
Safety Verification of a Fault Tolerant Reconfigurable Autonomous
Goal-Based Robotic Control System

Julia M. B. Braman, Richard M. Murray, and David A. Wagner

Abstract-Fault tolerance and safety verification of control
systems are essential for the success of autonomous robotic
systems. A control architecture called Mission Data System
(MDS), developed at the Jet Propulsion Laboratory, takes
a goal-based control approach. In this paper, a method for
converting goal network control programs into linear hybrid
systems is developed. The linear hybrid system can then be
verified for safety in the presence of failures using existing
symbolic model checkers. An example task is simulated in
MDS and successfully verified using HyTech, a symbolic model
checking software for linear hybrid systems.

I. INTRODUCTION

Autonomous robotic missions by nature have complex
control systems. In general, the necessary fault detection,
isolation and recovery software for these systems is cumber
some and added on as failure cases are encountered in sim
ulation. There is a need for a systematic way to incorporate
fault tolerance in autonomous robotic control systems. One
way to accomplish this could be to create a flexible control
system that can reconfigure itself in the presence of faults.
However, if the control system cannot be verified for safety,
the added complexity of the reconfigurability of a system
could reduce the system's effective fault tolerance.

Mission Data System (MDS) is a software control archi
tecture that was developed at the Jet Propulsion Laboratory
[1]. It is based on a systems engineering concept called State
Analysis [2]. Systems that use MDS are controlled by goals,
which directly express intent as constraints on physical states
over time. By encoding the intent of the robot's actions,
MDS has naturally allowed more fault response options to
be autonomously explored by the control system [3].

A great deal of work to date has focused on detecting and
recovering from sensor failures in the control of autonomous
systems [4]. Several fault tolerant control architectures for
autonomous systems have been developed in which the
control effort is layered to deal with faults on different
levels, including low levels of hardware control and high
levels of supervisory control [5], [6]. Fault diagnosis can
be handled by modeling complex systems as stochastic
hybrid systems with modes that account for failure states.
The failures can then detected using multiple-model based
hybrid estimation schemes [7] or by using variations of
traditional particle filters to aid in the accurate estimation
of low probability but high risk failure modes [8]. Although

J. Braman and R. Murray are with the Dept. of Mecb. Eng.,
California Institute of Technology, Pasadena, CA 91125, USA
braman@caltech.edu

D. Wagner is a Senior Software Engineer with the Flight Software
Applications Group at the Jet Propulsion Laboratory, Pasadena, CA, USA

many fault tolerant control systems achieve reconfigurability,
few actually change the commands given to the system. One
system uses adaptive neural/fuzzy control to reconfigure the
control system in the presence of detected faults [9], and
another reconfigures both the control system design and the
inputs to the control system [10], although neither adjusts
the intent of the commands in response to failures.

Fault tolerant control systems are modeled in different
ways, but one particularly useful method is to model them as
hybrid systems. Much work has been done on the control of
hybrid systems [11]. When the continuous dynamics of these
systems are sufficiently simple, it is possible to verify that
the execution of the hybrid control system will not fall into
an unsafe regime [12]. There are several software packages
available that can be used for this analysis, including HyTech
[13], UPPAAL [14], and VERm [15], all of which are
symbolic model checkers. HyTech in particular is used for
checking linear hybrid automata, where the dynamics of the
continuous variables can be modeled by linear differential
inequalities that take the general form of Ai:::; b [12]. Safety
verification for fault tolerant hybrid control systems ensures
that the occurrence of certain faults will not cause the system
to reach an unsafe state.

In this paper, MDS is used as a goal-based control
architecture for a representative robotic task involving sensor
failures and goal re-elaboration. The major contribution of
this paper is the continued design of a process to convert
complex goal networks with several state variables and
various fault tolerant goal elaborations into hybrid automata
that can be verified for safety using existing symbolic model
checking software. An example goal network is developed
in MDS. converted to a hybrid automaton, and then verified
for safety in the presence of sensor failures.

