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ABSTRACT 
In the domain of hard real-time systems, which language is 
better: C++ or the Real-Time Specification for Java (RTSJ)? 
Although ordinary Java provides a more productive 
programming environment than C++ due to its automatic 
memory management, that benefit does not apply to RTSJ 
when using NoHeapRealtimeThread and non-heap memory 
areas. As a result, RTSJ programmers must manage non-heap 
memory explicitly. While that's not a deterrent for veteran 
real-time programmers-where explicit memory management 
is common-the lack of certain language features in RTSJ 
(and Java) makes that manual memory management harder to 
accomplish safely than in C++. This paper illustrates the 
problem for practitioners in the context of moving data and 
managing memory in a real-time producer/consumer pattern. 
The relative ease of implementation and safety of the C++ 
programming model suggests that RTSJ has a struggle ahead 
in the domain of hard real-time applications, despite its other 
attractive features. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features - classes and objects, control structures, dynamic 
storage management, frameworks 

General Terms 
Design, Experimentation, Languages. 

Keywords 
Programming model, architecture, concurrency. 

1. INTRODUCTION 
Since its emergence in 2000, the Real-Time Specification for 
Java [1] (RTSJ) has generated considerable interest because it 
enables real-time applications to be programmed in the 
popular Java programming language, with no syntactic 
changes to the language. Real-time facilities are provided via 
APIs whose real-time properties are provided by a modified 
JVM. Given Java's popularity and productivity advantage 
relative to C++, plus its attention by both the research 
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community and tool vendors, the RTSJ has the potential to 
become the language of choice for real-time applications, 
displacing C/C++. 

To practitioners, the appeal of one programming language 
versus another depends in part on the ease and naturalness of 
designing and developing code for common tasks. A 
"programming model" includes the things that a programmer 
must know and consider at design time and what he/she must 
actually code. In the case of RTSJ and C++ there is a notable 
difference in programming models for hard real-time 
applications. By "hard real-time" we mean that timing 
requirements must always be met; execution must be 
predictable in that real-time tasks are released on schedule 
and complete within their deadlines. Failure to do so can be 
as serious as an error in program logic. Hard real-time is not 
the same as "real fast", though that's sometimes necessary in 
order to meet performance requirements. 

This report illustrates differences between RTSJ and C++ in 
how each language implements a real-time 
producer/consumer pattern. This pattern is common in real­
time control systems and it happens to expose fundamental 
language differences that affect program simplicity and 
safety. Our comparison shows that the C++ programming 
model is simpler and safer (in this particular case) because 
C++ contains features that relieve the programmer from 
worrying about when to release objects back to a memory 
pool. Neither Java nor RTSJ provide the necessary features, 
so RTSJ programmers are forced to explicitly program the 
release of such objects. 

It's important to note that the RTSJ design in this 
comparison is based on the use of NoHeapRealtimeThread 
and non-heap memory. Such threads achieve guaranteed 
timing behavior since garbage collection (GC) activities 
cannot interfere with them. However, the emergence of real­
time garbage collectors for Java [ref: Metronome] offers an 
attractive alternative for real-time applications, provide that 
they are able to tolerate both the GC-induced preemption 
latencies and the GC processing cost. 

2. RTSJ BACKGROUNDER 
Ordinary Java technology is not suitable for real-time 
systems for several reasons: no scheduling control over 
threads, unpredictable synchronization delays, run-anytime 
garbage collection, coarse timer support, no event 
processing, and no safe asynchronous transfer of control. The 
real-time specification for Java, known as "RTSJ", addresses 



these limitations through several areas of enhanced 
semantics. 

The RTSJ was shaped by several guiding principles. 
Foremost among these is the principle to "hold predictable 
execution as first priority in all tradeoffs". Another principle 
is that the RTSJ introduces no new keywords of other 
language extensions. Also, the RTSJ provides backward 
compatibility, meaning that existing Java programs run on 
RTSJ implementations. Importantly, the RTSJ APIs support 
modern scheduling policies, such as Earliest Deadline First, 
in addition to conventional priority-based scheduling. 

