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Abstract-Fault tolerance and safety verification of control 
systems are essential for the success of autonomous robotic 
systems. A control architecture called Mission Data System 
(MDS), developed at the Jet Propulsion Laboratory, takes 
a goal-based control approach. In this paper, a method for 
converting goal network control programs into linear hybrid 
systems is developed. The linear hybrid system can then be 
verified for safety in the presence of failures using existing 
symbolic model checkers. An example task is simulated in 
MDS and successfully verified using HyTech, a symbolic model 
checking software for linear hybrid systems. 

I. INTRODUCTION 

Autonomous robotic missions by nature have complex 
control systems. In general, the necessary fault detection, 
isolation and recovery software for these systems is cumber
some and added on as failure cases are encountered in sim
ulation. There is a need for a systematic way to incorporate 
fault tolerance in autonomous robotic control systems. One 
way to accomplish this could be to create a flexible control 
system that can reconfigure itself in the presence of faults. 
However, if the control system cannot be verified for safety, 
the added complexity of the reconfigurability of a system 
could reduce the system's effective fault tolerance. 

Mission Data System (MDS) is a software control archi
tecture that was developed at the Jet Propulsion Laboratory 
[1]. It is based on a systems engineering concept called State 
Analysis [2]. Systems that use MDS are controlled by goals, 
which directly express intent as constraints on physical states 
over time. By encoding the intent of the robot's actions, 
MDS has naturally allowed more fault response options to 
be autonomously explored by the control system [3]. 

A great deal of work to date has focused on detecting and 
recovering from sensor failures in the control of autonomous 
systems [4]. Several fault tolerant control architectures for 
autonomous systems have been developed in which the 
control effort is layered to deal with faults on different 
levels, including low levels of hardware control and high 
levels of supervisory control [5], [6]. Fault diagnosis can 
be handled by modeling complex systems as stochastic 
hybrid systems with modes that account for failure states. 
The failures can then detected using multiple-model based 
hybrid estimation schemes [7] or by using variations of 
traditional particle filters to aid in the accurate estimation 
of low probability but high risk failure modes [8]. Although 

J. Braman and R. Murray are with the Dept. of Mecb. Eng., 
California Institute of Technology, Pasadena, CA 91125, USA 
braman@caltech.edu 

D. Wagner is a Senior Software Engineer with the Flight Software 
Applications Group at the Jet Propulsion Laboratory, Pasadena, CA, USA 

many fault tolerant control systems achieve reconfigurability, 
few actually change the commands given to the system. One 
system uses adaptive neural/fuzzy control to reconfigure the 
control system in the presence of detected faults [9], and 
another reconfigures both the control system design and the 
inputs to the control system [10], although neither adjusts 
the intent of the commands in response to failures. 

Fault tolerant control systems are modeled in different 
ways, but one particularly useful method is to model them as 
hybrid systems. Much work has been done on the control of 
hybrid systems [11]. When the continuous dynamics of these 
systems are sufficiently simple, it is possible to verify that 
the execution of the hybrid control system will not fall into 
an unsafe regime [12]. There are several software packages 
available that can be used for this analysis, including HyTech 
[13], UPPAAL [14], and VERm [15], all of which are 
symbolic model checkers. HyTech in particular is used for 
checking linear hybrid automata, where the dynamics of the 
continuous variables can be modeled by linear differential 
inequalities that take the general form of Ai:::; b [12]. Safety 
verification for fault tolerant hybrid control systems ensures 
that the occurrence of certain faults will not cause the system 
to reach an unsafe state. 

In this paper, MDS is used as a goal-based control 
architecture for a representative robotic task involving sensor 
failures and goal re-elaboration. The major contribution of 
this paper is the continued design of a process to convert 
complex goal networks with several state variables and 
various fault tolerant goal elaborations into hybrid automata 
that can be verified for safety using existing symbolic model 
checking software. An example goal network is developed 
in MDS. converted to a hybrid automaton, and then verified 
for safety in the presence of sensor failures. 

The structure of this paper is as follows. Section II 
summarizes important concepts of MDS which pertain to 
this work. Section III introduces the example task, system 
design. and goal network. Section N describes the major 
contribution of this work, the general process for converting 
goal networks into hybrid automata. Section V returns to 
the example, discussing simulation results as well as the 
hybrid automata that were created and the results of the 
safety verification. Finally, Section VI concludes the paper 
and discusses future directions of research. 