The structure of this paper is as follows. Section II
summarizes important concepts of MDS which pertain to
this work. Section III introduces the example task, system
design. and goal network. Section N describes the major
contribution of this work, the general process for converting
goal networks into hybrid automata. Section V returns to
the example, discussing simulation results as well as the
hybrid automata that were created and the results of the
safety verification. Finally, Section VI concludes the paper
and discusses future directions of research.

II. MISSION DATA SYSTEM OVERVIEW

A State Analysis

State Analysis is a systems engineering methodology that
focuses on a state-based approach to the design of a system

[2]. In State Analysis, the control system and the system
under control are considered separately. Models of state
variable effects in the system under control are used for
such things as the estimation of state variables, control of
the system, planning, and goal scheduling. State variables
are representations of states or properties of the system that
are to be controlled or that affect a controlled state. Examples
of state variables could include the position of a robot, the
temperature of the environment, the health of a sensor, or
the position of a switch.

Using State Analysis, the state variables of the system
under control are identified. A model of the system under
control is developed and controllers and estimators are
designed using the models. Goals and goal elaborations
are created, also based on the models. Goals are specific
statements of intent used to control a system by constraining
a state variable in time. Goals are elaborated from a parent
goal based on the intent and type of goal, the state models,
and several intuitive rules, as described in [2].

B. Mission Data System

A core concept of State Analysis is that the language used
to design the control system should be nearly the same as the
language used to implement the control system. Therefore,
the software architecture, Mission Data System, is closely
related to the systems engineering theory described in the
previous section.

Data structures called state variables are central to MDS
[16]. A state variable can contain much information; for
example, a position state variable for a robot in the plane
could contain the robot's (x,y) position, its velocity in
component form, and uncertainty values for each piece of
information. Each state variable has a unique estimator, and
if necessary, a controller. Goals can be created that constrain
some or all of a state variable's information. For example, a
goal could constrain the velocity of the position state variable
used in the previous example, but could leave the position
or uncertainties unconstrained.

Goal networks replace command sequences as the control
input to the system. Goal networks consist of a set of goals
with their associated starting and ending time points and
temporal constraints. A goal may cause other constraints to
be elaborated on the same state variable andlor on other
causally related state variables. These goals must have an
associated elaboration class. The elaboration class instructs
the elaborator in MDS to add certain goals to the goal
network in support of the parent goal. The goals in the goal
network and their elaborations are scheduled by the scheduler
software component so that there are no conflicts in time,
goal order or intent. The scheduled goals are then achieved
by the estimator or controller of the state variable that is
constrained.

Elaboration allows MDS to handle tasks more flexibly
than control architectures based on command sequences. One
example is fault tolerance. Re-elaboration of failed goals is
an option if there are physical redundancies in the system,
many ways to accomplish the same task. or degraded modes

P2

Fig. I. Simulated robotic task

of operation that are acceptable for a task, . The elaboration
class for a goal can include several pre-defined tactics. These
tactics are simply different ways to accomplish the intent
of the goal, and tactics may be logically chosen by the
elaborator based on programmer-defined conditions. This
capability allows for many common types and combinations
of faults to be accommodated automatically by the control
system [3].

III. EXAMPLE TASK DESIGN

This section describes the design of an autonomous robotic
system, task. and a goal network that will accomplish the task
in the presence of sensor failures. This example illustrates
some of the MDS principles outlined in the previous section.

A. Task Design

An autonomous robotic task is considered in which a
simulated robot with several sensors follows a path within
a given uncertainty bound. The task could be compared to
a Mars scientific mission in which there are two points of
interest (PI and P2); the first is more desirable but needs
a lower uncertainty in the robot's position to reach it. The
mission is considered a success if the robot does not wander
off the path (where it could be damaged or get stuck), and
the mission is completed if the robot reaches either point
of interest. As shown in Figure 1, the planned route for the
simulation consists of two checkpoints, CI and C2; after the
first checkpoint, CI, there are two possibilities for the location
of C2, PI and P2. The first of these possibilities, PI, lies down
a path that has a somewhat tighter error bound and requires
a higher standard of instrument health. The other possibility,
P2, lies down a second path that allows for a larger error
bound and a somewhat degraded sensor capability.

