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Abstract 

The dynamics and control challenges presented by a conceptual Jovian Moon 
Tour spacecraft are summarized in this paper. Attitude and orbital dynamics 
interactions are present due to the designed low-thrust trajectory, and controls 
structure interactions are also present due to the non-collocated sensor-actuator 
pairs on board the flexible spacecraft. A finite-element based simulation model 
is described which is capable of handling the complex orbital and attitude 
dynamics arising during the low-thrust spiraling maneuvers of the spacecraft. A 
few numerical simulations demonstrate that some of the challenges hitherto 
identified can be faced via integrated dynamics and control analysis, and that 
reasonable assessmelits of the pointing performance can be made. 

Introduction 

NASA is developing plans for an ambitious mission to orbit three planet sized moons of Jupiter - Callisto, Ganymede 
and Europa - which may harbor vast liquid oceans beneath their icy surfaces. These plans had their genesis in a study 
conducted in 2002 of a Jovian Icy Moon Tour (JIMT) mission**. This objective of the JIMT mission study was to 
design a spacecraft to explore the three icy moons and investigate their makeup, their history and their potential for 
sustaining life. To do so, NASA looked at how a nuclear reactor could enable long-duration deep space exploration. It 
was found that a nuclear fission reactor could produce unprecedented amounts of electrical energy to significantly 
improve scientific measurements, mission design options, and telecommunications capabilities. The proposed JIMT 
mission would incorporate a form of electric propulsion called ion propulsion, which would be powered using a nuclear 
fission reactor and a system for converting the reactor’s heat to electricity. Figure 1 depicts a conceptual spacecraft 
configuration developed as part of the JIMT study. 

For such a mission, attitude and orbital dynamics interactions are present due to the low-thrust trajectory design, and 
controls structure interactions are also involved due to the non-collocated sensor-actuator pairs. These are significant 
challenges to the dynamicist. We outline these interactions, as they were understood at the time of the 2002 study, in 
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the paper. The dynamics and controls challenges presented by the Jovian Moon Tour spacecraft are also described in 
this paper. A simulation model is described which is capable of handling the coupled orbital and attitude dynamics 
arising during the spiraling maneuvers of the spacecraft and the tight pointing requirements needed for science when in 
orbit around the Jovian moons. Multibody dynamic models for control of the scan platform articulation and of the 
spacecraft flexibility using finite elements are also described. Numerical simulations of the slew to gravity gradient 
stabilized mode and of the nadir pointed attitude dynamics around Europa demonstrate that some of the challenges 
hitherto identified can be faced via computational analysis, and reasonable assessments of the pointing performance 
and sensor and actuator selection can be made. 

Figure 1. The proposed Jovian Moon Tour Spacecraft. 

Spacecraft Attitude Control Functions 

In this section, we summarize the spacecraft’s main attitude control functions. Inertial measurement units (IMU) 
would provide body rate information. Star cameras would provide the absolute attitude reference and calibrate the 
IMU gyro bias drifts. I N S  would also propagate absolute attitude between star tracker updates. 

Attitude Control by RCS 

Three-axis stabilization would be carried out by a hydrazine reaction control system (RCS) during all coast (defined as 
the cruise when ion propulsion system is off) modes during launch vehicle injection, cruise, and JIMT would be using 8 
fore and 8 aft coupled 4.50 N thrusters. The control law would likely be a programmable rate/position deadband limit 
cycle if the power conversion Brayton turbines are zero net momentum. If the net angular momentum is not zero, 
control law would have to be a limit cycle for pitch axis, and precession rate control for roll/yaw axes. 

Attitude/Thrust Vector Control (TVC) 

During powered flight with electric propulsion (EP) using xenon ion thrusters, the combined functions of delta-V and 
thrust vector control would be performed by the trajectory path guidance control laws. Two boom mounted EP arrays 
(pods) each would be articulated by gimballing the pods in 2 degrees of freedom to produce pitch and yaw moments 
that null the spacecraft body rates and drive the net thrust vector through the spacecraft’s center of mass. The gimballed 
EP arrays would also provide spacecraft roll axis control moments by coordinated 2 degree of freedom articulation. The 
TVC EP system would have the capability of performing continuous coplanar spiral pitch turns during planetary escape 
and capture maneuvers. The TVC EP system would also be able to perform uncoupled turns for plane change delta-V 
maneuvers. In the event of power reduction from the reactor, or imbalance turbine angular momentum being injected 
into the system, attitude control would have to be re-established during thrust vectoring, and this event will induce 
significant attitude-translation coupling. 