II. MISSION DATA SYSTEM OVERVIEW 

A State Analysis 

State Analysis is a systems engineering methodology that 
focuses on a state-based approach to the design of a system 



[2]. In State Analysis, the control system and the system 
under control are considered separately. Models of state 
variable effects in the system under control are used for 
such things as the estimation of state variables, control of 
the system, planning, and goal scheduling. State variables 
are representations of states or properties of the system that 
are to be controlled or that affect a controlled state. Examples 
of state variables could include the position of a robot, the 
temperature of the environment, the health of a sensor, or 
the position of a switch. 

Using State Analysis, the state variables of the system 
under control are identified. A model of the system under 
control is developed and controllers and estimators are 
designed using the models. Goals and goal elaborations 
are created, also based on the models. Goals are specific 
statements of intent used to control a system by constraining 
a state variable in time. Goals are elaborated from a parent 
goal based on the intent and type of goal, the state models, 
and several intuitive rules, as described in [2]. 

B. Mission Data System 

A core concept of State Analysis is that the language used 
to design the control system should be nearly the same as the 
language used to implement the control system. Therefore, 
the software architecture, Mission Data System, is closely 
related to the systems engineering theory described in the 
previous section. 

Data structures called state variables are central to MDS 
[16]. A state variable can contain much information; for 
example, a position state variable for a robot in the plane 
could contain the robot's (x,y) position, its velocity in 
component form, and uncertainty values for each piece of 
information. Each state variable has a unique estimator, and 
if necessary, a controller. Goals can be created that constrain 
some or all of a state variable's information. For example, a 
goal could constrain the velocity of the position state variable 
used in the previous example, but could leave the position 
or uncertainties unconstrained. 

Goal networks replace command sequences as the control 
input to the system. Goal networks consist of a set of goals 
with their associated starting and ending time points and 
temporal constraints. A goal may cause other constraints to 
be elaborated on the same state variable andlor on other 
causally related state variables. These goals must have an 
associated elaboration class. The elaboration class instructs 
the elaborator in MDS to add certain goals to the goal 
network in support of the parent goal. The goals in the goal 
network and their elaborations are scheduled by the scheduler 
software component so that there are no conflicts in time, 
goal order or intent. The scheduled goals are then achieved 
by the estimator or controller of the state variable that is 
constrained. 

Elaboration allows MDS to handle tasks more flexibly 
than control architectures based on command sequences. One 
example is fault tolerance. Re-elaboration of failed goals is 
an option if there are physical redundancies in the system, 
many ways to accomplish the same task. or degraded modes 
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Fig. I. Simulated robotic task 

of operation that are acceptable for a task, . The elaboration 
class for a goal can include several pre-defined tactics. These 
tactics are simply different ways to accomplish the intent 
of the goal, and tactics may be logically chosen by the 
elaborator based on programmer-defined conditions. This 
capability allows for many common types and combinations 
of faults to be accommodated automatically by the control 
system [3]. 

III. EXAMPLE TASK DESIGN 

This section describes the design of an autonomous robotic 
system, task. and a goal network that will accomplish the task 
in the presence of sensor failures. This example illustrates 
some of the MDS principles outlined in the previous section. 

A. Task Design 

An autonomous robotic task is considered in which a 
simulated robot with several sensors follows a path within 
a given uncertainty bound. The task could be compared to 
a Mars scientific mission in which there are two points of 
interest (PI and P2); the first is more desirable but needs 
a lower uncertainty in the robot's position to reach it. The 
mission is considered a success if the robot does not wander 
off the path (where it could be damaged or get stuck), and 
the mission is completed if the robot reaches either point 
of interest. As shown in Figure 1, the planned route for the 
simulation consists of two checkpoints, CI and C2; after the 
first checkpoint, CI, there are two possibilities for the location 
of C2, PI and P2. The first of these possibilities, PI, lies down 
a path that has a somewhat tighter error bound and requires 
a higher standard of instrument health. The other possibility, 
P2, lies down a second path that allows for a larger error 
bound and a somewhat degraded sensor capability. 

The path is successfully navigated by the robot if the 
robot stays within the path boundaries, representing the error 
bounds allowed down each path. Completion of the task 
occurs when the robot navigates to and stops sufficiently near 
C2 without breaching the boundary. The second checkpoint, 
C2 is first assigned to be at location PI, but can be changed 
to be P2 upon the failure or degradation of critical sensors. 