The path is successfully navigated by the robot if the
robot stays within the path boundaries, representing the error
bounds allowed down each path. Completion of the task
occurs when the robot navigates to and stops sufficiently near
C2 without breaching the boundary. The second checkpoint,
C2 is first assigned to be at location PI, but can be changed
to be P2 upon the failure or degradation of critical sensors.

B. System Design

The robot used in this simulation is equipped with three
sensors: a differential GPS, a LADAR unit, and odometry

Fig. 2. State effects diagram; solid ovals represent state variables and
dashed ovals represent derived state variables.

(the collection of position, orientation, and velocity infor
mation deduced from wheel encoders). These three sensors
are used to estimate the robot's position, orientation, and
velocity information. Several obstacles were placed in the
environment to facilitate the use of the LADAR. The scan
matching algorithm developed by Lu and Milios [17], which
outputs position and orientation, was adapted for use in this
simulation.

Several state variables are needed to describe this system.
FIrst, the position state variable tracks Cartesian and angular
position and velocity, as well as the covariance matrices for
the estimates. Three state variables describe the health of the
three sensors as GOOD, FAIR, POOR, or FAILED. Using
the same labels, the health of the overall sensing system for
this specific task is described by the system health derived
state variable [16]. The state effects diagram is shown in
Figure 2. The health of the sensors affect the knowledge
of the robot's position, and so the system health indirectly
affects the knowledge of the robot's position and orientation.
Since this state effect exists, it is possible for goals on the
position state variable to elaborate constraints on the system
health state variable.

The robot's position and orientation are estimated using
a multiple model-based method [18]. In order to make the
estimation algorithm robust to changes in sensor availability
and health, different Kalman filters were designed for each
possible combination of sensors. This approach was chosen
for its relative simplicity and ease of implementation. The
three sensor health variables are estimated using a different
process. In each sensor's health estimator, the output of the
sensor is converted to a measured position and velocity value
and is compared to the other sensor's outputs. Then, a voting
scheme is employed to determine the health of the sensor.
Once a sensor is failed, it is assumed to always be failed.
The system health derived state variable is estimated using
the three sensor health state variables. The system health
decays in a specific way as the sensor health values decay.

C. Goal Design

The goal network associated with this task consists of the
elaboration of one overall goal, and can be seen in Figure
3. The goal is a maintenance goal on the position of the
robot, called BeAtlor2Goal, which refers to locations PI
and pZ respectively. This goal elaborates into two goals
on the robot's position, GetToCIGoal and GetToC2Goal.

OR

Fig. 3. Goal network and elaborations; the "GetTo" goal elaboration is
relevant to the GetToCl. GetToPI. and GetToP2 goals. The dots before and
after the goals are beginning and ending time points. respectively. Vertical
lines between time points indicate that the time points are constrained to fire
at the same time. Dashed lines under a goal indicate that the goals below
it are elaborated from it.

The first, GetToC I Goal, tells the robot to move to the first
checkpoint, CI. The second goal, GetToC2Goal, has two
tactics it can elaborate; the first is GetToPIGoal and the
second tactic is GetToP2Goal. These goals tell the robot to
drive to the second checkpoint, which is either PI or pZ. The
"GetTo" goals (except GetToC2Goal) elaborate goals con
straining the system health state variable to be certain values.
GetToPIGoal elaborates a concurrent goal constraining the
system health to be GOOD and also elaborates a preceding
goal that constrains the system health to be GOOD. The
GetToC I Goal and GetToP2Goal both elaborate concurrent
goals constraining the system health to be FAIR or better.

Initially, the GetToC2Goal elaborates to the GetToPIGoal.
If the system health degrades so that it is less than GOOD
before reaching the opening time point of the GetToP1Goal,
the preceding system health goal will fail, causing a re
elaboration of the GetToC2Goal, which then elaborates the
GetToP2Goal. However, if the system health degrades to
less than GOOD while achieving the GetToPl Goal, the fault
response is instead to stop the robot and go into system
sating mode. The same response occurs if the system health
degrades to less than FAIR while achieving the GetToCIGoal
or the GetToP2Goal.