JIMT Orbit Orientation Control 
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At reaching final orbit altitude the EP would be turned off and the spacecraft would be pitched up by the RCS to orient 
the long axis (reactor end) to zenith in the local vertical-local horizontal (LVLH) coordinate system. Yaw would be 
aligned with the orbit velocity vector. Pitch would be aligned normal to the orbit plane. This would place the spacecraft 
in a gravity gradient stable attitude with the gimbaled science module pointing to nadir. The gravity gradient 
oscillations (librations) would be damped by the reaction wheels during science operations, when the RCS will be 
turned off. Since the librations are symmetric there should be little if any momentum build-up on the reaction wheels 
and very infi-equent need to unload by the RCS. 

altitude 

Inclination 
Gravitational parameter Europa 
Gravitational parameter Jupiter 
Third body effects 

eccentricity 

Science Pointing Control 

152 km 
0.022 
100.5 degrees 
3.202733759 1362 12e+12 m3/s2 
1.266865343445600e+l7 m3/sZ 
Jupiter 

High resolution imaging science drives the vehicle’s pointing stability. Scientific instrumentation (cameras, plasma 
wave antennas, gravity experiments, magnetometer boom) would be mounted on the spacecraft bus as well as on the 
two-degree of ti-eedom articulated scan platform, The science platform would be mounted on a motorized gimbal at its 
center of mass of the science module. The platform would have its geometric center at the gimbal axes intersection. 
The gimbal range of travel in two axes would be +/- 45 degrees. The gimbal would be offset from the engineering 
module by a stiff stub boom (- 1 meter along roll axis. The science module would contain redundant I N ’ S  and star 
trackers. All imaging science cameras and other detectors requiring articulation would be on the science platform and 
aligned with the IN/tracker on a common optical bench. In addition to being a massive (>20,000 kg), large (-30 
meters long), flexible spacecraft, the JIMT vehicle would also host the nuclear reactor and power converters (Brayton 
turbines spinning at more than 30,000 rpm are part of the power conversion system). Fluid loops would also run 
through the radiator shield. This means that several sources of angular momentum exist, which have to be managed 
accordingly in order not to corrupt the science measurements. 

53 Jupiter 
Distance from Sun 
Orbital frequency 
Orbital period 

Telecom Downlink Pointing 

4.498228966045 162e-07 
5.202803 AU 
1.2704e-004 rads 
7.8715e+003 s 

High data rates drives use of Ka-band science downlink. Articulation of the -3 meter Ka-band boom mounted reflector 
would be done by a two-axis motorized gimbal providing +I- 90 degrees range of travel in each axis with shaft encoder 
feedback. The Ka-band required line of sight precision is not feasible by purely predictive (open-loop) pointing. A 
closed loop control would then be needed based on an uplink beacon acquired by either a monopulse detector or an 
adaptive feed on the antenna, and the beacon boresight offset is output by the detector and fed as two axis error signals 
for the gimbal loops to null. 

Assumptions on Spacecraft Mass Properties, Orbit, and Configuration 

Table 1 shows the parameters of the assumed orbit at Europa. Mass properties of deployed configuration are computed 
fi-om a preliminary fmite element model. These are shown in Table 2. However, simulation studies are carried out 
using a rigid vehicle model. Table 3 shows the location and direction of the thruster forces in the spacecraft body 
fi-ame. 

I Moon I EuroDa 1 
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Table 1. Assumption of orbital parameters for simulation study. 

bitch  9.4987e+005 [kg m2] 

I V B W  9.5013e+005 [kg m2] 
Total SC Mass in science orbit 

. Iroll 

15105 [kg] after 12000 

Exposed SC area 
Center of Mass from first node 
Vector from center of mass to bus 
Vector from center of mass to reactor 
Center of Gravity from origin of O W  
Assumed center of pressure 
Ion Pods centroid location from SC com 

kg Xenon depletion 
120 [m2] 
[0;0;5.3278] [m] 
[O;O;-5.083 11 [m] 
[0;0;14.9169] [m] 
[O;O;-0.0083] [m] 
2 meters aft fiom CM 
[+/-4.O;O;-5.083 11 [m] 

Table 2. Assumption of JIMT mass properties for simulation study. 

Table 3. Thruster Locations in the spacecraft’s body frame. 
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Figure 2. Geometric Description of JIMT Simulation Model. 