It's important to understand that "real time" doesn't mean 
"real fast". The guiding principle of predictable execution 
places more importance on specifying and meeting 
timeliness constraints than on raw throughput. Real-time 
applications must respond to periodic and sporadic events, 
and the RTSJ provides facilities for informing a scheduler of 
such constraints and determining if a set of constraints 
admits a feasible schedule. The net result in RTSJ, in contrast 
to purely priority-based systems, is that scheduling and 
dispatching can be based on explicit timeliness information. 

Most real-time applications are a mixture of "hard real-time", 
"soft real-time", and non real-time parts, as shown in Figure 
1. In this report we use the term "hard real-time" to mean that 
temporal correctness criteria must always be met. For 
example, if a hard real-time computation misses a deadline, 
the system goes into an abnormal state. By "soft real-time" 
we mean that temporal correctness criteria are almost always 
met, so an occasional missed deadline (for example) is 
tolerated. By "non real-time" we mean that there are no 
temporal correctness criteria. A key point here is that a single 
RTSJ-compliant VM can support systems that mix hard, soft, 
and non real-time parts . 

Soft 
real-time 

. ____ No temporal predictability 
~ required. 

java.lang.Thread 

Medium temporal 
~ predictability required. 

Rea ltimeThread 

High temporal 
...--- predictability required. 

NoHeapRealtimeThread 

Figure 1. Most real-time systems are a mixture of hard 
real-time, soft real-time, and non-real-time, all of 

which can be supported by a single RTSJ-compliant 
"" ... 

The RTSJ extends Java semantics in several areas, as 
summarized below. This background information is intended 
to provide readers with a broad understanding of how the 
RTSJ supports various aspects of real-time programming. 
Some features of the RTSJ have been omitted for brevity. 

2.1 Threads 
The RTSJ introduces two new types of thread that have more 
precise scheduling semantics than java .lang. Thread. 
Parameters provided to the constructor of Real t i meThread 
allow the temporal and processor demands of the thread to be 
communicated to the system. NoHeapRealtimeThread 
("NHRT") extends Real timeThread with the restriction that 
it is not allowed to allocate or even reference objects from the 
Java heap, and can thus safely execute in preference to the 
garbage collector. Such threads are the key to supporting 
hard real-time execution because they have implicit 
execution eligibility logically higher than any garbage 
collector. 

2.2 Scheduling 
The scheduling area in RTSJ provides classes that allow the 
definition of schedulable objects, manage the assignment of 
execution eligibility of schedulable objects, assign "release 
characteristics" to schedulable objects, and perform 
"feasibility analysis" for sets of schedulable objects. 

As seen in Figure 2, schedulable objects are instances of 
RealtimeThread,NoHeapRealtimeTh r ead, and 
AsyncEventHandler. Each of these is assigned processor 
resources according to its release characteristics and 
execution eligibility. As shown in Figure 3, there are three 
types of ReleaseParameters to support periodic, 
aperiodic, and sporadic execution. Each of these subclasses 
contains parameters needed to determine whether a feasible 
schedule can be found for a set of schedulable objects. 

. AsyncEventHandler 

Figure 2. The RTSJ introduces RealtimeThread, 
NoHeapRealtimeThread, and AsyncEventHandler 
as new types of Runnable. 

2.3 Memory Management 
The RTSJ contains classes that allow the definition of 
regions of memory outside the traditional Java heap. These 
new memory areas-called IrnmortalMemory and 
ScopedMemory-are not managed by a garbage collector. 



This means that instances of NoHeapReal timeThread can 
use such memory to communicate results within hard real­
time areas as well as between hard real-time areas and soft- or 
non real-time areas. 

lnunortalMemory is a single memory area that is shared 
among all threads. Objects allocated in the immortal memory 
live until the end of the application. In fact, unlike standard 
Java heap objects, immortal objects continue to exist even 
after there are no other references to them. Importantly, 
objects in immortal memory are never subject to garbage 
collection. 

ReleaseParameters 
- execution cost 
- deadline 
- cost overrun handler 
- deadline overrun --

f 
PeriodicParameter AperiodicParameters 
s (can become active at any time) 
- start time 

l~ 

SporadicParameters 
- Minimum inter-arrival time 

Figure 3. Release parameters supply processor and 
temporal demands needed to determine schedule feasibility. 

