algorithm is being applied to the RA system on board the RRE in this case study

The study will make a detennination about LURCH's potential benefits and limitations while
testing a complex real world system. Randomized algorithms like LURCH have been known to
outperform their deterministic counterparts for search problems representing a wide range of
applications [7].

The cost of randomized algorithms is their inaccuracies. If complete algorithms terminate,
they find all the features, and flaws therein, for which they are searching. On the other hand, by
their very nature, randomized algorithms can miss important features / flaws. Past LURCH
experiments suggests that this inaccuracy problem is not too serious. [13]

In the case study presented here, LURCH's random search found the same errors that were
detected by SPIN. At the time of their discovery, using SPIN, the core causes of many of the errors
in the RRE model were miss-diagnosed. The correct core cause would later become readily
apparent while using LURCH. Also, this case study strongly suggests that LURCH can scale to
much larger models than standard model checkers like SMV and SPIN. Thus, results of previous
LURCH experiments [13] were confirmed by this study.

While we prefer the complete search of SMV and SPIN, some models are too large to be
processed by these standard methods. If the choice is random search versus nothing at all (because
the model is too big), the results of this case study suggest that random search methods like LURCH
can still be a useful analysis tool.

2. The RA-RRE Model

The model used for the LURCH testing case study described in this paper is a model of a
RA system on board a RRE vehicle and is referred to as the RA-RRE model throughout this paper.

The RA-RRE model used in this case study is a product of a research and technology
development (R&TD) effort that was undertaken at the Jet Propulsion Laboratory (JPL). The RA
RRE model is specified in Stateflow® and consists oftwo identical User (User_l and User_2) state
charts (processes) that make requests for RRE resources used during operation through a message
queue. The User processes run concurrently with an arbiter process (state chart), which processes

,. ... <11-________ 1 - ';bi:r -
---- IIIIIIIIIIIII I
1 User 1

1 1
1 I
1 I
1 ---- I

-- --
1 User 2

1
1 1II1II
L --- J

I
L __ _

Figure 1: Concurrent RA-RRE Model State Charts / Processes

the requests, taken from the
message queue, made by the
users. (See Figure 1) The
arbiter will Grant, Deny,
Pend, Rescind or Deny and
Rescind a user request or
recognize a message from a
user as nonsense and ignore
it. The appropriate arbiter
response is sent back to the
user making the request.

2.1. Relevant Stateflow
Semantic

The Stateflow semantic that is
most relevant to the testing
results to be discussed is the
fact that an ordering is
imposed on the execution of

concurrent states specified in Stateflow state charts. Concun:ent states are represented as "dashed
boxes" in Stateflow. (See Figure 1) Concurrent states in a system are regarded as interleaving
processes. This means that the steps in a given concurrent process may be executed in between the
steps of any other concurrent process and vise versa. However, in Stateflow, execution of
concurrent processes in a state chart has a specific tum taking requirement imposed upon them that
is preserved and repeated. The order in which the concurrent processes are allowed to progress is
determined by which concurrent state (dashed box) appears higher in the diagram graphically. Thus
in the RA-RRE model the order would proceed as follows: Arbiter, User_I, User_2, Arbiter,
User_I, User_2 ... indefinitely or until termination / deadlock. This ordering was specifically noted
by a numbering scheme in the Stateflow graphic specification and reflected in the behavior of the
automatically generated model (See Section 2.2)

2.2. Automatic RA-RRE Model Generation

The R&TD effort at JPL attempted to automatically generate Promela models for use by the
SPIN model checker from Stateflow state charts. A state chart to Promela translator called HiVy
was specifically designed and developed to use Stateflow's internal representation of state charts as
input and produce semantically equivalent Promela code as output.

The Stateflow specifications consist of (See Figure 2):

• Hierarchical state charts that indicate legal control flow based on the behavior and
constraints of the system being model

• C code embedded within various states to facilitate complex internal system
behaviors that affect future behavior in the control flow as execution progresses
through the various states of the hierarchical charts.

