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ABSTRACT 
 
 
 

The desire to assess the reliability of emerging scaled microelectronics technologies 

through faster reliability trials and more accurate acceleration models is the precursor for 

further research and experimentation in this relevant field.  The effect of semiconductor 

scaling on microelectronics product reliability is an important aspect to the high 

reliability application user.  From the perspective of a customer or user, who in many 

cases must deal with very limited, if any, manufacturer’s reliability data to assess the 

product for a highly-reliable application, product-level testing is critical in the 

characterization and reliability assessment of advanced nanometer semiconductor scaling 

effects on microelectronics reliability. A methodology on how to accomplish this and 

techniques for deriving the expected product-level reliability on commercial memory 

products are provided.  

 

Competing mechanism theory and the multiple failure mechanism model are applied to 

the experimental results of scaled SDRAM products. Accelerated stress testing at 

multiple conditions is applied at the product level of several scaled memory products to 

assess the performance degradation and product reliability.  Acceleration models are 

derived for each case. For several scaled SDRAM products, retention time degradation is 

studied and two distinct soft error populations are observed with each technology 

generation: early breakdown, characterized by randomly distributed weak bits with 

Weibull slope �=1, and a main population breakdown with an increasing failure rate. 
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Retention time soft error rates are calculated and a multiple failure mechanism 

acceleration model with parameters is derived for each technology. Defect densities are 

calculated and reflect a decreasing trend in the percentage of random defective bits for 

each successive product generation.   

 

A normalized soft error failure rate of the memory data retention time in FIT/Gb and 

FIT/cm2 for several scaled SDRAM generations is presented revealing a power 

relationship.  General models describing the soft error rates across scaled product 

generations are presented. The analysis methodology may be applied to other scaled 

microelectronic products and their key parameters.  



 

 iv 
 

Table of Contents 
 
�
List of Tables ..................................................................................................................... vi�
List of Figures ................................................................................................................... vii�
Chapter 1: Overview ............................................................................................................1�

1.1� Background ............................................................................................................1�
1.1.1� Aerospace Vehicle Systems Institute (AVSI) Consortium ....................3�
1.1.2� Lifetime Enhancement through Derating ...............................................4�
1.1.3� Derating Factor ......................................................................................6�
1.1.4� Failure Mechanism Simulation ..............................................................7�
1.1.5� Micro-Architectural Level Reliability Modeling ...................................8�
1.1.6� Circuit-Level Reliability Modeling and Simulation ............................11�
1.1.7� Deep Submicron CMOS VLSI Circuit Reliability Modeling and 

Simulation ............................................................................................12�
1.1.8� Physics-of-Failure Based VLSI Circuits Reliability Simulation and 

Prediction .............................................................................................15�
1.1.9� Product Reliability ...............................................................................16�

1.2� CMOS Technology Scaling and Impact ..............................................................18�
1.2.1� MOS Scaling Theory ...........................................................................18�
1.2.2� Moore’s Law ........................................................................................20�
1.2.3� Scaling to Its limits ..............................................................................21�
1.2.4� Scaling Impact on Circuit Performance ...............................................23�
1.2.5� Scaling Impact on Power Consumption ...............................................24�
1.2.6� Scaling Impact on Circuit Design ........................................................25�
1.2.7� Scaling Impact on Parts Burn-in ..........................................................27�
1.2.8� Scaling Impact on Long Term Microelectronics Reliability ...............28�

1.3� Physics-of-Failure (PoF) Methodology ...............................................................31�
1.3.1� Competing Mechanism Theory............................................................32�
1.3.2� Intrinsic Failure Mechanism Overview ...............................................32�
1.3.3� Hot Carrier Injection and Statistical Model .........................................33�
1.3.4� Electromigration and Statistical Model ...............................................35�
1.3.5� Negative Bias Temperature Instability and Statistical Model .............36�
1.3.6� Time-Dependent Dielectric Breakdown and Statistical Model ...........37�
1.3.7� Multiple Failure Mechanism Model ....................................................38�
1.3.8 � Acceleration Factor ..............................................................................40�

1.4� Motivation and Objectives ...................................................................................43�
1.4.1 � Motivation ............................................................................................43�
1.4.2 � Objectives ............................................................................................47�

Chapter 2: Scaling Impact on SDRAM .............................................................................48�
2.1� Overview ..............................................................................................................48�
2.2� Design of Experiments .........................................................................................52�

2.2.1� Electrical Test Flow .............................................................................57�
2.2.2� Electrical Test Conditions and Limits ..................................................58�

2.3� Technology and Construction Analysis ...............................................................62�



 

 v 
 

2.4� Device Characterization .......................................................................................64�
2.4.1� Voltage Breakdown .............................................................................64�
2.4.2� Minimum Frequency Operation Characterization ...............................65�

2.5� Stress Test Results ...............................................................................................65�
2.5.1� Stress Test Results (Iddo) ......................................................................66�
2.5.2� Retention Time Degradation (Tret) .....................................................69�

Chapter 3: SDRAM Degradation and Predictive Model ...................................................73�
3.1� Acceleration Model ..............................................................................................73�

3.1.1 �  Life Distribution..................................................................................74�
3.1.2 �  Multivariable Life-Stress Relationship ...............................................75�

3.2� Data Analysis .......................................................................................................81�
3.3� Degradation Model ..............................................................................................97�

Chapter 4: Physics-of-Failure & Systems Approach .......................................................101�
4.1 � Overview ............................................................................................................101�
4.2 � Failure Mechanisms ...........................................................................................103�
4.3 � Discussion ..........................................................................................................103�
 4.3.1 � Randomness .......................................................................................112�
4.4 � Retention Time Early Breakdown .....................................................................113�
4.5 � Power Relationship as a Function of Scaling ....................................................117�
4.6 � Physical Failure Model ......................................................................................120�
4.7 � DRAM Scaling and Defect Density ...................................................................124�
4.8 � Soft Error Failure Rate .......................................................................................128�

Chapter 5: Conclusion......................................................................................................134�
5.1 � Background ........................................................................................................134�
5.2 � Conclusion .........................................................................................................134�
5.3 � Future Work .......................................................................................................139�
Appendix A ............................................................................................................140�
References ............................................................................................................164�

 



 

 vi 
 

List of Tables 
 
 
Table 1.   Impact of Different Scaling Related Parameters on Intrinsic Failure 

Mechanisms .......................................................................................................9 
Table 2.  Experimental Baseline. ....................................................................................54 
Table 3.   Experimental Stress Test Matrix. .....................................................................54 
Table 4. Test Conditions and BI Board Layout. ............................................................56 
Table 5. DC Tests, Conditions and Limits. ....................................................................59 
Table 6a. Iddo Performance Summary. ...........................................................................67 
Table 6b. Iddo Performance Characterization Drifts. ......................................................68 
Table 7. T-NT Weibull Model Distribution Parameters – 4.0V ....................................91 
Table 8. T-NT Weibull Model Distribution Parameters – 2.5V ....................................92 
Table 9. Exponential Model Parameters. .......................................................................98 
Table 10. Data Retention TTF (t 0.1 Point). ....................................................................99 
Table 11. Q-Ratio t1/tm at Initial Test Point. ..................................................................102 
Table 12. Retention Time Soft Error Rate Calculations. ...............................................113 
Table 13a. 130nm Retention Time SER Matrix for Early Failures. ................................116 
Table 13b. 110nm Retention Time SER Matrix for Early Failures. ................................116 
Table 13c. 90nm Retention Time SER Matrix for Early Failures. ..................................116 
Table 14. DRAM Chip and Cell Characteristics. ...........................................................125 
Table 15.   Normalized Soft Error Failure Rate for Scaled DRAM (FIT/Gb). ................130 
Table 16.   Normalized Soft Error Failure Rate for Scaled DRAM (FIT/cm2). ..............131 
 