IV. SAFETY VERIFICATION

Hybrid system analysis tools can be used to verify the safe
behavior of a hybrid system; therefore, a procedure to convert
goal networks into hybrid systems is an important tool for
goal network verification. Certain structures of goal networks
are easily converted into simple, linear hybrid automaton
in a general way. For this procedure, goal networks can
constrain several state variables and have goals that have
several tactics that can be elaborated upon the failure of
a goal one of its tactics. Goals with tactics that constrain
controllable state variables must not elaborate time points
that occur during another goal on a controllable state variable
that is not maintenance, knowledge, or unconstrained. This
type of goal is called unsplittable. The state variables may be

linearly related to each other via a state model. Goals must
be ordered (though the amount of time needed to complete
the goals can be unconstrained), and transition, elaboration,
and failure logic can' be based on the state variable, affecting
or affected state variables, order, and time.

There are three categories of state variables. The first type
is controllable state variables (CSVs), which are directly
controllable and are always associated with a command class.
The second type is uncontrollable state variables (USVs),
which are not associated with a command class in any way.
The third type is dependent state variables (DSVs), which
do not have an associated command class, but have modeled
dependencies on controllable state variables.

The process for converting goal networks into hybrid
automata has several parts. The first major division of the
process is the type of automata that will be created. The
first, and most involved, automaton created is based on the
control system for the controllable and continuous dependent
state variables in the goal network. Other automata based
on the model dependencies of discrete DSV s are next, and
finally, an automaton is created for each uncontrollable state
variable in the final part of the process. The process is
described fully in [19], and the main points and contributions
are summarized here.

For the first automaton created from combinations of goals
on CSVs, the following steps summarized the procedure:

I) Prepare the goal network for the procedure by labeling
each state variable as controllable, uncontrollable or
dependent. Elaborate, schedule and merge goals; divide
the goals into groups based on time points.

2) Create locations (or modes) of the hybrid automaton by
combining all goals on all CSVs in a group in a specific
way. Label each location with the dynamical update
equations on all CSV s and continuous DSV s present
in the location. Create Success and Safing locations.

3) Create elaboration and transition logic tables for each
goal that has any constraints on CSV s and for each
CSV, respectively. An outline for the elaboration logic
table is shown in Table I and an outline for the
transition logic table is shown in Table II.

4) Create transitions between locations and groups using
the logic outlined in the tables created in the previous
step.

5) Add transitions and actions to locations containing
goals that have definite time constraints.

6) Remove unnecessary locations, groups, and transitions.

For discrete DSVs and all USVs, create a separate hybrid
automaton for each.

1) Create locations in each automaton that correspond
with the discrete states (or discrete sets of continuous
states, for continuous USVs).

2) Create transitions and transition conditions between the
locations that correspond to the modeled behavior of
the state variable.

3) Transitions of stochastic uncontrollable state variables
are generally parameterized for verification.

TABLE I

OUTLINE OF AN ELABORATION LOGIC TABLE

TABLE II

OUTLINE OF A TRANSITION, SUCCESS. AND FAILURE LOGIC TABLE

From Une MalDt Cud .. , ,snccess Fail
UJICOnstrained
Maintenance

Control
:

Finally, for the verification of the system. each automaton
must be converted into a form suitable for the verification
software (which is simply a syntax issue) and transitions
in the discrete DSV and USV automata and the affected
transitions in the CSV automaton must be synchronized. The
last step of the procedure before software verification is then
establishing the "incorrect" or ''unsafe'' sets.

V. EXAMPLE RESULTS

Returning to the example task and goal network described
in Section ill, this section will describe the MOS simulation
of the task as well as the safety verification of this example.

A. Simulation

The robotic simulation environment used consists of three
software packages. The autonomous robotic control system
is implemented in MOS, and an open-source 3-D robotic
simulation package called Gazebo is used to simulate the
environment, the robot, and its sensors. An open-source
server package called Player is used to interface between
the hardware adapter in MOS and the simulated robot in
Gazebo [20].

1) Results: The robotic task was simulated in a nominal
case and in several sensor failure and degradation cases.
Sensors were failed and degraded by intercepting the sensor
measurement values supplied by Gazebo and setting them to
some modified values. Each of the failures and degradations
were introduced at five different time points during the task.