ScopedMemory is an abstract base class for memory areas 
having limited lifetimes. A scoped memory area is valid as 
long as there are real-time threads with access to it. A 
reference is created for each accessing thread when either a 
real-time thread is created with a ScopedMemory object as its 
memory area, or when a real-time thread runs the enter ( ) 
method for the memory area. When the last reference to the 
object is removed, by exiting the thread or exiting the 
enter () method, finalizers are run for all objects in the 
memory area, and the area is emptied. Objects in scoped 
memory are never subject to garbage collection. 

The memory management enhancements in RTSJ also include 
facilities for access to physical memory, facilities for non­
heap memory allocation in linear time, and facilities for 
obtaining information about the temporal behavior of the 
garbage collector, such as its preemption latency. 

MemoryArea 

+ enterO 
+ executelnAreaO 
+ memoryConsumedO 
+ memoryRemainingO 
+ newlnstanceO 
+ newArrayO 

.~ 

HeapMemory 
~ + instanceO 

ImmortalMemory - + instanceO 

Scoped Memory 
~ 

• Normal Java heap 
• Subject to GC 
• Not accessible by 

NoHeapRealtimeThread 

• Accessible by all 
threads 

• Not subject to GC 
• Objects live until end of 

annlication 

• Object lifetime limited 
• Not subject to GC 
• Scope emptied after all 

threads exit it 

Figure 4. The RTSJ introduces two kinds of non-heap 
memory that are not subject to garbage collection. 

2.4 Synchronization 
The RTSJ contains classes that allow application of the 
priority ceiling emulation algorithm to individual objects; 
allow the setting of the system default priority inversion 
algorithm; and allow wait-free communication between real­
time threads and regular Java threads. This strengthens the 
semantics of Java synchronization for use in real-time 
systems by mandating priority inversion control. The wait­
free queue classes provide protected, concurrent access to 
data shared between instances of java. lang. Thread and 
NoHeapReal timeThread. 

2.5 Time 
The RTSJ contains classes that allow description of a point 
in time with up to nanosecond accuracy and precision 
(dependent on the precision of the underlying system), and 
allow distinctions between absolute points in time, times 
relative to some starting point, and rational time, which 
allows the efficient expression of number of occurrences per 
some interval of relative time. 

The time class relationships are depicted in Figure 6. 
Instances of Ab sol ute Time represent absolute time 
expressed relative to midnight January 1, 1970 GMT. 
Instances of Rela ti veT ime encapsulates a point in time that 
is relative to some other time value. Instances of 
RationalTime express a frequency as an integral number of 
cycles per an amount of relative time. 



Figure 6. Higb resolution time supports timing 
with nanosecond accuracy and precision, subject 

to the underlying system's accuracy and precision. 

2.6 Timers 
The RTSJ contains classes that allow creation of timer whose 
expiration is either periodic (PeriodicTimer) or set to 
occur at a particular time (OneShotTimer). RTSJ also defines 
an abstract base class for clocks, recognizing that real 
systems often have other kinds of clocks (e.g. simulation 
clocks, user time clocks), and allows timers to specify such a 
clock in place of the default system clock. 

2.7 Asynchrony 
The RTSJ contains classes for binding the execution of 
program logic to the occurrence of internal and external 
events. Specifically, an asynchronous event is represented as 
an instance of class AsyncEvent or a subclass. An event 
occurrence may be initiated by application logic (by 
invoking the event instance's fire () method) or by the 
occurrence of a "happening" that is external to the NM, such 
as a hardware interrupt. 

Each instance of AsyncEvent may have one or more 
instances of AsyncEventHandler associated, as shown in 
Figure 7. The converse also holds: every instance of 
AsyncEventHandler may have one or more instances of 
AsyncEvent associated. Every time an event occurs, the 
associated handlers are made eligible to run; dispatching of 
the handler is subject to its release parameters. 

java.lang. Thread Yes No No 

RealtimeThread Yes Yes Yes 

NoHeapRealtimeThread No Yes Yes 

AsyncEvent 
+ addHandlerO 
+. removeHandlerO 
+ fireO 

0 .. * event 

0 .. * handler 

Figure 7. Asynchronous events and their handlers can 
have a many-to-many relationship in the RTSJ. 