 
 



 

 vii 
 

List of Figures 

 
Figure 1.   Df  versus Dvoltage with Constant Operating Temperature and Frequency .....7 
Figure 2.    FIT Values for Processor W/C Conditions. ...................................................9 
Figure 3.   MaCRO Flow of Lifetime, Failure Rate and Reliability Trend Prediction. 14 
Figure 4.   Intrinsic FM Models as a Function of Operating Stress. .............................16 
Figure 5.   Moore’s Law. ...............................................................................................21 
Figure 6.   Trends of Power Supply Voltage, Threshold Voltage, and Gate Oxide 

Thickness vs. Channel Length for CMOS Logic Devices. ..........................22 
Figure 7.   CMOS Performance, Power Density and Circuit Density Trends. ..............23 
Figure 8.   Active and Leakage Power for a Constant Die Size. ...................................24 
Figure 9.   CMOS Intrinsic Wearout Failure Mechanisms. ...........................................28 
Figure 10. 1T1C DRAM Cell. .......................................................................................49 
Figure 11a-b. Current DRAM Trends. ...............................................................................51 
Figure 11c. Current DRAM Trends. ...............................................................................52 
Figure 12. Sapphire S ATE. ..........................................................................................55 
Figure 13. National Instruments PCI-6542. ..................................................................55 
Figure 14. Stress Burn-in Boards. .................................................................................56 
Figure 15. 512Mb SDRAM Functional Block Diagram. ..............................................64 
Figure 16a-b. Operating Current and Refresh Current Degradation. .................................66 
Figure 17a-b. Effect of Temperature on Data Retention for 90nm Technology. ...............70 
Figure 17c-d. Effect of Temperature on Data Retention for 110nm Technology. .............71 
Figure 17e-f. Effect of Temperature on Data Retention for 130nm Technology. .............72 
Figure 18a. 90nm T-NT/Weibull Initial and 1,000 hr. Stress Plots at Fixed  
 Voltage. ........................................................................................................83 
Figure 18b. 90nm T-NT/Weibull Initial and 1,000 hr. Stress Plots at Fixed  
 Temperature. ................................................................................................84 
Figure 19a. 110nm T-NT/Weibull Initial and 1,000 hr. Stress Plots at Fixed  
 Voltage. ........................................................................................................85 
Figure 19b. 110nm T-NT/Weibull Initial and 1,000 hr. Stress Plots at Fixed  
 Temperature. ................................................................................................86 
Figure 20a. 130nm T-NT/Weibull Initial and 1,000 hr. Stress Plots at Fixed  
 Voltage. ........................................................................................................87 
Figure 20b. 130nm T-NT/Weibull Initial and 1,000 hr. Stress Plots at Fixed  
 Temperature. ................................................................................................88 
Figure 21. 90nm T-NT/Weibull Initial and 1,000 hr. Use Level Plots at Fixed  
 398.15K and 4.05V. .....................................................................................93 
Figure 22. 90nm T-NT/Weibull Initial and 1,000 hr. Reliability Plots at Fixed  
 398.15K and 4.05V. .....................................................................................94 
Figure 23. 90nm T-NT/Weibull Initial and 1,000 hr. FR Plots at Fixed 
 398.15K and 4.05V. .....................................................................................95 
Figure 24. 90nm T-NT/Weibull Initial and 1,000 hr. SD Plots at Fixed  
 398.15K and 4.05V. .....................................................................................96 
Figure 25. Tret Degradation Prediction at Accelerated Conditions. ...........................100 



 

 viii 
 

Figure 26. 130nm Bit Failure Distribution at Initial Time (t1), 125°C/4.0V. ..............106 
Figure 27. 130nm Bit Failure Distribution at Time (t2) ..............................................107 
Figure 28. 110nm Bit Failure Distribution at Initial Time (t1), 125°C/4.0V. ..............108 
Figure 29. 110nm Bit Failure Distribution at Time (t2) ..............................................109 
Figure 30. 90nm Bit Failure Distribution at Initial Time (t1), 125°C/4.0V. ................110 
Figure 31. 90nm Bit Failure Distribution at Time (t2) ................................................111 
Figure 32. Optical Overview of Memory Block Layout. ............................................112 
Figure 33a. 130nm System Retention Time SER (95%CL, 1,000hrs). ........................114 
Figure 33b. 110nm System Retention Time SER (95%CL, 1,000hrs). ........................115 
Figure 33c. 90nm System Retention Time SER (95%CL, 1,000hrs). ..........................115 
Figure 34. DRAM Metal Bit Line. ..............................................................................124 
Figure 35. Random Defective Bits per Product Generation. .......................................126 
Figure 36. Normalized Soft Error Failure Rate for Scaled DRAM (FIT/Gb) .............129 
Figure 37. Generalized Soft Error Failure Rate for Scaled DRAM (FIT/Gb) ............130 
Figure 38.  Normalized Soft Error Failure Rate for Scaled DRAM (FIT/cm2) ............131 
Figure 39.  Generalized Soft Error Failure Rate for Scaled DRAM (FIT/cm2) ...........132 
 
 



 

 1 
 

Chapter 1: Overview   

 

 

1.1 Background 

NASA, the aerospace community, and other high reliability (hi-rel) users of advanced 

microelectronic products face many challenges as technology scales into deep sub-micron 

feature sizes.  90nm and 65nm technologies are now being assessed for product reliability as the 

desire for higher performance, lower operating power, and lower stand-by power characteristics 

continue to be sought after in hi-rel space systems.  International Technology Roadmap for 

Semiconductors (ITRS) predictions over the next few years will drive manufacturers to reach 

both physical and material limitations as technology continues to scale.  As a result, new 

materials, designs and processes will be employed to keep up with the performance demands of 

the industry.  While target product lifetimes for mil-product have generally been ten years at 

maximum rated junction temperature, leading edge commercial-off-the-shelf (COTS) 

microelectronics may be somewhat less due to reduced cost consumer electronics and reduced 

safety and reliability margins, including design life. Therefore, reliability uncertainties through 

the introduction of new materials, processes and architectures, coupled with the economic 

pressures to design for ‘reasonable life,’ pose a concern to the hi-rel user of advanced scaled 

microelectronics technologies.  These aspects, in addition to higher power and thermal densities, 

increase the risk of introducing new failure mechanisms and accelerating known failure 

mechanisms. 
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The desire to assess the reliability of emerging technologies through faster reliability trials and 

more accurate acceleration models is the precursor for further research and experimentation in 

this field.  Semiconductor scaling effects on microelectronics reliability prediction, qualification 

strategies and derating criteria for space applications is an area where ongoing research is 

warranted.  Ramp-voltage and constant-voltage stress tests to determine voltage-to-breakdown 

and time-to-breakdown, coupled with temperature acceleration, can be effective methods to 

identify and model critical stress levels and the reliability of emerging deep-sub micron 

microelectronics.   Here, an overview of product reliability trends, emerging issues with scaling, 

derating approaches and physics-of-failure (PoF) considerations for reliability assessment of 

advanced scaled microelectronics technologies for hi-rel space applications will be presented. 