State A State B
decide(bool x)
{

if(x)
{

return false;
} State C

else during:

{ decide(x)
return true;

}
}

State D State E

I I
I I • •

Figure 2: C code Embedded in a Stateflow State Cart

The HiVy translator output consists of Promela code that includes a concurrent process for entry
into and execution at each level of hierarchically nested state charts. For example, a given
hierarchical state chart in Stateflow was nested three levels deep then

• Three process would be created (one for each level) and
• An additional process would be created for each state chart residing at a given level

and
• Additional processes created recursively for each process at the next lower level

until every state. chart at every level has its own concurrent process.
A complex semaphore locking system is included with a number of control processes that dictate
the behavioral relationships between concurrent state charts that reside at a single level anywhere in
the hierarchy.

While the HiVy automatic translation maintains fidelity to the behavior expressed in the
State flow specification it introduces unacceptable overhead in terms of state space explosion. This
results in models that are too large to be verified by SPIN within reasonable memory usage
constraints.

The LURCH version of the RA-RRE model took on a somewhat different form due to the
particulars of the LURCH modeling language. The LURCH modeling language allows a much
closer coupling (than did Promela) between the model elements and the underlying C code that is
embedded in the State flow state charts. The LURCH model essentially became a means of
annotating the C code at a higher level to control legal calling sequences of the system model's
actual C code while prohibiting illegal calling sequences as defined by the model.

2.3. RA-RRE Optimization

The selection of the RA-RRE model was driven by the factor that the state space of the model
after optimization was still too large to be verified by the SPIN model checker within reasonable
memory constraints. An optimization scheme for HiVy generated Promela models was developed
and subsequently automated to reduce the size of the models' state spaces. The optimization
algorithm targets the inordinate number of concurrent processes generated by the automatic
translator and consolidates them. This resulted in a 44% increase in the efficiency of the models
with regard to memory usage. While this allowed some large models to be subsequently verified
other remained too large. Further investigation indicated that models with more C code embedded
in it responded less dramatically to the optimization. This is due to the fact that the optimization
scheme only addresses inefficiencies at the Promela level. SPIN was unable to verify models, such
as the RA-RRE model, with large amounts of C code embedded below the Promela and/or state
chart model level.

3. Testing of the RA-RRE Model

The SPIN verification and subsequent LURCH testing of the RA-RRE model revealed a conflicting
requirement that could not be resolved within the time frame and resources of this case study.
However, it has provided fruitful ground for follow-on work with current and future NASA
software projects that utilize Stateflow as a model based software development tool in the future.
The requirements conflict that manifests during in the Stateflow specification of the system is
precipitated by specific Stateflow state chart semantics and thus represents a class of design issues
that must be addressed any time Stateflow is used to develop software systems in a model based
development fashion. (i.e. automatic generation of software code via Stateflow state charts using the
Matlab I Simulink suite.

3.1. SPIN Verification of the RA-RRE Models

The verification of the RA-RRE model with SPIN was perfonned over six variations of the
model. First, after illogical results were obtained from initial SPIN simulation runs, it was
detennined that a hand edited addition of a single line at a specific point in both Promela models
alleviated a deadlock condition without affecting the semantic meaning of the model. The deadlock
condition that existed is believed to have been the result of a Promela syntax issue within the HiVy
generated Promela model. Thus, two versions of the model were created: 1) RA-RRE (the original
translation) and 2) RA-RRE-V2 (the hand corrected translation). Next, there are two versions HiVy
translator (HiVy and HiVy_Eff) The HiVy version is the original State flow to Promela translator.
The HiVy _ Eff version is a modified version of the translator that is believed to produce a slightly
more efficient Promela translation than the original HiVy version. By using both of the translators
on the corrected RA-RRE-V2 model RA RRE Eff-V2 was added as a third model variation. - -
Finally the automated optimization algorithm was applied to each existing variation of the model to
maximize state space reduction. This yielded the six models that had to be verified:

• RA-RRE
• RA-RRE-Op (Optimization algorithm applied as a post processor)
• RA-RRE-V2 (Syntax correction to RA-RRE)
• RA-RRE-V2-0p (Optimization algorithm applied as a post processor
• RA-RRE Eff-V2
• RA-RRE_Eff-V2-0p (Syntax correction to RA-RRE)

All six model variations would have to be put though verification to:
• Ensure that the hand correction did not affect the behavior of the model in a significant way
• Detennine if the HiVy _ Eff translator andlor the Optimization scheme implemented as a post

process would impact the model state space enough to make SPIN verification possible.
The fact that similar results for basic deadlock and property verifications was the same for RA

RRE and RA-RRE-V2 suggests that the minor hand edit did not affect the semantics of the model
behavior. (See Table 1, Section 6) However, SPIN reported two STATUS_ACCESS_ VIOLATIONs in
during each verification for both RA-RRE and RA-RRE-V2 before continuing to let the verification
run indefinitely (each verification had to be manual aborted after 20 minutes). A
STATUS_ACCESS_ VIOLATION refers to the model attempting to access an unavailable or un
initialized memory address. After reporting these errors any verification result or the absence of one
in this case, is unreliable and virtually meaningless.

The optimized versions of these two model variations (RA _ RRE-Op and RA _ RRE _ V2-0p)
yielded the same results as their un-optimized counterparts. Again because of the existence of
runtime errors little if anything can be asserted based on these results.

The verification of the models variations generated by the efficient version of the HiVy
translator (RA-RRE_Eff-V2 and RA-RRE_Eff-V2-0p) yielded different results from the four
previously variations discussed above. Both found a deadlock at a very shallow search depth (depth
3). This indicates that the system need only take tree steps to find a sequence in which the systems
processes all find themselves in a perpetual state of waiting on each other. Examination ofthe SPIN
counter example showed that the processes either:

• Initialize and then a particular process takes a single step forward first in its execution
behavior and all the other processes began waiting for notification while the active
process waited on them for notification. As a result the entire system deadlocked.

• When the model is hand adjusted in a way that alleviates the above condition in order
that the model could be explored at greater depths, the deadlock condition was found a

deeper depth. This counter example showed that the users (User_l and User_2) would
always overwhelm the arbiter eventually.

3.2. LURCH Testing of the RA-RRE Models

The LUCH testing results ultimately uncovered a set of related conflicts in the RA-RRE
specification. First, LURCH discovered the same deadlock. Recall that the Stateflow semantics for
concurrent state charts withina specification must execute in a prescribed turn taking order. In'the
case of the RA-RRE model this means that regardless of the graphical configuration of the
State flow specification two user requests will always be generated for every one arbiter servicing of
a request. The deadlock conditions seen in LURCH testing results over these models, when taken
together as a class of related property violations, shows that the users overwhelm the "message
queue" that is being used to store requests. When this occurs both users become deadlocked in
states where they are waiting for disposition of pending requests for resources. In the RA-RRE
model, this is indicative of and caused by an overflow of the messages queue that leaves the
processes waiting:

• Each user is waiting in the pending state for the queue to become "un-full" so it can send
the next message.

• Since the user processes are unable to reach the idle state, where it can listen for and
received messages from the arbiter (See Bullet Above), they are unable to receive the
arbiter's message thus the arbiter can not disposition any requests.

Therefore, the users are simultaneously and perpetually waiting for the Arbiter to return to is
"Waitjor_Message" state, while the Arbiter is perpetually waiting for the users to return to their
respective "Idle" states. This results in system deadlock

4. LURCH versus SPIN Modeling Complexity

According to Holzman (personal communication) embedding C code in to Promela for use by
the SPIN model checker is very complex and has a steep learning curve, potentially taking several
months of training to accomplish successfully. LURCH's means of embedding C code into the
model is straight forward. Powell was able to successfully model a real world system specification
that had considerable C code embedded in it after only 15 hours of informal LURCH training. (See
Table 1, Section 6)