3. PROBLEM DOMAIN 
A brief section here to describe the nature of real-time 
control systems, i.e. applications that perform closed-loop 
control by managing numerous sensors and actuators, and 
that have important temporal requirements. This will 
illustrate how common the producerlconsumer pattern is in 
such systems. 

Many real-time applications are "control systems", i.e., they 
interact with the real world through sensors and actuators to 
control some physical system, whether it be a rover on the 
surface of Mars or the engine controls in your automobile. In 
either case, these systems are designed for continuous 
operation and employ "closed-loop" (feedback) control, 
often with stringent timeliness requirements. For example, 
control of the driving motors on one of the experimental 
Mars rovers runs at a 200 Hz rate. Such control systems are 
termed "hard real-time" to the extent that any failure to 
satisfy the timeliness requirements puts the system into an 
abnormal state. 

Control systems contain many real-time producer-consumer 
relationships. In each such relationship data must flow from 
producer to consumer, and the data is often a structure or 
object, not a primitive type. Also, much of the data is of 
fleeting importance, to be replaced by newer data on the next 
cycle of execution. Consequently, efficient recycling of data 
can contribute significantly to the ability to satisfy 
timeliness requirements. 

(more editing needed here) 

4. PRODUCER/CONSUMER PATTERN 
This paper compares RTSJ to C++ in terms of how simply and 
safely each language handles a common task in real-time 
applications, namely, data-handling in a real-time 
producer/consumer relationship, as shown in Figure z. 
Several requirements and constraints apply: there is one 
producer and multiple consumers; both producer and 
consumer(s) are periodic threads; the producer and its 
consumer(s) may have different periods; all threads must 
satisfy temporal correctness requirements; the data generated 
by the producer is immutable (or at least it is not supposed 
to be modified by any consumer); and producers may 
generate data structures (not simply a built-in type) that 
must be conveyed to its consumer(s). This is a "data pull" 



pattern, meaning that the consumers actively pull the 
produced data, as needed, whenever needed. In the larger 
context, a thread can be both a producer and a consumer and 
therefore may participate in multiple producer-consumer 
relationships. 

In ordinary object-oriented programming a multi-thread-safe 
design for conveying data from producer to consumer(s) 
involves locks. Java is particularly elegant here, not only for 
the simplicity of its synchronized methods, as shown in 
Figure y, but also for its automatic memory management that 
frees the programmer from thinking about when to delete 
objects that are no longer needed. The programming model is 
simple and foolproof, but the use of locks for this purpose is 
undesirable in real-time systems for several reasons. First, 
locks incur a non-trivial amount of overhead that can slow 
down high-frequency control loops, even in the absence of 
contention. Second, when contention does occur, the 
application incurs the cost of context switching, raising the 

II Java code for producer. 
II Uses synchronized set and get methods. 

class ProducerX 
private X latest; 

private synchronized void setX(X value) { 
latest = value; 

public synchronized X getX() { 
return latest; 

II Producer code that calls setX 

worst-case execution time of the contending thread by the 
amount of time needed for the holding thread to complete its 
work and release the lock (this makes it hard to determine 
worst-case execution time). Third, locks are a source of 
potential priority inversions and deadlocks, either of which 
can lead to system failure. 

For the reasons just given, the RTSJ and C++ designs shown 
in following sections do not use locks. Instead, both rely on 
atomic operations to manage the exchange of data in a multi­
thread-safe and multi-processor-safe manner. Although the 
mechanisms are different in the two languages, the 
differences are not material in this study. The important 
property is that a producer can safely update its data at any 
time and consumers can safely read it at any time, all without 
locks and therefore without the possibility of contention­
induced context-switching. 

Regardless of language, there are two basic operations that 
must be designed. First, a producer must generate new data 
and make it available to consumers without modifying any 
objects currently in use by any consumer. Second, consumers 
must somehow release data objects when no longer needed so 
that the memory can be reused. To minimize defects, such 
releases should occur implicitly rather than through 
imperative statements. 