 

Derating microelectronic devices and their critical stress parameters in aerospace applications 

has been common practice for decades to improve device reliability and extend operating life in 

critical missions [1].  Derating is the intentional reduction of key parameters, e.g., supply voltage 

and junction temperature, to reduce internal stresses and increase device lifetime and reliability. 

Semiconductor technology scaling and process improvements, however, compel us to reevaluate 

common failure mechanisms, application and stress conditions, reliability trends, and common 

derating principles to provide affirmation that adequate derating criteria is applied to current 

technologies destined for high reliability space systems.  It is incumbent upon the user to develop 

an understanding of advanced technology failure mechanisms through modeling, accelerated 

testing, and failure analysis prior to the infusion of new nano-scale CMOS products in critical 

high reliability environments.  NASA needs PoF based derating guidance for advanced scaled 

microelectronic technologies for long-term critical missions. Semiconductor manufacturers in 
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general do not publish their reliability reports for fear of losing their competitive edge, and 

customers are often forced into making assumptions with the performance and reliability trade-

offs.   

 

There has been steady progress over the years in the development of a physics-of-failure 

understanding of the effect that various stress drivers have on semiconductor structure 

performance and wearout.  This has resulted in better modeling and prediction capabilities.  

Applying a PoF approach to reliability prediction and derating of EEE parts for NASA flight 

projects is an improvement in device reliability assessment on the basis of environmental and 

operating stresses. The benefit to NASA flight projects as a result of this work include a more 

technically sound predictive reliability models and derating guidance for the reliable application 

of flight electronic parts based on a PoF derating approach, particularly for emerging scaled 

microelectronic technologies. 

 

1.1.1 Aerospace Vehicle Systems Institute (AVSI) Consortium 

Some of the more relevant work in this area of research was initiated by the Aerospace Vehicle 

Systems Institute (AVSI) Consortium in 2002.  AVSI Project #17 – Methods to Account for 

Accelerated Semiconductor Device Wearout was established to investigate, understand and 

address the impacts of microelectronic nanometer technology and its implication on device 

lifetime as a result of device wearout.  The project was oriented toward avionics applications, 

however, all high-reliability users of scaled microelectronics will benefit from this work.  In his 

thesis, Methods to Account for Accelerated Semiconductor Device Wearout in Long life 
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Aerospace Applications [2], J. Walter supported some of the primary objectives of the AVSI 

project, including: 

1) Determination of likely failure mechanisms of future semiconductor devices in avionics 

applications; 

2) Development of models to estimate expected lifetimes of future avionics; and 

3) Development of device assessment methods and avionics system design guidelines. 

 

Walter discussed failure mechanism lifetime models and derating modeling approaches with an 

emphasis on systems engineering methodologies, impact of scaling, and mitigating the impact of 

decreasing device reliability in aerospace applications. 

 

1.1.2 Lifetime Enhancement through Derating 

A semiconductor device’s lifetime may be affected by changing its operating parameters, 

specifically junction temperature, because of heat activated mechanisms and supply voltage. A 

semiconductor device’s operating voltage (Vdd) directly affects many of its parameters. These 

include current density (je) and the electric field (Eox) across the gate dielectric. Supply voltage 

also has a significant effect on junction temperature (Tj).  Junction temperature is the internal 

operating temperature of a device. It is dependent on the power dissipated from the device (PD), 

the ambient operating temperature (Ta), and the sum of the thermal impedances between the die 

and ambient environment (�ja). An engineer can exercise some control over each of these factors 

in a system design. 
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The relationship for determining the junction temperature is [3]:  

 

Tj = �ja*PD + Ta (1.1) 

 

The power dissipated in the Tj equation is determined by [4]:  

 

PD = K*C*Vdd2 *f  + ilVdd (1.2) 

 

where Vdd is the supply voltage, f is the switching frequency, K is the switching factor and C is 

the average node capacitance. The power dissipated is the sum of both dynamic and static power 

dissipation. In CMOS circuits, dynamic power is the dominant factor, accounting for at least 

90% of the power dissipation [5]. Therefore a first order approximation of the power dissipation 

is given by: 

 

PD ~ Pdynamic  = Ceff*Vdd2 *f (1.3) 

 

where Ceff combines the physical capacitance and activity (number of active nodes) to account 

for the average capacitance charged during each 1/ f  period.  While the above equation shows 

that Vdd has a direct impact on junction temperature, Vdd has a further impact in that frequency is 

proportional to it as well. In a CMOS circuit, a reduction in Vdd results in a near linear reduction 

in circuit delay [6].  
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1.1.3 Derating Factor 

The term Derating Factor (Df ) is synonymous with Acceleration Factor (Af ), but is defined as 

the ratio of measured MTTF of a semiconductor at its manufacturer rated operating conditions to 

the measured MTTF of identical devices operating at derated conditions.  This is described as: 

 

�
�
�

�
�
��

rated

derated
f MTTF

MTTFD  (1.4) 

 
The desired values for Df are greater than zero (Df > 0), with larger values providing a longer 

operational life. Therefore, the derated lifetime is described as: 

 

MTTFderated = Df ×MTTFrated  (1.5) 

 

Walter [2] went on to model the individual and combined electromigration (EM), hot carrier 

degradation (HCD), time-dependent-dielectric-breakdown (TDDB), and derating factor vs. 

derated voltage while keeping operating temperature and frequency constant in Figure 1.  In the 

case of the three intrinsic wearout mechanisms discussed, the combined total derating factor is 

described by Walter as: 

 

fTDDB

TDDB

fHCD

HCD

fEM

EM
f

DDD

D
			

	




�  (1.6) 

 
where � can represent either the total failure rate or the sum of the failure rates of the wearout 

mechanisms. This will result in two different answers, the total derating factor and wearout 

derating factor respectively.  
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Figure 1.  Df  versus Dvoltage with Constant Operating Temperature and Frequency. 
 
�EM = �TDDB =�HCD, Tj = 85°C, Ta = 20°C, Vdd,max = 3.3V, Vth = 0.8V, EaEM = 0.8 eV, n = 2, B = 70, 
EaTDDB = 0.75 eV, Eox = 4 MV/cm, g = 3 Naperians per MV/cm. 
 

Due to the low failure rates of semiconductor devices, a device’s failure rate is normally 

determined through accelerated life testing and then extrapolated back to at-use conditions, using 

an acceleration factor, in order to approximate an MTTF. When accelerated life testing is used to 

determine the rated lifetime of a device, care must be taken to ensure that all the relevant failure 

mechanisms are accelerated in order to make a reasonable extrapolation of the device’s failure 

rate. 

 

1.1.4 Failure Mechanism Simulation 

Over the years, there has been a significant amount of simulation work that focuses on individual 

failure mechanisms and their impact on semiconductor reliability.  Of note, Hsu, et al. [7] and 
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Chun, et al. [8] developed CAD tools for hot carrier induced damage effects in VLSI circuits; 

Alam, et. al. [9] developed models to simulate microelectronic reliability from electromigration 

damage; and P.C. Li, et al. [10] studied the effect of oxide failure on microelectronic reliability 

using simulation.  Electromigration and hot-carrier effects on performance degradation of a 2-

stage op-amp were simulated on a CAD reliability tool integrated with a Cadence Spectre 

simulator by Xuan and Chatterjee [11].   