Verification of the embedded C code portions of the system model with SPIN is more
problematic than with LURCH testing. When verifying a model that contains embedded C code
with SPIN violations arising from incorrect C code are reported as a violation in a state at the model
level only. Thus, it is difficult to quickly pinpoint where underlying C code errors are causing faults
to occur. This black-box-like treatment of embedded C code caused the case study engineer to
misdiagnose approximately 50% of the problems reported by SPIN as being caused by improper
usage of SPIN constructs used for embedding C into Promela. LURCH testing would later reveal
that in fact half the problems SPIN was reporting were caused by error with regard to unprotected
accessing of fields from a C pointer when the pointer was null. (See Table 1, Section 6) After correcting
many of the unprotected accesses half of the SPIN verification runs that reported problems during
verification ran problem free until SPIN exhausted its memory resources. LURCH has shown
promise in this study as an effective C code testing and debugging tool for:

• Models that contain complex embedded C code that must run correctly before valid and
reliable results from exhaustive model checking verification can be obtained.

• Models that are too large for SPIN to successfully verify

While it is conceivable that the same C code operation information obtained from LURCH testing
could be obtained from SPIN, obtaining the information from SPIN involves an indirect and more
tedious process.

5. LURCH an~ SPIN Memory Utilization Performance

Our case is three-fold. First, in this case study, LURCH found the same bugs as SPIN. Second,
LURCH seems a simpler method of adding temporal logic constraints to C code than SPIN. Given
the complexities of the SPIN/C interface, we feel that this conclusion holds more generally than just
this case study. Third, not only can LURCH be simpler than SPIN for finding the similar faults for
C-based code, it also could scale to much larger systems than SPIN. This section offers the
empirical evidence for this third conclusion.

To understand how SPIN and LURCH scale to larger models, four models were chosen where
we could automatically vary the size of each model These four models were chosen since we could
automatically generate larger variants of each one. The x-axis of Figure 3 shows the size of each
model and the y-axis shows (in a logarithmic scale) the time required by LURCH and SPIN to find
the errors. The vertical dotted line in each plot of Figure 3 shows marks the limits to a direct
comparison of LURCH and SPIN: at these boundaries, the models grew so large that the no SPIN
mode could find the errors. The key observation to be made here in the zone where LURCH and

1000
100 a: 10

I j

OJ
0.01

! 100

f 10

:I

1000
100

$; 10
~

'" 0.1
0.01

....•
<><,.,..,.,..., -••

• 10 n
tblIbor (1/ PIVIot<lf,lhGrt

Le~r EIIlcliM Proioeol

14

• 6 • 10 n M ~ • •
N> be, o! PIO_ P~q fn9dOl!

1000

100
i: 10

I 1
0.1

\1.01

I 100

l 10

:I

1000
100

:i 10
I
j:

0.1

0.01

10

--l- - -----
15

SnlldSll:t

TreTa¢TO$

10

25

12

Figure 3: Figure 3: LURCH and SPIN Scalability Comparisons

SPIN can be compared (to the left of the dotted lines), LURCH found all the errors found by SPIN.
Figure 3 also comments on the relative scalability of LURCH's nondetenninistic search to

SPIN's more complete search. As model size grows, SPIN's search takes exponentially more
resources. The resources required for LURCH are far more modest. In particular, LURCH's
memory increases very gradually as problem size increases. This suggests that for very large
problems, LURCH's nondetenninistic search is not less safe than a detenninistic search since
LURCH can tenninate on large problems that would defeat detenninistic search.

With regard to the discovery of model errors SPIN and LURCH both found the same temporal
violations (Deadlocks). SPIN is unable to full search the state space beyond the initial deadlock to
fmd robust variations on various property violation due to state space explosion problems.
LURCH's ability to scale up to larger model inputs, albeit with incomplete search methodologies,
surpasses SPIN's. (See Figure 3) While both tools found the same logical error, LURCH's ability
flexibility and ease of instrumentation made full diagnosis of the root cause of the error. Namely the
conflicting requirements between the design assumption of the embedded C code and the Stateflow
semantic regarding concurrent states that is discussed above. (See Section 3.2)