Initial Nodal Coordinates in ORF [m] 
tm:rrraPrcrm~m 

X Y Z 

-00000 00000 53278 PS 

-00000 00000 43278 as, 
-00000 00000 33278 
-0 0000 0 0000 2 3278 
-00000 00000 13278 qm+ 

-00000 00000 03278 
s-4 00000 -00000 -06722 

?r 0; 

I 

0 0000 -0 0000 -1 6722 
00000 -00000 -26722 
00000 -00000 -3 6722 
0 0000 -0 0000 -4 6722 -” 

0 0000 -0 0000 -5 6722 -IS+, 
00000 -00000 -66722 -ao 
00000 -00000 -76722 zu 
00000 -00000 -86722 
00000 -00000 -9 6722 
0 0000 -0 0000 -10 6722 
0 0000 -0 0000 -11 6722 D orbitmgfiame 
0 0000 -0 0000 -12 6722 UE SCbodyfime 
0 0000 -0 0000 -13 6722 1 

0 0000 -0 0000 -14 6722 

Figure 3. Flexible Boom Nodal Coordinates. 
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Figure 4. Flexible Spacecraft Model using a Bernoulli-Euler beam. 

Modal frequencies [Hz] with rotors locked: 
0 
0 
0 
0 
0 
0 

0.2016 
0.8734 
0.8734 
2.0388 
2.0388 
2.2017 
2.7281 
2.7324 
2.7324 
2.8851 
2.8851 
3.5250 
3.5250 
4.4497 
4.4497 
5.6836 
5.6836 
6.9955 
6.9955 
8.2869 

Figure 5. Flexible Spacecraft Modal Characteristics. 



Spacecraft equations of motion 

The equations of motion of the entire system will be derived in this section. We introduce the Europa-centric inertial 
reference frame QI, X pointing toward the vernal equinox, Z toward the North Pole, and Y completes the right handed 
reference frame, and the orbiting reference frame Few, which we use to describe the near field dynamics of the 
spacecraft relative to its orbit. We refer to Fig. 2. This reference frame is attached to a point that follows a Keplerian 
orbit around the primary body. The body-fixed reference frame is defined as: the x-body directed from the bus towards 
the reactor, the y-body axis directed fkom the bus toward the rightmost ion engine pod, the z-body axis completes the 
right-handed triad. The motion of the system is described with respect to a local vertical-local horizontal (LV-LH) 
orbiting reference fiame (x,y,z)= mow of origin OOw which rotates with mean motion R and orbital semi-major axis 
&, z along the local vertical, x toward the flight direction, and y in the orbit normal direction. When the spacecraft’s 
attitude is displaced from the attitude of the frame, the pitch angle is defmed as the angle between the body-fixed 
X axis and the z-axis in the plane of the orbit, the yaw angle is defined as the out-of-plane angle between the body- 
fixed X axis and orbit plane, and the roll axis is defined as the angle around the body-fixed X axis. The orbital 
geometry at the initial time is defined in terms of its six orbital elements, and the orbital dynamics equation for point 
Oow is propagated forward in time under the influence of the gravitational field of Europa. The origin of this frame 
coincides with the initial position of the center of mass of the system, and the coordinate axes are z along the local 
vertical, x toward the flight direction, and y in the orbit normal direction. The orbit of the origin of mom is defined by 
the six orbital elements a (semimajor axis), e (eccentricity), i (inclination), (longitude of ascending node), a 
(argument of perigee), v (true anomaly), and time of passage through periapsis. From Fig. 1, the position vector of a 
generic structural point with respect to 0ow is denoted by pl, and we have rl=&+ pl. We define the state vector as 
X=(RO, v0, pl, ql, vl, ol, ..., p ~ ,  qN, vN, wN. ewl,ew2,ew3 ,owl The kinematics equations are as follows: 

where r(qJ  is the mapping from attitude parameters to angular velocity vector, and 8, are reaction wheel angles. The 
translation kinematics and dynamics equations of a point mass of mass m in a general orbit are: 

p = -Ro - R x p - R x !2 x p - 2R x fi + r (near field) 

r f, + f, + f3 
m r = -& 3 + (far field) 

Irl 
(ORF orbital dynamics) 

f,,, + fJ, + fJ, 

m (4) 

where: p = relative position vector of body i with respect to OW, Ro = orbital radius vector to origin of OW, SZ = 

orbital rate, pE = Jovian moon gravitational parameter, fa = thruster actuation force vector, f, = solar pressure force 
vector, f3 = third-body forces vector, m = spacecraft mass with rotors added, and fpert, fJ2, fr3= resultants of higher order 
gravitational terms from the primary acting on the entire system as an extended body. Eq.(4) describes the Keplerian 
orbital dynamics. The rotational dynamics equations of a spacecraft with a gyroscopic distribution about its center of 
mass are: 

J&+ZHP+WX 
i 

W 

Hi =-g ( i=l , .. . , number of rotors) 
w, 
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where w = spacecraft's body angular rate, g, = external perturbation torques (solar pressure, gravity gradient, J2, etc.), 
g, = thruster actuator torques, g, = rotor control torque, J = spacecraft moment of inertia, HY = angular momentum of 
the i-th rotor. 