 

Attempts have been made over the years to simulate multiple failure mechanisms in 

microelectronics. Some of the earlier ones include Lathrop, et al. [12] who provided an 

investigative program using a CAD tool to improve microelectronic reliability by generating 

failure information due to electromigration, charge injection and electrostatic discharge; in 1992, 

Hu [13] developed a circuit reliability simulation model called BERT, that simulates the hot 

electron effect, oxide time-dependent breakdown, electromigration, bipolar transistor gain 

degradation, and radiation effects on microelectronics as part of the design process.  As 

simulators became more advanced, more sophisticated approaches to modeling device 

performance and reliability were developed. 

 

1.1.5 Micro-Architectural Level Reliability Modeling 

While junction temperature reduction has traditionally been the primary derating focus, various 

SRAM field studies of commercial devices, and experimental research and modeling of the 

effects of duty cycle and Vdd stresses on the device, suggest that derating these elements with Tj 

can provide an order of magnitude or more improvement in reliability (FIT) [14-16].  The circuit 

design and application, however, must be robust enough to operate at the lower end of the device 
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performance and specification limits. In 2004, J. Srinivasan and the University of Illinois [17] 

conducted processor RAMP modeling which provided FIT estimates across 180nm to 65nm 

technologies for a processor operating at worst case conditions. The impact of different scaling 

related parameters on intrinsic failure mechanisms is presented in Table 1 [17].  FIT estimates 

for TDDB, EM, Stress Migration (SM) and Thermal Cycling (TC) related failure mechanisms, 

and their relative contribution to total FIT are summarized in Figure 2. On average, the simulated 

failure rate (FR) of a scaled 65nm processor may be as high as 316% higher than a similarly 

pipelined 180nm device [17].  

Table 1.  Impact of Different Scaling Related Parameters on Intrinsic Failure Mechanisms.  
 

 

 
 

Figure 2.  FIT Values for Processor W/C Conditions. Application for Model (a) and Model (b) with Relative 
Contribution of Each Mechanism.  
 



 

 10 
 

Generally accepted models for MTTF due to EM, SM, TDDB and TC used in Srinivasan’s 

model have been published in JEDEC Publication JEP122-A [18] and are recapitulated here for 

completeness: 

� � kT
E

n
fEM

aEM

Jt exp�  (1.7) 

 

where J is the current density in the interconnect, EaEM is the activation energy for 

electromigration, k is Boltzmann's constant, and T is absolute temperature in Kelvin. n and EaEM 

are constants that depend on the interconnect metal used. 

 

kT
E

m
ofSM

aSM

TTt exp


�  (1.8) 

where T is the absolute temperature in Kelvin, To is the stress free temperature of the metal (the 

metal deposition temperature), and m and EaSM are material dependent constants. 

kT

ZT
T
YXbTa

fTDDB V
t

�
�
�

�
�
� 





�
�
�

�
�
�� exp1  (1.9) 

 

where T is the absolute temperature in Kelvin, a, b, X, Y, and Z are fitting parameters, and V is 

the voltage. 

 

q

ambientaverage
fTC TT

t �
�
�

�
�
�
�

�


�

1  (1.10) 
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where Tambient  is the ambient temperature in Kelvin, Taverage – Tambient is the average large thermal 

cycle experienced by a structure on a chip, and q is the Coffin-Manson exponent, an empirically 

determined material-dependent constant. 

 

Srinivasan makes two specific contributions. First, he describes an architecture-level model and 

its implementation, called RAMP, which can dynamically track lifetime reliability responding to 

changes in application behavior. RAMP is based on state-of-the-art device models for different 

wearout mechanisms. Second, he proposes dynamic reliability management (DRM) - a technique 

where a processor can respond to changing application behavior to maintain its lifetime 

reliability target. Contrary to current worst-case behavior based reliability qualification 

methodologies, DRM allows processors to be qualified for reliability at lower (but more likely) 

operating points than the worst case.  

 

1.1.6 Circuit-Level Reliability Modeling and Simulation 

There has been work over the years that has focused on the impact of intrinsic failure 

mechanisms on the circuit.   Kumar, et al. [19] modeled NBTI degradation of threshold voltage 

and static noise margin (SNM) on 100nm and 70nm SRAM cells.  In 2002, Reddy, et al. [20] 

demonstrated that SNM of an SRAM memory cell degrades on an 130nm CMOS process by 

NBTI and that the relative degradation increases as the operating voltage decreases.  This was 

confirmed by measuring an increase in the relative frequency degradation of an NBTI stressed 

ring oscillator as the operating voltage dropped.  Jha, et al. [21] later attempted to quantify circuit 

level degradation due to NBTI by simulating a variety of analog/mixed signal circuits. 
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In addition to hot carrier effects on circuit level reliability, thin oxide reliability in scaled CMOS 

devices has been modeled to predict breakdown at the device level and to determine the impact 

on circuit performance.  J. Stathis describes this approach in [22] and explains how soft 

breakdown is the most common mode for a constant-current stress, while hard breakdown 

generally occurs during constant-voltage stress. Rosenbaum, et al. [23] also developed a circuit 

reliability simulator oxide breakdown module. 

 

Khin, et al. [24] worked on a circuit reliability simulator for interconnects and contact 

electromigration. 

 

1.1.7 Deep Submicron CMOS VLSI Circuit Reliability Modeling and Simulation 

A new SPICE reliability simulation methodology that shifts the focus of reliability analysis from 

device wearout to circuit functionality was developed in 2005 by X. Li [25].   A set of 

accelerated lifetime models and failure equivalent circuit models were proposed for the most 

common MOSFET intrinsic wearout mechanisms, including hot carrier injection (HCI), negative 

bias temperature instability (NBTI), and TDDB. The accelerated lifetime models help to identify 

the most degraded transistors in a circuit in terms of the device's terminal voltage and current 

waveforms. Corresponding failure equivalent circuit models are then incorporated into the circuit 

to substitute the identified transistors. Finally, SPICE simulation is performed again to check 

circuit functionality and analyze the impact of device wearout on circuit operation. Device 

wearout effects are lumped into a very limited number of failure equivalent circuit model 

parameters, and circuit performance degradation and functionality are determined by the 

magnitude of these parameters. 
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In Li’s approach, it is unnecessary to perform a large number of small-step SPICE simulation 

iterations, making simulation time much shorter in comparison to other tools. In addition, a 

reduced set of failure equivalent circuit model parameters, rather than a large number of device 

SPICE model parameters, need to be accurately characterized at each interim wearout process. 