6. Conclusion

In this case study LURCH perfonned comparably with SPIN in that it found the same problems
in the specification that SPIN did. Although SPIN's verification results, when possible to obtain, are
close to full system verification, LURCH, due to its random, non-complete search strategy was able
to test properties that overwhelmed SPIN more complete full verification strategy. The usability of
LURCH to discover and diagnose problems in the system specification (Stateflow State Charts)
showed great promise. With only 15 hours training, effective testing and diagnosis of problems
within the RA-RRE system specification was perfonned. (See Table 1)

Finding Errors - Property
Verification
Embedded C code

Diagnosis of Cause of Model
Errors

Steep learning curve

Masked errors in embedded C
code as syntactic / semantic
problems embedding C into
Promela

Found multiple variations on
Deadlock over .
Easily Accomplished with
minimal
Easily instrumented to proVIde
visibility into embedded C code
errors. This lead to discovery of
error relating to fundamental

conflicts

Table 1: Summary Comparison of SPIN and LURCH capabilities during the Case Study

These results encourage us to experiment further with LURCH.

7. Acknowledgement

The research described in this paper was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space Administration.

References

[1] P. Cheeseman, B. Kanesfy, and W. Taylor. Where the Really Hard Problems Are. In
Proceedings of the Twelfth International Joint Conference on Artificial Intelligence IJCAI{91,
Sidney, Australia, 1991.
[2] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: A New Symbolic Model
Checker. International Journal on Software Tools for Technology Transfer, 2(4), 2000.
[3] E. Clarke, O. Grumberg, and D. Long. Veri fiction Tools for Finite-State Concurrent Systems. A
Decade ofConcurrencylReections and Perspectives, 803, 1993.
[4] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, Cambridge, MA, 1999.
[5] B. Hayes. On the Threshold. American Scientist, 91(1), 2003.
[6] G. Holzmann. The Model Checker SPIN. IEEE Transactions on Software Engineering, 23(5),
1997.
[7] H. Kautz and B. Selman. Pushing the Envelope: Planning, Propositional Logic and Stochastic
Search. In Proceedings of the 13th National Conference on Artificial Intelligence and the 8th
Innovative Applications of Artificial Intelligence Conference, 1996.
[8] T. Menzies and B. Cukic. Adequacy of Limited Testing for Knowledge-Based Systems.
International Journal on Artificial Intelligence Tools, 9(1), 2000.
[9] T. Menzies, D. Owen, and B. Cukic. Saturation Effects in Formal Verification. In Proceedings
of the International Symposium on Software Reliability Engineering (ISSRE), 2002.
[10] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge
University Press, 1995, (reprinted 1997,2000).
[11] D. Owen. Random Search of AND-OR Graphs Representing Finite {State Models. Master's
thesis, Lane Department of Computer Science and Electrical Engineering, West Virginia
University, 2002.
[12] D. Owen and T. Menzies. Lurch: a Lightweight Alternative to Model Checking. In SEKE '03,
2003.
[13] David Owen and Tim Menzies and Mats Heimdahl and Jimin Gao. On the Advantages of
Approximate vs. Complete Verification: Bigger Models, Faster, Less Memory, Usually Accurate;
IEEE NASA SEW 2003.
[14] Paula J. Pingree, Erich Mikk, Gerard J. Holzmann, Margaret H. Smith, Dennis Dams,
validation of mission critical software design and implementation using model checking. IEEE
DASC, Oct 2002
[15] 1. M. Thompson, M. P. Heimdahl, and S. P. Miller. Specification based prototyping for
embedded systems. In Seventh ACM SIGSOFT Symposium on the Foundations on Software
Engineering, number 1687 in LNCS, pages 163{179, September 1999.
[16] J. M. Thompson, M. W. Whalen, and M. P. Heimdahl. Requirements capture and evaluation in
Nimbus: The light-control case study. Journal of Universal Computer Science, 6(7):731 {757, July
2000.
[17] M. W. Whalen. A formal semantics for RSML_e. Master's Thesis, University of Minnesota,
May 2000.

End of File