Next, we obtain an expression of the reduced set of multi-flexible body dynamics equations coupling the base-body 
equations with the rotor equations. Each rotor can be seen as a freely rotating body which is coupled to the base 
structure via a revolute joint. We assume that there exists a finite element model of the base structure. The wheel can 
be modeled with a localized inertia at a particular node, where the degree of freedom corresponding to the wheel 
rotation is left free. The equations of motion of the finite element node representing the lumped rigid spacecraft bus 
(superscript 1) and of node w (location of rotor) are as follows: 

where d is the nodal displacement at the bus center of mass (finite element node labeled as l), 0 is the nodal angular 
velocity vector, and S2 is the rotor rate vector, T; is the vector of rotor actuation torque, f' is the vector of external 

forces at node 1, and TI is the vector of external torques at node 1. MLus is the mass matrix of node 1, S:,, the first 

moment of inertia matrix, Jbustw the second moment of inertia matrix at node 1, J; the diagonal matrix of rotor axial 

inertia, and G1(Hw) is the skew-symmetric gyroscopic matrix, which depends on the relative angular momentum Hw 
present at node w at the rotor. The equations of motion for the flexible spacecraft in global coordinates can be written 
in terms of the configuration vector q (of length n,+l), which contains the nodal displacements and rotations of each 
node in global coordinates plus the rotor rotation angles plus the degrees of freedom of the bus. The global equations 
need to be reduced from the global set ng of dependent configuration variables to a set of independent degrees of 
freedom ne, and this is done by a transformation q=Tq,, where T is of dimension ngxne. Splitting the equations in 
elastic (e) and rigid (r) coordinates, we have: 

1 

where now Me,=TTM,T, and similarly for the other matrices. Assuming small base body angular rates (so that the 
nonlinear coupling terms are negligible, and the modes are still the mass-normalized undamped modes), and 
introducing A as the diagonal matrix of natural frequencies, and 5 as the modal damping coefficient, we can impose the 
modal transformation qe=Aq, where A is the modal matrix. Introducing the state vector as x=(q,S,fi, a)', where p 
represents the rotor (reaction wheel, Brayton's turbine) angles, the state space model takes the following form: 

(;;) = Ax +B" 
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where: A =%modal matrix, A= matrix of natural frequencies (diagonal), Me, = modal inertia matrix of coupling of 
deformation degrees of freedom with rotor degrees of freedom, Ma,= rotor inertia matrix, Gee= gyroscopic coupling 
matrix, Dee=modal damping matrix, fee=external forces on boom nodes (includes thruster and reactor control forces), 
f,=torques on rotors. 
Figure 3 depicts the flexible boom nodal coordinates used for the finite element model of the spacecraft, which is 
shown in Figure 4 using the properties of a Bernoulli-Euler beam element. Figure 4 also shows the stiffhess matrix of 
the Bernoulli-Euler segment used in the finite element model. Figure 5 summarizes the modal frequencies obtained by 
locking all rotors on the spacecraft, when the control system is operated in an open loop mode. 

Interaction between orbital and attitude dynamics 

In this section, we describe the effect of the attitude dynamics on the orbital dynamics and of the orbital dynamics on 
the attitude dynamics of the vehicle. The low-thrust propulsion system results in orbital trajectories which tend to be 
open spirals, rather than pure Keplerian orbits [Ref. 31. To achieve these non-keplerian trajectories, the thrust vector 
control system must drive the spacecraft attitude dynamics through the appropriate ion engine pod gimbal angles, 
which in turn must be operated in a way that minimizes the translation-rotation coupling and the dynamic back-reaction 
onto the rest of the vehicle. Since this coupling cannot be eliminated, an interaction exists between the orbital and the 
attitude dynamics of the vehicle. 
The kinetic energy of an extended rigid body in a general orbit around a planet can be written as: 

2 
where 03 represents the unit vector in the nadir direction (vertical down), S-2 = !2(n,, i’, hp) is the vector of orbital 

angular velocity dependent on the time rates of the longitude of the ascending node QL, the mean anomaly M, and the 
argument of perigee up. Similarly, the gravitational potential energy of the spacecraft can be written, to second order in 
the displacements, as: 

The perturbation force on an extended body orbiting around a spherical primary, caused by the extended inertia 
distribution of the body, can be written to second order in the normalized spacecraft size as [Ref. 11: 

3P 
f pert =-{[trace(J)1+2J].o,-5(0,.J.0,)~~} 2R: 