Thus, device testing and parameter extraction work are also significantly simplified.  The 

Maryland Circuit Reliability Oriented (MaCRO) SPICE simulation methodology flow is 

summarized in Figure 3 [25]. 
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Figure 3.  MaCRO Flow of Lifetime, Failure Rate and Reliability Trend Prediction.  
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1.1.8 Physics-of-Failure Based VLSI Circuits Reliability Simulation and Prediction 

Most recently, J. Qin [26] proposed a physics-of-failure based statistical reliability prediction 

methodology to simplify the modeling and simulation complexity of the effect of multiple 

intrinsic failure mechanisms on semiconductor devices. Dynamic stress modeling utilizing PoF 

models for each failure mechanism with the best-fit lifetime distribution provided a reliability 

prediction for a 90nm SRAM module case study.   With a specified application profile, 

simulation results revealed that TDDB was the most serious reliability concern for the SRAM bit 

cell, NBTI was the second dominating mechanism, and HCI had a negligible degradation effect. 

The memory core’s reliability prediction showed that the memory core had a constant failure rate 

up to 60,000 hours, and an increasing failure rate beyond 60,000 hours.  Figure 4 provides a 

graphical representation of how intrinsic failure mechanisms may be modeled as a function of 

operating stresses. 

 

The MaCRO simulation models proposed by Li and Qin may become useful to properly derate 

device and operating parameters to improve reliability and predict reliability trends in scaled 

technologies.  This PoF approach to derating can become an important framework for hi-rel 

application users to derate product level voltages and temperatures to achieve the desired 

reliability of current scaled COTS microelectronics. 
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Figure 4.  Intrinsic Failure Mechanism Models as a Function of Operating Stress. 
 

1.1.9 Product Reliability 

There has been a limited amount of product reliability data and studies published driving the 

need for independent assessment of the wearout and degradation characteristics of scaled 

technologies from a PoF standpoint.  Most product reliability data is kept proprietary by the 

manufacturers in an effort to maintain their competitive edge.  However, understanding the 

product reliability and performance metrics throughout the useful life and how best to mitigate 

the effects of degradation and failure in the application is essential.  

 

One approach to product lifetime reliability accelerated testing is described by Mazzuchi and 

Soyer [27] in their Bayes method for assessing product reliability. In their approach, relevant 

information on both failure probabilities and the reliability growth process is used to develop the 

prior joint distribution for the probability of failure type over the testing range.  The results are 

(a) TDDB failure percentage (b) HCI failure percentage

(d) NBTI failure percentage(c) EM failure percentage
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then used at a particular test stage to update the knowledge of the probability of each failure type 

and the product reliability of the current test stage and subsequent test stages.  Jee, et al. [28] 

developed an approach to optimize test coverage and test application time of an embedded 

SRAM using a defect-based approach, e.g., shorts and opens in a memory cell array.  In their 

approach, faults are extracted and analyzed from a representative portion of the array, and the 

results are replicated for the entire memory array to reduce test time. 

 

Estimating long-term performance of scaled microelectronic products can be difficult because 

accelerated life testing (ALT) involving elevated stresses can often result in either too few or no 

failures to make realistic predictions or inferences.  Tang, et al. [29] describes a methodology to 

overcome this problem by using accelerated degradation testing (ADT) as a means to predict 

performance in such cases.  By identifying key performance measures which are expected to 

degrade over time, product reliability can be inferred by the degradation paths without observing 

actual physical failures.  Using this approach, the user defines a failure as the first time a key 

performance measure exceeds a pre-specified threshold, and then the degradation path is 

correlated to product reliability. 

 

Krasich [30] and Turner [31] discuss product reliability and accelerated testing in their work, and 

Turner addresses failure mitigation and challenges as microelectronics scale to 90nm and 

beyond.  Other notable accelerated degradation modeling methodologies include: the statistical 

methods of using degradation measures to estimate the time-to-fail distribution for a variety of 

degradation models developed by Lu and Meeker [32]; a model for analyzing linear degradation 

data proposed by Lu, et al. [33]; and the method to handle degradation failures developed by Guo 
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and Mettas [34] by applying amplification factors with control factors to model the degradation 

process. 

 

1.2 CMOS Technology Scaling and Impact 

Over the past three decades, CMOS technology scaling has been a primary driver of the 

electronics industry and has provided a path toward both denser and faster integration [35-47]. 

The transistors manufactured today are twenty times faster and occupy less than 1% of the area 

of those built twenty years ago. Predictions of size reduction limits have proven to elude the 

most insightful scientists and researchers. The predicted ‘limit’ has been dropping at nearly the 

same rate as the size of the transistors. 

 

The number of devices per chip and the system performance has been improving exponentially 

over the last two decades. As the channel length is reduced, the performance improves, the 

power per switching event decreases, and the density improves. But the power density, total 

circuits per chip, and the total chip power consumption have been increasing. The need for more 

performance and integration has accelerated the scaling trends in almost every device parameter, 

such as lithography, effective channel length, gate dielectric thickness, supply voltage, and 

device leakage. Some of these parameters are approaching fundamental limits, and alternatives to 

the existing material and structures may need to be identified in order to continue scaling. 

 

1.2.1 MOS Scaling Theory 

During the early 1970s, both Mead [35] and Dennard [36] noted that the basic MOS transistor 

structure could be scaled to smaller physical dimensions. One could postulate a “scaling factor” 
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of �, the fractional size reduction from one generation to the next generation, and this scaling 

factor could then be directly applied to the structure and behavior of the MOS transistor in a 

straightforward multiplicative fashion. For example, a CMOS technology generation could have 

a minimum channel length Lmin, along with technology parameters such as the oxide thickness 

tox, the substrate doping NA, the junction depth xj, the power supply voltage Vdd, the threshold 

voltage Vth, etc. The basic “mapping” to the next process, Lmin� �Lmin, involved the concurrent 

mappings of tox� �tox, NA� �NA, xj� �xj, Vdd� �Vdd, and Vth� �Vth. Thus, the structure of the 

next generation process could be known beforehand, and the behavior of circuits in that next 

generation could be predicted in a straightforward fashion from the behavior in the present 

generation. The scaling theory developed by Mead and Dennard is solidly grounded in the basic 

physics and behavior of the MOS transistor. Scaling theory allows a “photocopy reduction” 

approach to feature size reduction in CMOS technology, and while the dimensions shrink, 

scaling theory causes the field strengths in the MOS transistor to remain the same across 

different process generations. Thus, the “original” form of scaling theory is constant field 

scaling. 

 

Constant field scaling requires a reduction of the power supply voltage with each technology 

generation. In the 1980s, CMOS adopted the 5V power supply, which was compatible with the 

power supply of bipolar TTL logic. Constant field scaling was replaced with constant voltage 

scaling, and instead of remaining constant, the fields inside the device increased from generation 

to generation until the early 1990s, when excessive power dissipation and heating, gate 

dielectrics TDDB, and channel hot carrier aging caused serious problems with the increasing 

electric field. As a result, constant field scaling was applied to technology scaling in the 1990s.  
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Constant field scaling requires that the threshold voltage be scaled in proportion to the feature 

size reduction. However, ultimately threshold voltage scaling is limited by the sub-threshold 

slope of the MOS transistor, which itself is limited by the thermal voltage kT/q, where the 

Boltzmann constant, k and the electron charge, q are fundamental constants of nature and cannot 

be changed. The choice of the threshold voltage in a particular technology is determined by the 

off-state current goal per transistor and the sub-threshold slope. With off-current requirements 

remaining the same (or even tightening) and the sub-threshold slope limited by basic physics, the 

difficulty with scaling the threshold voltage is clear. Because of this, the power supply voltage 

decreased corresponding with the constant field scaling, but the threshold voltage was unable to 

scale as aggressively. This situation worsens as feature sizes and power supply voltages continue 

to scale. This is a fundamental problem with further CMOS technology scaling.  