The nominal case performed exactly as expected, as seen
in Figure 4. The health of the system and sensors remains
high throughout the run, and the checkpoints are achieved
in order, with checkpoint C2 occurring at Ph which has the
narrower error bound. The LADAR and odometry failure and
degradation cases were similar to the nominal case in that
each case was successful and the route to C2 occurring at PI
was completed in each case.

Nearly all of the GPS failure and degradation runs were
completed successfully. For the runs in which the failure
or degradation occurred before the GetToPIGoal became
active, the re-elaboration of the GetToP2Goal was triggered

a)

0::
2

o -.' A.

>0
_I

o 2 4
XPoaoI

6 8 .,
b) 0IbDIbr _ DDe GPS IlellbVI!ISIB Doe

CIIad ,

ii:j 1
PIlar

II!
I
:E

F"-

.,
1

-.....
10!"

---,. to lID 3) to 211 3)
LadllrHealh_Doe s,staDHeaIh-BIle

CIIad Clladl~------~
~:.i ________ _

~ .I"~

PIlar

Fad

,'" ..
~:: ~

~ to lID 3) lI8I-~-tO=----:::::2II:----::!3)
Fig. 4. Nominal case: a) position, b) health variables

Robot Posilion
1

c 0 " 0

~ i -1
a..
>-2

~ 0 2 4 8 8 10
XPosiIion

Fig. 5. Robot position in a OPS failure case

and the robot completed the task by reaching P2, as seen
in Figure 5. (For one of these runs, the re-elaboration was
not triggered soon enough before the transition to the next
goal, and therefore, the outcome was the failure of the
GetToP 1 Goal, causing safing). For the runs in which the
failure or degradation occurred after the GetToPIGoal had
started, the result was immediate goal failure and safing.

These results show that the simulation of the system
successfully represents the designed behavior of the system.

B. Safety Verification

1) Hybrid System Design: Using the rules outlined in
Section N, the goal net for this example was converted to
a hybrid system. The CSV automaton was developed from
the "GetTo" goals constraining the position state variable,
and is represented in Figure 6. The first location entered
is GetToCI; from this location, transitions to Safing (via
failure logic) or to the next group (via transition logic)
are possible. The second group has two locations in it,
GetToPI and GetToP2. Once the system transitions out of
GetToCl, elaboration logic dictates which location (either

GelToP1

----'" ___ .J' =:...:&=~Saccess

Fig. 6. Hybrid automaton for the position state variable; SHOo SHF. SHP
is system health is GOOD. FAIR, and POOR, respectively; "done" indicates
that the position state variable has achieved its constraint.

Fig. 7. Hybrid automaton for the system health state variable

GetToPI or GetToP2) is entered. Transitions from either of
these locations are to the Success (transition logic) or Safing
(failure logic) locations.

The automaton for the uncontrollable state variable, the
system health state variable, has locations that are based
on the three discrete values of the system health that affect
the position state variable's automaton. As seen in Figure 7,
the transition conditions are stochastic and parameterized for
verification.

2) Results: HyTech. a symbolic model checking software
that can analyze simple linear hybrid systems. was used to
verify this system [13]. The automata for the position and
system health state variables were encoded and synchronized
(see Figure 8). The rates of degradation of the system
health are the parameters that the safety verification search
is conducted over, and these parameters are represented by
a and f3 in Figures 8 and 7. The decay of the health of the
system from GOOD to FAIR occurs when the health variable
reaches a value of a and the transition from FAIR to POOR
occurs when the system health variable reaches a value of
f3. The system health variable increases at any rate between
zero and one (s E [0, 1 D. The rest of the model is as described
above.

The initial conditions for the system are starting in the
GetToCl location for the position and GOOD for the system
health. The '"unsafe" set used for this analysis consists of four
different regions: 1) position in Safing and health is Good;
2) position in GetToCl and health is POOR; 3) position
in GetToPI and health is not GOOD; and 4) position in
GetToP2 and health is POOR. Forward analysis from the
initial conditions was used. HyTech found that there are no
values of a or f3 that would cause the system to go into
any of the unsafe regions. A more complicated example that
was verified using a less capable version of the conversion
procedure can be found in [21].