This perturbation force results in an acceleration applied to the vehicle’s center of mass. The result is that, even if the 
vehicle is orbiting a perfectly spherical primary, the mass center does not follow a truly Keplerian orbit, on account of 
the extended body inertia distribution. Conversely, when the spacecraft orbits a planet with a non-spherical 
gravitational distribution (Le., resulting in asphericity measurable in terms of J2 and J3 effects), the orbit in general will 
be elliptic, and the line of nodes will in general move in space. In particular, the longitude of the ascending node, the 
mean anomaly, and the argument of perigee will change with time. The result is that the attitude dynamics of the 
vehicle is coupled to the orbital dynamics. The modeled time variations of mean anomaly, longitude of ascending node, 
and argument of perigee are as follows Ref. 4: 

6,=-1.5 J2C2(R,/a)2cosi/(l-e2)2 

hP=+1 .5 J2C2(R,/a)2(2-2.5 sin2i)/(l-e2)2 
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At each time step, the eccentric anomaly E is found by solving Kepler‘s equation E-M=e sin(E). The true anomaly can 

then be found as v =atan2(sin(E)a,cos(E)-e). The current radius is R=u[l-e cos(E)]. The components of Ro 
in the inertial frame are then: 

cos(w,+v) cosQ,-sin(q,+v) sinQ, cosi 

sin( a, + v )  sini 
cos(wp+v) sinQ,+sin(o,+v) cosQR,cosI’ 

Defining the colatitude b=asin(zllR,(), the inertial vectors of the acceleration of the vehicle due to higher order 
gravitational potential terms (J2, J3) can also be written as: 

a =,-- IUJ3 [x(3-7sin26)sin6 y(3-7sin26)sin6 z(6-7sin26)sin6 -31R01/5]O, (18) 
J3  2 (R,(6 

In the simplified case in which the vehicle is approximated as a dumbbell constrained to librate in the orbital plane 
only, the fully coupled nonlinear equations of motion in the orbital radius &, the true anomaly q, and the pitch angle a 
become as follows Ref. 1: 

3 
Radius: j, -q2& = 1 + 7( trace(J) - 3J, sin2 a - 3J3 cos2 a )  + e) (19) 

True Anomaly: + 2--r7 4 . -  - -- 3P (J3 -J , )s inacosa ----sin(a f +e) 
RO mR, mR0 

f 
Ro3 J2 J2 

Pitch Angle: ci - = * ( J 3  - sina cosa + -(d3 sin8 - d, c o d )  

where f is the applied thrust, d, and d3 are the components of the thrust application point in the spacecraft body frame, 8 
is the thrust direction angle in body frame. We have assumed that the spacecraft body frame is a principal axis frame. 
From the last three equations, one can observe that: 

0 

0 

0 

0 

0 

the equations of motion are nonlinear and non-homogeneous. 
the equations of motion apply to any type of orbit, including spiral-idout phases. 
the attitude dynamics and the orbital dynamics are, indeed, coupled through the pitch angle a, which is not 
necessarily small, and through the true anomaly. 
the fact that the orbit is eccentric is reflected in the true anomaly rates. When the orbit is circular, the attitude 
dynamics is uncoupled from the orbital dynamics. 
the thrust direction and magnitude affect both the orbital and attitude dynamics. The applied thrust is a 
“follower” force (i.e. it follows the motion of the vehicle in its own body frame), and the thrust vector is not 
necessarily directed along one of the body axes only. 
the gravity gradient effect (represented by the terms in sa and ca) appears in all the equations. 0 

These interaction effects are shown in Figure 6 and Figure 7 where, for a typical 152 km altitude eccentric and 
regressive orbit around Europa (hence J2 effects are taken into account), the pitch response is shown to depend slightly 
on the orbital inclination, more strongly on the eccentricity, and even more strongly on the orbital altitude, as expected. 
To conclude this section, one might think that the attitude-orbit coupling is a totally negligible effect in most situations. 
However, because of the low-thrust dynamics, all the attitude maneuvers have durations comparable with the orbital 
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period of a low altitude science orbit around one of Jupiter's moons (- 2 hours). This fact alone singles out the need to 
hrther investigate this interaction. 

0 a3-a 4003 6000 am, imn Ia3-a '1m 
fl- M 

Figure 6. Left: Spacecraft linear orbital acceleration induced by attitude dynamics for a typical 152 km altitude 
orbit around Europa. Right: Spacecraft Pitch angle vs. orbital inclination for a typical 152 km altitude orbit 

around Europa. 

Time [sec] 

Figure 7. Left: Spacecraft Pitch angle vs. orbital eccentricity for a typical 152 km altitude orbit around Europa. 
Right: Spacecraft Pitch angle vs. orbital altitude for an orbit around Europa. 