5. RTSJIMPLEMENTATION 
Given the requirement that producers and consumers must 
always satisfY temporal correctness requirements, both must 
use the RTSJ class NoHeapRealtimeThread1

• Threads of this 
type guarantee highly predictable execution since they can 
always run in preference to the garbage collector. Such 
threads cannot reference heap memory, so all data generated 
by a producer and used by a consumer must be held in 
scoped memory or immortal memory. 

Although scoped memory is intended for temporary objects, 
such as those passed from producer to consumer, it cannot be 
used in this situation for at least two reasons. First, the data 
generated by a producer must always be available for all 
consumers to read; it cannot be held in a scoped memory area 
since that scope will have to be emptied on some regular 
basis. Second, a thread may participate in multiple producer­
consumer relationships in multiple control loops, and there 
is no ordering of scope 'enter' calls (in the general case) 
that satisfies the RTSJ's single-parent rule for scope stacks. 

Given the need to use immortal memory, coupled with the 
fact that all objects created in immortal memory are, well, 
immortal, it's clear that such objects for transient data must 
be managed and reused. The design therefore relies on the 
concept of memory pools, where threads may obtain objects, 
initialize them, use them, and ultimately release them back to 
the pool. 

5.1 Producer 
A producer is a periodic NoHeapRealtimeThread that updates 
some data on each cycle. Since a producer must not modify 
an object currently in use by any consumer, the producer 
must obtain an unused object from the pool, initialize it, and 
then use an atomic instruction to expose the data to 
subsequent 'get' calls by consumers. 

From the viewpoint of the programming model, writing a 
producer is familiar territory for Java programmers: call a 
factory method to obtain and initialize an object from the 
pool 

5.2 Consumer 
A consumer is a periodic NoHeapRealtimeThread that gets 
the latest available data from one or more producers and uses 
it in some way, possibly even to generate new data as a 
producer to other consumers. In calling a producer's 'get' 
method, a consumer obtains a reference to an object that the 
producer had obtained earlier from a memory pool. Other 
consumers may obtain a reference to the same object, 
assuming that they call 'get' before the next producer update. 
Behind the scenes, each time that a consumer obtains an 
object, that object's usage count is incremented atomically, 
thus ensuring that the producer will not reuse that object 
until the usage count returns to zero. It is the responsibility 
of each consumer to eventually 'release' the object so that it 
can be returned to the pool when all consumers are done with 
it. 

I This report focuses on RTSJ mechanisms that are 
independent of any garbage collector; it does not consider 
real-time garbage collectors in the solution space. 



6. C++ IMPLEMENTATION 
In contrast to the RTSJ, C++ has a uniform memory area. Any 
kind of thread can access any object in heap or static 
memory. There is no garbage collector to be avoided, there 
are no non-heap memory areas, and there are no memory area 
assignment rules. From this viewpoint the programming 
model is simpler. 

A key mechanism that makes the C++ programming model 
even simpler is a lock-free multi-thread-safe multi-processor­
safe reference counting pointer (RCP) [ref: Reinholtz, C/C++ 
Users Journal). The RCP is a template class that maintains a 
reference count associated with the pointed-to object (the 
referent). Each time that an RCP is constructed or assigned, it 
increments the reference count in the referent. Similarly, each 
time that an RCP goes out of scope, and is therefore 
destroyed, it decrements the count in the referent. Also, when 
an initialized RCP is assigned a new referent, it first 
decrements the count in the old referent. The net effect is that 
an object's reference count always equals the number of 
RCPs pointing to it. The RCP's implementation depends on 
processor-atomic instructions to ensure multi-thread safety. 
When the last RCP pointing to an object goes out of scope, 
or is reassigned, the object's destructor is executed. In this 
case the destructor is programmed to release the object back 
to the memory pool from which it came. The net result is a 
simpler programming model in which C++ programmers 
don't have to worry about manual memory management. 

6.1 Producer 
A producer is a periodic Posix thread that updates its data on 
each cycle. Like the RTSJ producer, it obtains an object from 
a pool, initializes it, and then atomically exposes it as the 
object to be returned by subsequent calls to its 'get' method. 
The only difference is that the C++ code manipulates 
reference-counting pointers rather than Java references. 
Otherwise, the two producers are identical in terms of 
simplicity and safety. 