 

1.2.2 Moore’s Law 

It was the realization of scaling theory and its usage in practice which has made possible the 

better-known “Moore’s Law.” Moore’s Law is a phenomenological observation that the number 

of transistors on integrated circuits doubles every two years, as shown in Figure 5. It is intuitive 

that Moore’s Law cannot be sustained forever. However, predictions of size reduction limits due 

to material or design constraints, or even the pace of size reduction, have proven to elude the 

most insightful scientists. The predicted ‘limit’ has been dropping at nearly the same rate as the 

size of the transistors. 
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Figure 5. Moore’s Law. 

1.2.3 Scaling to its Limits 

There does not seem to be any fundamental physical limitation that would prevent Moore’s Law 

from characterizing the trends of integrated circuits. However, sustaining this rate of progress is 

not straightforward [39].  

 

Figure 6 shows the trends of power supply voltage, threshold voltage, and gate oxide thickness 

versus channel length for high performance CMOS logic technologies [40]. Sub-threshold non-

scaling and standby power limitations bound the threshold voltage to a minimum of 0.2V at the 

operating temperature. Thus, a significant reduction in performance gains is predicted below 

1.5V due to the fact that the threshold voltage decreases more slowly than the historical trend, 

leading to more aggressive device designs at higher electric fields.   
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Figure 6. Trends of Power Supply Voltage Vdd, Threshold Voltage Vth, and Gate Oxide Thickness tox, versus 
Channel Length for CMOS Logic Technologies. 
 
 
Further technology scaling requires major changes in many areas, including: 1) improved 

lithography techniques and non-optical exposure technologies; 2) improved transistor design to 

achieve higher performance with smaller dimensions; 3) migration from current bulk CMOS 

devices to novel materials and structures, including silicon-on-insulator, strained Si and novel 

dielectric materials; 4) circuit sensitivity to soft errors from radiation; 5) smaller wiring for on-

chip interconnection of the circuits; 6) stable circuits; 7) more productive design automation 

tools; 8) denser memory cells, and 9) manageable capital costs. Metal gate and high-k gate 

dielectrics were introduced into production in 2007 to maintain technology scaling trends [48]. 

 

In addition, packaging technology needs to progress at a rate consistent with on-going CMOS 

technology scaling at sustainable cost/performance levels. This requires advances in I/O density, 
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bandwidth, power distribution, and heat extraction. System architecture will also be required to 

maximize the performance gains achieved in advanced CMOS and packaging technologies. 

 

1.2.4 Scaling Impact on Circuit Performance  

Transistor scaling is the primary factor in achieving high-performance microprocessors and 

memories. Each 30% reduction in CMOS IC technology node scaling has [41, 49]:  1) reduced 

the gate delay by 30% allowing an increase in maximum clock frequency of 43%; 2) doubled the 

device density; 3) reduced the parasitic capacitance by 30%; and 4) reduced energy and active 

power per transition by 65% and 50%, respectively.  Figure 7 shows CMOS performance, power 

density and circuit density trends, indicating a linear circuit performance as a result of 

technology scaling [41]. 

 

Figure 7. CMOS Performance, Power Density and Circuit Density Trends. 
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1.2.5 Scaling Impact on Power Consumption 

Dynamic power and leakage current are the major sources of power consumption in CMOS 

circuits. Leakage related power consumption has become more significant as threshold voltage 

scales with technology. There are several studies that deal with the impact of technology scaling 

in various aspects of CMOS VLSI design [39, 47, 50-52].  

 

Figure 8 [51] illustrates how the dynamic and leakage power consumption vary across 

technologies, where Pact is the dynamic power consumption and Pleak is the leakage power 

consumption. The estimates have only captured the influence of sub-threshold currents since 

they are the dominant leakage mechanism. For sub-100nm technologies, temperature has a much 

greater impact on the leakage power consumption than the active power consumption for the 

same technology. In addition, the leakage power consumption increases almost exponentially.   

 

Figure 8. Active and Leakage Power for a Constant Die Size. 
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1.2.6 Scaling Impact on Circuit Design 

With continuing aggressive technology scaling, it is increasingly difficult to sustain supply and 

threshold voltage scaling to provide the required performance increase, limit energy 

consumption, control power dissipation, and maintain reliability. These requirements pose 

several difficulties across a range of disciplines. On the technology front, the question arises 

whether we can continue along the traditional CMOS scaling path – reducing effective oxide 

thickness, improving channel mobility, and minimizing parasitics. On the design front, 

researchers are exploring various circuit design techniques to deal with process variation, 

leakage and soft errors [41, 47].  

 

For CMOS technologies beyond 90nm, leakage power is one of the most crucial design 

components which must be efficiently controlled in order to utilize the performance advantages 

of these technologies. It is important to analyze and control all components of leakage power, 

placing particular emphasis on sub-threshold and gate leakage power. A number of issues must 

be addressed, including low voltage circuit design under high intrinsic leakage, leakage 

monitoring and control, effective transistor stacking, multi-threshold CMOS, dynamic threshold 

CMOS, well biasing techniques, and design of low leakage data-paths and caches.  

 

While supply voltage scaling becomes less effective in providing power savings as leakage 

power becomes larger due to scaling, it is suggested that the goal is to no longer have simply the 

highest performance, but instead have the highest performance within a particular power budget 

by considering the physical aspects of the design. In some cases, it may be possible to balance 

the benefit of using high threshold devices from a low leakage process running at the higher 
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possible frequency at a full Vdd, as opposed to using faster but leakier devices which require 

more voltage scaling in order to reach the desired power budget.  

 

Nanometer design technologies must work under tight operating margins, and are therefore 

highly susceptible to any process and environmental variability. Traditional sources of variation 

due to circuit and environmental factors, such as cross capacitance, power supply integrity, 

multiple inputs switching, and errors arising due to tools and flows, affect circuit performance 

significantly. To address environmental variation, it is important to build circuits that have well-

distributed thermal properties, and to carefully design supply networks to provide reliable Vdd 

and ground levels throughout the chip. 

 

With technology scaling, process variation has become more of a concern and has received an 

increased amount of attention from the design automation community. Several research efforts 

have addressed the issue of process variation and its impact on circuit performance [49, 53-55]. 

A worst-case approach was first used to develop the closed form models for sensitivity due to 

different parameter variations for a clock tree [53], and was further developed to include 

interconnect and device variation impact on timing delay due to technology scaling [49]. The 

impact of systematic variation sources was then considered in [54]. Finally, an integrated 

variation analysis technique was developed in [55], which considers the effects of both 

systematic and random variation in both interconnect and devices simultaneously. The design 

community has realized that in order to address the process-induced variations and to ensure the 

final circuit reliability, instead of treating timing in a worst-case manner, as is conventionally 

done in static timing analysis, statistical techniques need to be employed that directly predict the 
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percentage of circuits that are likely to meet a timing specification. The effects of uncertainties in 

process variables must be modeled using statistical techniques, and they must be utilized to 

determine variations in the performance parameters of a circuit.  