Interaction between the flexible spacecraft dynamics and the pointing control loops 

In this section we make some analytical considerations on the JIMT flexible multibody dynamics, and on the 
interaction of the flexibility with the articulation controller. 

Models for JIMT Controls Structure Interaction 
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Figure 8 shows a simplified model capturing effects of flexibility on JIMT pointing dynamics. The characteristic 
Equation for Euler Beam with Tip Mass and Inertia, and clamped-fi-ee boundary conditions is [Ref. 21: 

[sin (A!) cosh (A!) - COS (A!) sinh (A!)] + (%j a4 [ 1 - co~(a!)cosh (A!)] + a 

A3 (%I [ cos ( A t )  sinh (A!) + sin (A!) cosh (A!)] + 
2 

[I + c o s ( A ~ ) c o s ~ ( A ~ ) ]  = o 

and the following i-th mode admissible function 4, (x) satisfies the geometric and boundary where A =- 

conditions of a clamped-free appendage: 

4 

EI 

in x inx 1 #i(x) =1-cos(-)+-(-l)i+'(-)2 
e 2  e 

.-._._ ---.-._._, orbit 
'%_ 

Figure 8. Simplified model capturing effects of flexibility on JIMT pointing dynamics. 

1 ( J2  + m2d2)@ = J2@ = z2 

Figure 9. Equilibrium of flexible base body with attached articulation. 
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Clamped-free boundary conditions were chosen on account of mo (-20,000 kg) being much greater than ml (-5000 kg). 
The physical displacement is computed via separation of variables as a summation over the number of modes 

N 

as y (x ,  t )  = 4, (x)q, ( t )  . Using Lagrange's equations, we obtain: 
/=1 

where 

These equations of motion may be summarized as 

M a 2 ,  + K,X, = DaUa 

For one mode only, we have: 

j =J,+2pL(?+rL+L2/3)+2[m,(r+L)(r+L)+JJ 

M00=pL2(0. 5+2/7?+ 7?/8) +prL(l+ 7?/6) +rn,(r+L) (2 + 2 / 2 )  +Jg?/L 

V > ( L ) = ~ / L  

Mqq=pL(3+~/3+n4/20+0.5)+m,[l +(1 +7?/2)J2+J,n4/L2 

Kqq=1.5 EIn 4 3  /L 

Through solving the eigenvalue problem: 

Ka@, = A,M,@>, 
@:Ma@, = 1 

and introducing the canonical transformation xa = @,?la, where 
modes, we obtain: 

= [ B1 * ] and there are n<N retained 
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These are the modal dynamics equations with gimbal locked if Ma includes the gimbal inertia. Introducing now the 
structural damping matrix C, we may write: 

2, =[-:: -2CA, I(")+[ ria (DZD, ]Ua = A,Z, + B,U, 

The observation equations are Y, = [ (D, @,I 2, .We also have: 

q,=e+a (33) 

where cp is the inertial gimbal angle, 8 the inertial spacecraft attitude angle, and ci is the gimbal angle relative to the 
spacecraft. Figure 9 depicts this interaction, and the Newton-Euler scheme used to represent the system's equations of 
motion when the articulated payload is present. Figure 5 showed the natural frequencies of the flexible spacecraft with 
rotors locked. Figure 10, 11, and 12 depict the open loop transfer functions from force and torque excitation at the 
reactor to the angles at the SC bus location along the roll (x), pitch (y), and yaw (2) directions, assuming a 2% modal 
damping uniformly distributed to all the modes. Because this is a non-collocated sensor-actuator problem, significant 
intervening flexibility appears in the resulting transfer functions. In particular, we may observe the lead effect caused 
by a zero preceding the remaining flexible poles of the system, which may be the cause of instability if the controller is 
designed in such a way to ignore this interaction. 

lo" 

fx 

I 0 9  

IO' 1 0' 101 102 

Hz 
IO' 100 101 1 02 

Hz 
Figure 10. Left: Open loop transfer functions from X-force excitation at reactor to angles at SC bus [N vs. Hz]. 
Right: Open loop transfer functions from Y-force excitation at reactor to angles at SC bus [N vs. Hz]. 
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Figure 11. Left: Open loop transfer functions from 2-force excitation at  reactor to angles at  SC bus [N vs. Hz]. 
Right: Open loop transfer functions from X-torque excitation at  reactor to angles at  SC bus [Nm vs. Hz]. 
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Hz 
Figure 12. Left: Open loop transfer functions from Y-torque excitation at  reactor to angles at  SC bus [Nm vs. 
Hz]. Right: Open loop transfer functions from 2-torque excitation a t  reactor to angles at SC bus [Nm vs. Hz]. 