•,....... lIeal.1:Il
.,.u:l.abIr: h1%w Paar ;
1D.iCiall,y GDDD I; _1;

laI: &aID: 1IIbi..1.e ,. <1= alpIua -.it (dB ill [a w 1])
1dII9l ,. ,.. alpba .lip&: I'air gSO !lUB. ;

laI: I'ADl: 1IIbi..1.e IIC=IIeca ~ (dB 1D [Ow 1])
1dII9l ,. ,.. Ibeca qJIC Paar gata RIDJl ;

laI: PUIDl: 1IIbi..1.e ,. ,.. beCa 1IIIi.t (a = D J
1dII9l T:ne gSO l'CIaII. ;

•,....... gDBl.Ir
iDiCi.J]~ GectDCl I; B=D I; ~ ;

qm:l.aII:r: h1%w Paar ;

laI: GeCraC1: tddl.e][<1= 6 1IIIi.t (dB in [1/1Dw 1]wdJFD J
1dII9l JO=6 I; ~ I; IICb!Ca gSO GeU'aP2 ;
1dII9l ,. < alpIua I;][,.. 6 gata lietToP1 ;
1dII9l T:ne 8]IIIc l'aar gata SafiDg ;

laI: Ged'DP1: tddl.e :11' <1= 41 -.1t (rb=Ow dJ' in [1/1aw 1] J
1dII9l :11' ,.. 41 I; ,. < alplla I; ,. < bsa gDto S__ ;
1dII9l T:ne 8]IIIc !'air gatD .5aU.Dg ;

laI: GetI'DP2: tddl.e :11' ,.. -41 'RJ.c (d»=Ow d.Ir in [-1w -1/11]1
1dII9l :11' <1= -41 I; ,. ,.. alpIIa I; ,. < bsa gata sa-;
1dII9l T:ne BJIlc l'aar gata .5aU.Dg ;

laI: 5ut:Ice:B: tddl.e T:rae wa1t (ds=DwdJ' =0 J
laI: SaUDg: vII1l.e T:nu! -.it (dlP=DwdJFD J
emI

Fig. 8. HyTech code excerpt for position and system health automata in
example problem. Note the synchronization between the decay of the system
health and the transitions between position locations.

VI. CONCLUSION AND FUTURE WORK

This paper describes a systematic way to verify goal
nets using a general procedure to translate certain types of
goal nets into linear hybrid systems. A software package
specializing in the analysis of linear hybrid systems can then
be used to verify the safety of this system. The process was
used successfully on a simple example problem, though due
to the way multiple controllable and continuous dependent
state variables are handled by the process, it is likely that
this procedure will easily handle more complicated problems.
This result is important for the development and use of
reconfigurable goal nets as a method to robustly control
complex embedded systems.

Future work includes the proof and automation of this
procedure to translate goal networks to hybrid systems. It
may also be possible to extend this procedure to apply to
even more complex goal networks by using certain MDS
attributes, like projections based on state models, in the tran
sition conditions of the hybrid automata. Another extension
would be to include estimation uncertainty of uncontrollable
state variables in the verification procedure.

VII. ACKNOWLEDGEMENTS

The authors would like to gratefully acknowledge Kenny
Meyer for his many efforts in enabling this collaborative
work; a special thanks to Michel Ingham for his help with
the goal net design; Robert Rasmussen, Matthew Bennett,
Mark Indictor, Daniel Dvorak, and the MDS team at JPL
for feedback, suggestions, answered questions, and MDS
and State Analysis instruction; Jeremy Ma for supplying
knowledge and code for the Lu and Milios scan matching
algorithm; and Stefano Di Cairano for his help with hybrid

systems, Stateftow, and HyTech. This work was funded by
NSF and AFOSR.

REFERENCES

[I] D. Dvorak, R. Rasmussen. G. Reeves. and A. Sacks. "Software
architecture themes in JPLs Mission Data System," IEEE Aerospace
Conference. 2000.