6.2 Consumer 
A consumer is a periodic Posix thread that gets the latest data 
from one or more producers. The producer's 'get' method 
returns a RCP to a 'canst' object that the consumer typically 
assigns to a local RCP. At some later time, when the 
consumer is done using the referent, it may either let the RCP 
go out of scope (i.e. let it pop off the stack) or it may reassign 
the RCP with a new value from the producer. In either case, 
the referent's reference count is decremented automatically 
and the object is returned back to the memory pool when the 
count goes to zero. 

6.3 Caveat 
A well-known limitation of reference counting is that it's not 
suitable for circularly linked data structures. In our 
experience, such data structures don't appear in real-time 
control loops, so this has not been a limitation in practice. 

7. COMPARING RTSJ AND C++ 
The two implementations of the real-time producer-consumer 
pattern highlight some interesting differences between the 
RTSJ and C++ - differences that affect the programming 
model. It is in the consumer that the C++ implementation can 
be seen as clearly simpler and safer than in RTSJ, where 

explicit releases must be programmed. First, the C++ 
programmer does nothing special to release objects back to 
the pool; it happens automatically and immediately because 
C++ destructors run whenever a stack object is popped, and it 
happens automatically and immediately when a RCP object 
is assigned, since it has an appropriately overloaded 
assignment operator. The RTSJ design is vulnerable to two 
well-known bugs: memory leaks due to failure to release, and 
consumer use of an object after it was released. It's ironic that 
C++ is able to provide an automatic memory management 
mechanism in this situation whereas RTSJ (and Java) cannot. 

Second, a producer in C++ is able to protect its data against 
illegal mutation by consumers since C++ is able to return a 
pointer to a canst object. Since 'canst' is a type qualifier, 
any attempt to violate 'constness' is detected at compile 
time. Java (and thus RTSJ) cannot return a "reference to a 
constant object". Again, the C++ consumer is easily 
protected against a kind of bug (illegal mutation of data) that 
can be extremely hard to debug. 

To be fair, RTSJ has advantages of its own, relative to C++. 
Most important for real-time programming is the scheduling 
API, where temporal correctness criteria are specified 
explicitly. For example, RTSJ's release parameters specify 
start time, execution cost, period, deadline, and minimum 
interrarival time. These parameters are checkable at design 
time in a feasibility analysis, and run-time violations will 
trigger cost overrun handlers, deadline miss handlers, and 
(look up how MIT violations are reported). Another feature 
enables programmers to separate the execution costs of 
"normal case: do a little work" versus "error case: do a lot of 
work". This enables more effective use of CPU cycles since 
the scheduler does not have to reserve so much time for the 
rare-but-costly error cases. 

8. EPILOGUE 

Although it's interesting to compare C++ and RTSJ, the 
longer-term debate shouldn't be about these specific 
languages. The bigger problem is that real-time applications 
coded in either language embed several 'commitments' that 
are hard to change in the middle of a project. These code­
level commitments include choices such as: memory pools 
or not, scoped vs. immortal memory, partitioning of 
functionality among threads, locks that may be unnecessary 
(depending on execution model choices), and thread 
priorities. The problem is that these choices are incidentals, 
not essentials; they don't express or reveal the underlying 
requirements; they are a means to an end. What we really 
want is to specify the essentials explicitly and let an analyzer 
generate the language- and platform-specific incidentals that 
will satisfy the requirements - or tell us that no feasible 
solution exists. The essentials are: data structures for inputs 
and outputs, pure functions that perform state 
transformations, and required properties of sequencing, 
timing, concurrency, etc. These concepts relate directly to the 
problem domain and are neutral with respect to language, 
software architecture, and hardware architecture. 
Consequently, they leave options open late in the 
development and testing cycle, rather than making early (and 
sometimes regrettable) commitments that can only be 
changed at great cost. 

Do we still care about programming languages? Yes, because 
the vision described above is still a topic of research. 
Perhaps the most important "take away" message for 



practitioners here is to maintain a clear mental separation 
between essentials (things dictated by the problem domain) 
and incidentals (choices about how to choreograph the real­
time execution of many pieces of functionality). The more 
you can do to keep the two concepts separated in the code, 
the more flexibility you'll have in responding to late­
breaking changes in requirements and negative surprises in 
performance testing. 
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