 

1.2.7 Scaling Impact on Parts Burn-In 

Power supply voltage in scaled technologies must be lowered for two main reasons [56]: 1) to 

reduce the device internal electric fields and 2) to reduce active power consumption since it is 

proportional to Vdd
2. As Vdd scales, then Vth must also be scaled to maintain drain current 

overdrive to achieve higher performance. Lower Vth leads to higher off-state leakage current, 

which is the major problem with burn-in of scaled nanometer technologies.  

 

The total power consumption of high-performance microprocessors increases with scaling. Off-

state leakage current is a higher percentage of the total current at the sub-100nm nodes under 

nominal conditions. The ratio of leakage to active power becomes worse under burn-in 

conditions and the dominant power consumption is from the off-state leakage. Typically, clock 

frequencies are kept in the tens of megahertz range during burn-in, resulting in a substantial 

reduction in active power. Conversely, the voltage and temperature stresses cause the off-state 

leakage to be the dominant power component. 

 

Stress during burn-in accelerates the defect mechanisms responsible for early-life failures. 

Thermal and voltage stresses increase the junction temperature resulting in accelerated aging. 

Elevated junction temperature, in turn, causes leakages to further increase. In many situations, 

this may result in positive feedback leading to thermal runaway. Such situations are more likely 
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to occur as technology is scaled into the nanometer region. Thermal runaway increases the cost 

of burn-in dramatically. To avoid thermal runaway, it is crucial to understand and predict the 

junction temperature under normal and stress conditions. Junction temperature, in turn, is a 

function of ambient temperature, package to ambient thermal resistance, package thermal 

resistance, and static power dissipation. Considering these parameters, one can optimize the 

burn-in environment to minimize the probability of thermal runaway while maintaining the 

effectiveness of burn-in test. 

 

1.2.8 Scaling Impact on Long Term Microelectronics Reliability 

The major long-term reliability concerns include the intrinsic wear-out mechanisms of time 

dependent dielectric breakdown (TDDB) of gate dielectrics, hot carrier injection (HCI), negative 

bias temperature instability (NBTI), and electromigration (EM).  For microelectronics, the 

primary intrinsic wearout failure mechanisms are illustrated in Figure 9.  

 

Figure 9.  CMOS Intrinsic Wearout Failure Mechanisms. 
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The drivers & effects of the primary intrinsic failure mechanisms of concern are as follows: 

 

Hot Carrier Injection (HCI): 

• Drivers: Channel length & width, oxide thickness, operating voltage, and low 

temperature. 

• Effect: Increased substrate current (Isub), saturation drain current degradation (IDSAT), and 

increase in Vth. 

• Impact of Scaling: The rate of hot carrier degradation is directly related to the length of 

the channel, the oxide thickness, and the voltage of the device.  Hot carrier effects are 

expected to be a growing concern. 

 

Electromigration (EM): 

• Drivers: High temperature and current density in metal interconnects. 

• Effect: Metal migration leading to increased resistance and open or short circuit. 

• Impact of Scaling: Energy densities within interconnects are expected to grow as device 

features become smaller. 

 

Negative Bias Temperature Instability (NBTI): 

• Drivers: Oxide thickness and high temperature. 

• Effect: Degraded (IDSAT) and transconductance (gm), and an increase in Ioff and Vth. 

• Impact of Scaling: NBTI is a growing concern as devices continue to scale. As feature 

sizes scaled through 0.13um, devices required much thinner gate oxides and introduced 

nitrides in the SiO2. 
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Time-Dependent-Dielectric-Breakdown (TDDB): 

• Drivers: Oxide thickness, gate voltage, and high electric field. 

• Effect: Anode to cathode short through the dielectric. 

• Impact of Scaling:  TDDB is expected to accelerate as gate oxide thicknesses decrease 

with continued device scaling. 

  
 
The physics and the reliability characterization and modeling of each mechanism have been 

major research topics for the past three decades.  There has been an abundant amount of research 

in this area, including [57].  

 

Among the wear-out mechanisms, TDDB and NBTI seem to be the major reliability concerns as 

devices scale. The gate oxide has been scaled down to only a few atomic layers thick with 

significant tunneling leakage. While the gate leakage current may be at a negligible level 

compared with the on-state current of a device, it will first have an effect on the overall standby 

power. For a total active gate area of 0.1 cm2, chip standby power limits the maximum tolerable 

gate leakage current to approximately 1-10 A/cm2, which occurs for gate oxides in the range of 

15-18A [40].  

 

Scaling impact of TDDB and NBTI on digital, analog and RF circuit reliability has been an 

important topic during past years [58-69]. Either TDDB, NBTI, or both were found to contribute 

to digital circuit speed degradation [58, 62], FPGA delay increase [65], SRAM minimum 

operating voltage Vmin shift measurement [64, 66, 67], RF circuit parametric drifts [60, 61], and 

analog circuit mismatch [59, 63]. It appears that SRAM minimum operating voltage Vmin shift 
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due to TDDB and NBTI is one of the effects that has been tested and characterized most. For 

example, it is shown [66] that transistor shifts due to NBTI manifest themselves as population 

tails in the product’s minimum operating voltage distribution. TDDB manifests itself as single-

bit or logic failures that constitute a separate sub-population. NBTI failures are characterized by 

Log-normal statistics combined with a slower degradation rate, which is in contrast to TDDB 

failures that follow extreme-value statistics and exhibit a faster degradation rate. Most of the 

studies seem to indicate that the advanced technology parts may experience intrinsic or wear-out 

mechanisms induced circuit parametric shifts during operating life time, especially at higher 

operating voltages and temperature conditions. 

 

1.3 Physics-of-Failure (PoF) Methodology 

The PoF methodology may be summarized as follows: 

•  Identify potential failure mechanisms (e.g., chemical, electrical, physical, mechanical, 

structural, or thermal processes leading to failure) and the likely failure sites on each 

device. 

•  Expose the product to highly accelerated stresses to find the dominant root-cause of 

failure. 

•  Identify the dominant failure mechanism as the weakest link. 

•  Model the dominant mechanism (what and why the failure takes place). 

•  Combine the data gathered from the acceleration tests and statistical distributions, e.g., 

Weibull, lognormal distributions. 
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•  Develop an equation for the dominant failure mechanism at the site and its time-to-failure 

(TTF). 

• Extrapolate to use conditions. 

 

This process is used to assess the retention time reliability of three progressive DRAM 

technologies described in Chapter 2. 

 

1.3.1 Competing Mechanism Theory 

While the failure rate qualification has not improved over the years, the semiconductor industry 

understanding of reliability physics of semiconductor devices has increased tremendously. 

Failure mechanisms are well understood and the manufacturing and design processes are so 

tightly controlled that electronic components are designed to perform with reasonable life and 

with no single dominant failure mechanism.  In practice, however, highly accelerated stress 

testing is used to determine the life limiting failure mechanism and the weakest link. 