From Figure 9, we obtain: 

and, in compact form: 

0 0 0  
+ 0 Kqq 0 ! 0 0 0  

M a x b  + KaXb = D,Ub 
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Through the eigenvalue problem: 

KbOb = AbMbOb 

(D,TMbOb = 1 

and introducing the canonical transformation xb = Obqb, we obtain: 

j j b  + Aiqb = @tDbUb 

These are the modal dynamics equations with gimbals free. Introducing the damping matrix Z, we have: 

together with the observation equations: 

(37) 

We assume from now on that we are retaining only one flexible mode. Using a tilde to denote a Laplace-transformed 
variable, we write the equations of motion in the frequency domain as: 

If we now observe the spacecraft's inertial attitude angle (through a star tracker, for example) and the articulation 
relative angle (through a gimbal mounted resolver, for example), we have: 

We can then write the bus dynamics equation as: 

where: 
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1 Mqqs2 + K,, b =-- oe 
(Miq - jMqq)s2 - jKqq 

is the platform to bus transfer function, 

is the spacecraft to bus transfer function: 

is the reactor to bus transfer function. Similarly, the relative gimbal dynamics equation can be derived as: 

5 = bpOfo + bpqfl + bpqf2 

where: 

b =-[ 1 M W S '  + 

" s2 (Mi ,  - jMq, )s2  - JKqq 

is the spacecraft to platform transfer function, 

is the gimbal to platform transfer function, and 

(43) 

(47) 

is the reactor to platform transfer function. These transfer function expressions show how the effect of the flexibility of 
the base body appears in the pointing control loop, and the deviation from the transfer function of a second order 
integrator is apparent. In particular, one may note that for certain combinations of parameters, a pole-zero cancellation 
may occur, in which case actuating the gimbal has no effect on the inertial pointing response. 

Flexible body interactions with gimbal servo-controller. 

In general, there are three basic types of interaction between a gimbal servo-controller and intervening flexibility 
(Figure 13): 

Base-body Flexibility (compliance in structure): unstable if the control bandwidth approaches resonance. 
In-the-loop Flexibility (compliance between sensor and actuation in servo): unstable. 
Appendage Flexibility (compliance outboard of the sensor package): almost always stable. 
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All three types have similar effects on gimbal servo's performance. They limit the pointing control bandwidth. Since 
controller bandwidth is in relation with the ability of the control system to reject disturbances, flexibility effects limit 
the controller performance capability. One can observe that pointing stability performance degrades with decreasing 
control bandwidth. In-the-loop flexibility is generally the most destabilizing effect. What this means is that the 
controller bandwidth should be kept at least an order of magnitude away from the significant structural modes. In 
general, by increasing structural damping, or using notch filters or high-performance controllers, modes can be 
tolerated within the controller bandwidth but at the expense of complexity of implementation. Also, high-performance 
controllers rely on detailed knowledge of the structural resonances. As a rule-of-thumb, if structural resonances 
migrate, performance degrades. This brings the need for sophisticated methods for on-board system identification. The 
transfer function of a rigid system (double integrator filter) can be written as 
Grrgrd = y ,  / u, = j-th sensodi-th actuator = 1 / Js2 . An example of this is the attitude dynamics of a rigid 

spacecraft. The transfer function of a flexible system can instead be written as G,.,grd+frex = G,, + y,, where 

y,, = (@$; /m, ) / ( s2 + 25,mks + m i )  . An example of this is the attitude dynamics in one axis with boom 

appendage. This is the case of JIMT. 

A) Base-body 
Flexibility 

(compliance in structure) 

Figure 13. 

compliance 

motor 

B) In-the-loop 
Flexibility 

(compliance between 
sensor and actuation 

in servo) 

motor 4 
C) Appendage 

Flexibility 
(compliance outboard 
of the sensor package) 

Flexible body interactions with gimbal servo-controller. 

We conclude this section with some qualitative considerations. Gain margin can be defined as the amount of gain of a 
system that can be increased (decreased) before it goes unstable. Phase margin can be defined as the amount of phase of 
a system that can be decreased (increased) before it goes unstable. Phase margin affects the response of the closed loop 
system. The controller bandwidth is approximately the crossover frequency of the closed-loop transfer function. For a 
2nd order system with roll-off well above the flexible mode, the resonance is phase-stabilized. Gain and Phase margin 
are modest. For JIMT, if the controller bandwidth is well above flexible mode (i.e., closing the loop on the Scan- 
platform while JIMT behaves as a noodle), there is enough control authority for the platform to not be disturbed by the 
noodle and still do its pointing well. In the limit, the scan platform is stand-alone in free space. The system can still be 
pointed. For a 2nd order system with roll-off well below the flexible mode, the resonance is gain-stabilized. Gain and 
Phase margin are modest. For JIMT, if the controller bandwidth is well below flex. mode (i.e., closing the loop on the 
JIMT base-body attitude while the Ion engine pod booms are flexing), the high frequency boom dynamics does not 
have enough inertia to react to the control action, hence their effect on the attitude is minor. The system can still be 
pointed. For a 2nd order system with roll-off in the vicinity of the flexible mode, negative margins result since gain 