[2] M. Ingham. R. Rasmussen. M. Bennett. and A. Moncada, ''Engineering
complex embedded systems with State Analysis and the Mission Data
System." AIAA Joumo.l of Aerospace Computing, InfolTlllllion and
Communication. vol. 2. pp. 507-536. December 2005.

[3] R. D. Rasmussen. "Goal-based fault tolerance for space systems using
the Mission Data System," IEEE Aerospace Conference Proceedings,
vol. 5. pp. 2401-2410. March 2001.

[4] Z.-H. Duan. Z.-X. Cai. and J.-X. Yu. "Fault diagnosis and fault tolerant
control for wheeled mobile robots under unknown environments: A
survey." IEEE Int'l Conference on Robotics and Automation. pp. 342S-
3433.2005.

[5] C. Ferrell. "Failure recognition and fault tolerance of an autonomous
robot." Adaptive Behaviour. vol. 2. no. 4. pp. 375-398. 1994.

[6] M. L. VlSinsky. J. R. Cavallaro. and I. D. Walker. "A dynamic
fault tolerance framework for remote robots," IEEE Transactions on
Robotics and Automation. vol. 11. no. 4. pp. 477-490. 1995.

[7] M. W. Hotbaur and B. C. Williams. "Hybrid estimation of complex
systems." IEEE Transactions on Systems, Man. and Cybernetics-Part
B: Cybernetics. vol. 34. no. 5. pp. 2l7S-2191. 2004.

[8] V. Verma. G. Gordon. R. Simmons. and S. Thrun. "Real-time fault
diagnosis [robot fault diagnOSis]." IEEE Robotics and Automation
Magazine. vol. 11. no. 2, pp. 56-66. 2004.

[9] Y. Diao and K. M. Passino. "Intelligent fault-tolerant control using
adaptive and learning methods." Control Engineering Practice. vol. 10.
pp. 801-817. 2002.

[10] Y. Zhang and J. Jiang, "Fault tolerant control system design with
explicit consideration of performance degradation." IEEE Transactions
on Aerospace and Electronic Systems. vol. 39. pp. 838-848. July 2003.

[11] G. Labinaz, M. M. Bayoumi. and K. Rudie. "A survey of modeling
and control of hybrid systems." Annual Reviews of Control. 1997.

[12] R. AIur. T. Henzinger. and P.-H. Ho. "Automatic symbolic verification
of embedded systems." IEEE Transactions on Software Engineenng,
vol. 22. no. 3. pp. 181-201. 1996.

[13] T. A. Henzinger. P.-H. Ho. and H. Wong-Toi. "HyTech: A model
checker for hybrid systems." Intemo.tioMi Joumo.l on Software Tools
for Technology Transfer. 1997.

[14] K. Larsen. P. Pettersson. and W. Yi. "UPPAAL in a nutshell." Inter
natioMi Joumo.l on Software Tools for Technology Transfer. vol. 1.
no. 1-2. pp. 134-152. 1997.

[15] D. Dill and H. Wong-Toi, CAV 95: Computer-aided Verification.
ch. Verification of real-time systems by successive over and under
approximation, pp. 409-422. Springer. 1995.

[16] D. Dvorak. R. Rasmussen. and T. StaIbird. "State knowledge repre
sentation in the Mission Data System." IEEE Aerospace Conference.
2002.

[17] F. Lu and E. Milios. "Robot pose estimation in unknown environments
by matching 2D range scans," Joumo.l of Intelligent and Robotic
Systems. vol. 20. pp. 249-275. 1997.

[18] L. Drolet. F. Michaud. and J. C8t~. "Adaptable sensor fusion using
multiple Kalman filters." IEEE Int'l Conference on Intelligent Robots
and Systems. vol. 2. pp. 1434-1439.2000.

[19] J. M. Braman and R. M. Murray. "Conversion and verification proce
dure for goal-based control programs." tech. rep., California Institute
of Technology. 2007. CaltechCDSTR:2007.001.

[20] "The Player project" http://playerstage.sourceforge.netl. November
2006.

[21] J. M. Braman. R. M. Murray. and M. D. Ingham. "Verification
procedure for generalized goal-based control programs." AIAA In
fotech@Aerospace. 2007.

End of File