B. System Design 

The robot used in this simulation is equipped with three 
sensors: a differential GPS, a LADAR unit, and odometry 



Fig. 2. State effects diagram; solid ovals represent state variables and 
dashed ovals represent derived state variables. 

(the collection of position, orientation, and velocity infor
mation deduced from wheel encoders). These three sensors 
are used to estimate the robot's position, orientation, and 
velocity information. Several obstacles were placed in the 
environment to facilitate the use of the LADAR. The scan 
matching algorithm developed by Lu and Milios [17], which 
outputs position and orientation, was adapted for use in this 
simulation. 

Several state variables are needed to describe this system. 
FIrst, the position state variable tracks Cartesian and angular 
position and velocity, as well as the covariance matrices for 
the estimates. Three state variables describe the health of the 
three sensors as GOOD, FAIR, POOR, or FAILED. Using 
the same labels, the health of the overall sensing system for 
this specific task is described by the system health derived 
state variable [16]. The state effects diagram is shown in 
Figure 2. The health of the sensors affect the knowledge 
of the robot's position, and so the system health indirectly 
affects the knowledge of the robot's position and orientation. 
Since this state effect exists, it is possible for goals on the 
position state variable to elaborate constraints on the system 
health state variable. 

The robot's position and orientation are estimated using 
a multiple model-based method [18]. In order to make the 
estimation algorithm robust to changes in sensor availability 
and health, different Kalman filters were designed for each 
possible combination of sensors. This approach was chosen 
for its relative simplicity and ease of implementation. The 
three sensor health variables are estimated using a different 
process. In each sensor's health estimator, the output of the 
sensor is converted to a measured position and velocity value 
and is compared to the other sensor's outputs. Then, a voting 
scheme is employed to determine the health of the sensor. 
Once a sensor is failed, it is assumed to always be failed. 
The system health derived state variable is estimated using 
the three sensor health state variables. The system health 
decays in a specific way as the sensor health values decay. 

C. Goal Design 

The goal network associated with this task consists of the 
elaboration of one overall goal, and can be seen in Figure 
3. The goal is a maintenance goal on the position of the 
robot, called BeAtlor2Goal, which refers to locations PI 
and pZ respectively. This goal elaborates into two goals 
on the robot's position, GetToCIGoal and GetToC2Goal. 

OR 

Fig. 3. Goal network and elaborations; the "GetTo" goal elaboration is 
relevant to the GetToCl. GetToPI. and GetToP2 goals. The dots before and 
after the goals are beginning and ending time points. respectively. Vertical 
lines between time points indicate that the time points are constrained to fire 
at the same time. Dashed lines under a goal indicate that the goals below 
it are elaborated from it. 

The first, GetToC I Goal, tells the robot to move to the first 
checkpoint, CI. The second goal, GetToC2Goal, has two 
tactics it can elaborate; the first is GetToPIGoal and the 
second tactic is GetToP2Goal. These goals tell the robot to 
drive to the second checkpoint, which is either PI or pZ. The 
"GetTo" goals (except GetToC2Goal) elaborate goals con
straining the system health state variable to be certain values. 
GetToPIGoal elaborates a concurrent goal constraining the 
system health to be GOOD and also elaborates a preceding 
goal that constrains the system health to be GOOD. The 
GetToC I Goal and GetToP2Goal both elaborate concurrent 
goals constraining the system health to be FAIR or better. 

Initially, the GetToC2Goal elaborates to the GetToPIGoal. 
If the system health degrades so that it is less than GOOD 
before reaching the opening time point of the GetToP1Goal, 
the preceding system health goal will fail, causing a re
elaboration of the GetToC2Goal, which then elaborates the 
GetToP2Goal. However, if the system health degrades to 
less than GOOD while achieving the GetToPl Goal, the fault 
response is instead to stop the robot and go into system 
sating mode. The same response occurs if the system health 
degrades to less than FAIR while achieving the GetToCIGoal 
or the GetToP2Goal. 