18 



margin is high near phase crossover, and phase margin is high near gain crossover. This is why modal resonances have 
to be away from controller bandwidth. For JIMT: if the controller bandwidth is close to flex. mode (i.e., closing the 
loop on the scan-platform at a rate commensurate with one of the base-body frequencies), the stability margins are 
adverse, and hurt the pointing. The system cannot be pointed. Additional complications arise when the structural modes 
are clustered, or when additional system modes need to be included, such as sloshing modes. 

Slew into Nadir-pointed attitude using thrusters 

A simulation was run for the case in which the spacecraft is commanded to carry out a 90 degree turn from the “along- 
track” attitude held during the spiral-in phase into Europa, into the nadir pointed attitude required to point the scan 
platform, located at the rear of the spacecraft bus, towards the moon. This is shown in Figure 14. This maneuver fights 
the gravity gradient induced on the spacecraft by the moon at a 152 km altitude, and is carried out by actuating the 
hydrazine thrusters causing a pure couple about the spacecraft’s center of mass. The simulation program models the 
following effects: Europa orbit with generic orbital elements; SC as a rigid body; Structural flexibility; coupled orbital 
and attitude propagators; Environmental perturbation forces and torques (J2, J3, gravity gradient); Actuators: thrusters, 
reaction wheels; Sensors: gyro, accel, star tracker. The state vector is: inertial position and velocity, quaternion, angular 
velocities, momentum of reaction wheels. Inputs (thruster and RW forces and torques) are applied in body frame, 
whereas outputs are: position, velocity and acceleration related inertial and orbiting reference frames; quaternion and 
rates in body frame. The simulation assumed that the RCS proportional hydrazine thrusters are been actuated with the 
following characteristics: specific impulse I,,=2500 Ns/kg, 1N max. thrust, translation deadbands of lmm in position 
and 30 pm/s in velocity, and rotational deadbands of 150 prad in attitude and 5 p a d s  in attitude rate. The thrust 
resolution (or thruster quantization level) was assumed to be of 1 pN, and the thrust noise (with an uncertainty level of 
lo)  equal to 0.1 pN. The variance of star tracker measurement noise ( lo)  is 3 arc-sec. The variance of gyro 
measurement noise ( lo)  is 3 arc-sec. The variance of the gyro angle random walk (ARW) is 0.07 degh’”. The 
standard deviation of the gyro bias drift is 1.0 d e g h  (100 s correlation time), and the variance of the accelerometer 
measurement noise is 35 pg. A proportional-derivative controller is used to slew the vehicle. The attitude control 
bandwidth is taken to be 0.07 Hz. The attitude control gain is 0.1892 [s2/rad], and the attitude rate control gain is 
0.4398 [s3/rad]. 

Figure 14. A 90 degree slew about the orbit normal to reach the nadir pointed attitude around Europa. 
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Figure 15. Attitude error (deg) and Attitude rate error (deg/s) during slew as a function of time. 

Figure 15 shows the attitude and attitude rate errors in tracking the slew command. A very small residual oscillation is 
left at the end of the maneuver (approximately within 0.01 degs and 0.005 deg/s). This oscillatory response may not be 
small enough for the science observation phase to begin, and reaction wheels will have to be used for precision pointing 
while in the gravity gradient field of Europa. 

Conclusions 

In this paper we have described some of the dynamics and control challenges presented by the Jovian Moon Tour 
spacecraft as conceived for the 2002 study. The JIMT spacecraft presents challenging attitude-orbital and controls- 
structure interactions. This paper has summarized some of these dynamical effects. The attitude-orbit coupling is 
motivated by the need of the low-thrust propulsion system to follow complex orbital trajectories. The control-structure 
coupling is caused by having to accurately point the existing multiple articulated payloads while mounted on a large 
flexible base. A simulation model has been described which is capable of handling the complex orbital and attitude 
dynamics arising during the spiraling maneuvers of the spacecraft, as well as potential interactions between the 
spacecraft flexibility and the inertial pointing of the articulations. The initial numerical simulations demonstrate that 
some of the challenges hitherto identified in the areas of flexible body dynamics and gravity-gradient stabilization can 
be faced via computational analysis, and reasonably accurate assessments of the pointing performance can be made. 
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