IV. SAFETY VERIFICATION 

Hybrid system analysis tools can be used to verify the safe 
behavior of a hybrid system; therefore, a procedure to convert 
goal networks into hybrid systems is an important tool for 
goal network verification. Certain structures of goal networks 
are easily converted into simple, linear hybrid automaton 
in a general way. For this procedure, goal networks can 
constrain several state variables and have goals that have 
several tactics that can be elaborated upon the failure of 
a goal one of its tactics. Goals with tactics that constrain 
controllable state variables must not elaborate time points 
that occur during another goal on a controllable state variable 
that is not maintenance, knowledge, or unconstrained. This 
type of goal is called unsplittable. The state variables may be 



linearly related to each other via a state model. Goals must 
be ordered (though the amount of time needed to complete 
the goals can be unconstrained), and transition, elaboration, 
and failure logic can' be based on the state variable, affecting 
or affected state variables, order, and time. 

There are three categories of state variables. The first type 
is controllable state variables (CSVs), which are directly 
controllable and are always associated with a command class. 
The second type is uncontrollable state variables (USVs), 
which are not associated with a command class in any way. 
The third type is dependent state variables (DSVs), which 
do not have an associated command class, but have modeled 
dependencies on controllable state variables. 

The process for converting goal networks into hybrid 
automata has several parts. The first major division of the 
process is the type of automata that will be created. The 
first, and most involved, automaton created is based on the 
control system for the controllable and continuous dependent 
state variables in the goal network. Other automata based 
on the model dependencies of discrete DSV s are next, and 
finally, an automaton is created for each uncontrollable state 
variable in the final part of the process. The process is 
described fully in [19], and the main points and contributions 
are summarized here. 

For the first automaton created from combinations of goals 
on CSVs, the following steps summarized the procedure: 

I) Prepare the goal network for the procedure by labeling 
each state variable as controllable, uncontrollable or 
dependent. Elaborate, schedule and merge goals; divide 
the goals into groups based on time points. 

2) Create locations (or modes) of the hybrid automaton by 
combining all goals on all CSVs in a group in a specific 
way. Label each location with the dynamical update 
equations on all CSV s and continuous DSV s present 
in the location. Create Success and Safing locations. 

3) Create elaboration and transition logic tables for each 
goal that has any constraints on CSV s and for each 
CSV, respectively. An outline for the elaboration logic 
table is shown in Table I and an outline for the 
transition logic table is shown in Table II. 

4) Create transitions between locations and groups using 
the logic outlined in the tables created in the previous 
step. 

5) Add transitions and actions to locations containing 
goals that have definite time constraints. 

6) Remove unnecessary locations, groups, and transitions. 

For discrete DSVs and all USVs, create a separate hybrid 
automaton for each. 

1) Create locations in each automaton that correspond 
with the discrete states (or discrete sets of continuous 
states, for continuous USVs). 

2) Create transitions and transition conditions between the 
locations that correspond to the modeled behavior of 
the state variable. 

3) Transitions of stochastic uncontrollable state variables 
are generally parameterized for verification. 

TABLE I 

OUTLINE OF AN ELABORATION LOGIC TABLE 

TABLE II 

OUTLINE OF A TRANSITION, SUCCESS. AND FAILURE LOGIC TABLE 

From Une MalDt Cud .. , ,snccess Fail 
UJICOnstrained 
Maintenance 

Control 
: 

Finally, for the verification of the system. each automaton 
must be converted into a form suitable for the verification 
software (which is simply a syntax issue) and transitions 
in the discrete DSV and USV automata and the affected 
transitions in the CSV automaton must be synchronized. The 
last step of the procedure before software verification is then 
establishing the "incorrect" or ''unsafe'' sets. 

V. EXAMPLE RESULTS 

Returning to the example task and goal network described 
in Section ill, this section will describe the MOS simulation 
of the task as well as the safety verification of this example. 

A. Simulation 

The robotic simulation environment used consists of three 
software packages. The autonomous robotic control system 
is implemented in MOS, and an open-source 3-D robotic 
simulation package called Gazebo is used to simulate the 
environment, the robot, and its sensors. An open-source 
server package called Player is used to interface between 
the hardware adapter in MOS and the simulated robot in 
Gazebo [20]. 

1) Results: The robotic task was simulated in a nominal 
case and in several sensor failure and degradation cases. 
Sensors were failed and degraded by intercepting the sensor 
measurement values supplied by Gazebo and setting them to 
some modified values. Each of the failures and degradations 
were introduced at five different time points during the task. 

The nominal case performed exactly as expected, as seen 
in Figure 4. The health of the system and sensors remains 
high throughout the run, and the checkpoints are achieved 
in order, with checkpoint C2 occurring at Ph which has the 
narrower error bound. The LADAR and odometry failure and 
degradation cases were similar to the nominal case in that 
each case was successful and the route to C2 occurring at PI 
was completed in each case. 

Nearly all of the GPS failure and degradation runs were 
completed successfully. For the runs in which the failure 
or degradation occurred before the GetToPIGoal became 
active, the re-elaboration of the GetToP2Goal was triggered 
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and the robot completed the task by reaching P2, as seen 
in Figure 5. (For one of these runs, the re-elaboration was 
not triggered soon enough before the transition to the next 
goal, and therefore, the outcome was the failure of the 
GetToP 1 Goal, causing safing). For the runs in which the 
failure or degradation occurred after the GetToPIGoal had 
started, the result was immediate goal failure and safing. 

These results show that the simulation of the system 
successfully represents the designed behavior of the system. 

B. Safety Verification 

1) Hybrid System Design: Using the rules outlined in 
Section N, the goal net for this example was converted to 
a hybrid system. The CSV automaton was developed from 
the "GetTo" goals constraining the position state variable, 
and is represented in Figure 6. The first location entered 
is GetToCI; from this location, transitions to Safing (via 
failure logic) or to the next group (via transition logic) 
are possible. The second group has two locations in it, 
GetToPI and GetToP2. Once the system transitions out of 
GetToCl, elaboration logic dictates which location (either 

GelToP1 
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Fig. 6. Hybrid automaton for the position state variable; SHOo SHF. SHP 
is system health is GOOD. FAIR, and POOR, respectively; "done" indicates 
that the position state variable has achieved its constraint. 

Fig. 7. Hybrid automaton for the system health state variable 

GetToPI or GetToP2) is entered. Transitions from either of 
these locations are to the Success (transition logic) or Safing 
(failure logic) locations. 

The automaton for the uncontrollable state variable, the 
system health state variable, has locations that are based 
on the three discrete values of the system health that affect 
the position state variable's automaton. As seen in Figure 7, 
the transition conditions are stochastic and parameterized for 
verification. 

2) Results: HyTech. a symbolic model checking software 
that can analyze simple linear hybrid systems. was used to 
verify this system [13]. The automata for the position and 
system health state variables were encoded and synchronized 
(see Figure 8). The rates of degradation of the system 
health are the parameters that the safety verification search 
is conducted over, and these parameters are represented by 
a and f3 in Figures 8 and 7. The decay of the health of the 
system from GOOD to FAIR occurs when the health variable 
reaches a value of a and the transition from FAIR to POOR 
occurs when the system health variable reaches a value of 
f3. The system health variable increases at any rate between 
zero and one (s E [0, 1 D. The rest of the model is as described 
above. 

The initial conditions for the system are starting in the 
GetToCl location for the position and GOOD for the system 
health. The '"unsafe" set used for this analysis consists of four 
different regions: 1) position in Safing and health is Good; 
2) position in GetToCl and health is POOR; 3) position 
in GetToPI and health is not GOOD; and 4) position in 
GetToP2 and health is POOR. Forward analysis from the 
initial conditions was used. HyTech found that there are no 
values of a or f3 that would cause the system to go into 
any of the unsafe regions. A more complicated example that 
was verified using a less capable version of the conversion 
procedure can be found in [21]. 
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Fig. 8. HyTech code excerpt for position and system health automata in 
example problem. Note the synchronization between the decay of the system 
health and the transitions between position locations. 

VI. CONCLUSION AND FUTURE WORK 

This paper describes a systematic way to verify goal 
nets using a general procedure to translate certain types of 
goal nets into linear hybrid systems. A software package 
specializing in the analysis of linear hybrid systems can then 
be used to verify the safety of this system. The process was 
used successfully on a simple example problem, though due 
to the way multiple controllable and continuous dependent 
state variables are handled by the process, it is likely that 
this procedure will easily handle more complicated problems. 
This result is important for the development and use of 
reconfigurable goal nets as a method to robustly control 
complex embedded systems. 

Future work includes the proof and automation of this 
procedure to translate goal networks to hybrid systems. It 
may also be possible to extend this procedure to apply to 
even more complex goal networks by using certain MDS 
attributes, like projections based on state models, in the tran
sition conditions of the hybrid automata. Another extension 
would be to include estimation uncertainty of uncontrollable 
state variables in the verification procedure. 
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