 

1.3.2 Intrinsic Failure Mechanism Overview 

The potential intrinsic wearout failure mechanisms considered include Hot Carrier Injection 

(HCI), Electromigration (EM), Negative Bias Temperature Instability (NBTI), and Time-

Dependent-Dielectric-Breakdown (TDDB).  Much work has been done on the physics of these 

failure mechanisms in the past including [70], a primary deliverable for the Aerospace Vehicles 

Space Institute (AVSI) Consortium Project 17: Methods to Account for Accelerated 

Semiconductor Wearout.  Therefore; only a brief overview will be presented here. 
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1.3.3 Hot Carrier Injection and Statistical Model 

The switching characteristics of a MOSFET can degrade and exhibit instabilities due to the 

charge that is injected into the gate oxide. The typical effect of hot carrier, or hot electron, 

degradation is to reduce the on-state current in an n-channel MOSFET and increase the off-state 

current in a p-channel MOSFET.  The rate of hot carrier degradation is directly related to the 

length of the channel, the oxide thickness, and the voltage of the device. A measure of transistor 

degradation or lifetime is commonly defined in terms of percentage shift of threshold voltage, 

change in transconductance, or variation in drive or saturation current [71]. Several approaches 

to minimize HCI effects include: thermo-chemical processing to reduce the Si-SiO2 interfacial 

trap density; introducing ion implanted regions of lighter doping between the channel and 

heavily doped drain regions to better distribute the electric field, reducing its peak value; adding 

nitride to the gate oxide so that it is more resistant to interface-trap generation; and reducing the 

transistor operating voltage [71].   

 

There are three main types of hot carrier injection modes according to Takeda [72]:  

 

1. Channel hot electron (CHE) injection.  

2. Drain avalanche hot carrier (DAHC) injection. 

3. Secondary generated hot electron (SGHE) injection.  

 

CHE injection is due to the escape of “lucky” electrons from the channel, causing a significant 

degradation of the oxide and the Si�SiO2 interface, especially at low temperature (77K) [73]. 

Alternatively, DAHC injection results in both electron and hole gate currents due to impact 

ionization, giving rise to the most severe degradation around room temperature. SGHE injection 
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is due to minority carriers from secondary impact ionization or, more likely, bremsstrahlung 

radiation, and becomes a problem in ultra-small MOS devices. 

 

The lognormal distribution is generally used to model hot carrier degradation [74]: 
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Hot carrier effects are enhanced at low temperature. The primary reason for this is an increase in 

electron mean free path and impact ionization rate at low temperature. As was shown in [75], 

substrate current at 77K is five times greater than that at room temperature, and CHE gate 

current is approximately 1.5 orders of magnitude greater than that at room temperature. At low 

temperature, the electron trapping efficiency increases and the effect of fixed charges becomes 

large [76]. This accelerates the degradation of Gm at low temperature. The degradation of Vth and 

Gm at low temperatures is more severely accelerated for CHE-induced effects than for DAHC. 

Hu [77] showed the temperature coefficient of CHE gate and substrate current to be negative.  

The lifetime model for HCI is commonly expressed as: 
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where Ea has a value of approximately �0.1 eV ~ �0.2 eV  [78].  
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1.3.4 Electromigration and Statistical Model 

Passage of high current densities through interconnects causes time-dependent mass transport 

effects that manifest as surface morphological changes.  The resulting metal conductor 

degradation includes mass pileups in hillocks and whiskers, void formation and thinning, 

localized heating, and cracking of passivating dielectrics [71]. The scaling of interconnects to 

keep up with semiconductor scaling increases current densities and temperature, reducing 

median life.  There are three properties having an immediate impact on EM reliability models: 

 

� The orientation of the boundary with respect to the electric field.  

� The angles of the grain boundaries with respect to each other.  

� Changes in the number of the grains per unit area–grain density.  

 

Each of these properties can give rise to the ion divergences necessary to create voids in metal 

strips and interconnects.  

 

The lognormal failure distribution is often used to characterize EM lifetime [79]. The bimodal 

lognormal distribution is often seen in copper via EM tests. Lai [80] described two EM failure 

mechanisms: via related and metal-stripe related. Ogawa [81] reported two distinct failure modes 

in dual-damascene Cu/oxide interconnects. One model described void formation within the dual-

damascene via; the other reflected voiding that occurs in the dual-damascene trench. These 

models formed a bimodal lognormal distribution.  
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The temperature acceleration factor is calculated from Black’s equation and may be expressed 

as:  
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where tm = test time to failure, j = current density, T1 and T2 are stress operating temperatures, 

and Ea is the activation energy for electromigration.  Reported activation energies for EM range 

from approximately 0.35eV ~ 0.9eV depending on conductor grain size and metal alloy [82]. 

 

1.3.5 Negative Bias Temperature Instability and Statistical Model 

NBTI occurs to p-channel MOS (PMOS) devices under negative gate voltages at elevated 

temperatures. Bias temperature stress under constant voltage (DC) causes the generation of 

interface traps (NIT) between the gate oxide and silicon substrate, which causes device threshold 

voltage (Vt) to increase, and drain current (Idsat) and transconductance (gm) to decrease. The 

NBTI effect is more severe for PMOS than NMOS devices due to the presence of holes in the 

PMOS inversion layer that are known to interact with the oxide states. The degradation of device 

performance is a significant reliability concern for current ultrathin gate oxides where there are 

indications that NBTI worsens exponentially with thinning gate oxide.  Degradation is 

commonly modeled with power-law time dependence and Arrhenius temperature acceleration.  

Degradation partially recovers once stress is removed [83]. Major drivers for NBTI degradation 

in PMOS devices are ultrathin gate oxide thickness and high temperature. 
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The lognormal failure distribution is often used to characterize NBTI lifetime and frequency 

degradation over time is best described as a power law of time (Time�) with � values ranging 

from 0.25 to 0.4 [84, 85]. Activation energies for NBTI have been reported to be in the range of 

0.18eV to 0.84eV [86, 87].  

 
 
Improved models have been proposed after the simple power-law model.  Considering 

temperature and gate voltage, the lifetime model for NBTI is commonly expressed as: 
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where A and � are constants and Vgs is the applied gate voltage. 

 

1.3.6 Time-Dependent Dielectric Breakdown and Statistical Model 

TDDB is a wearout phenomenon of SiO2, the thin insulating layer between the control “gate” 

and the conducting “channel” of the transistor. SiO2 has a very high bandgap (approximately 

9eV) and excellent scaling and process integration capabilities, which makes it the key factor in 

the success of MOS-technology [88].  Dielectric layers as thin as 1.5 nm can be obtained in fully 

functioning MOSFETs with gate lengths of only 40 nm [89]. Although SiO2 has many 

extraordinary properties, it is not perfect and suffers degradation caused by stress factors, such as 

a high oxide field. Oxide degradation has been the subject of numerous studies that were 

published over the past four decades. Even today, a complete understanding of TDDB has not 

yet been reached. Basic models, such as E model and 1/E model, have been proposed and are 
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still debated in the reliability community. Percolation theory has been successfully applied to the 

statistical description of TDDB. As oxide continues to scale down, new findings will help 

researchers gain a better understanding of this complicated process. 

 

The statistical nature of TDDB is well described by the Weibull distribution, since TDDB is a 

“weakest link” type of failure mechanism.  The activation energy for Tox < 10nm ranges from 0.6 

to 0.9 eV. 

 
Several lifetime models have been proposed for TDDB, these include: thermo- chemical model, 

anode hole injection model, IBM model, and two voltage driven models, including exponential 

and power law. The lifetime model commonly expressed for TDDB is: 
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1.3.7 Multiple Failure Mechanism Model 

 
Standard High Temperature Operating Life (HTOL) tests can reveal multiple failure mechanisms 

during testing, which suggests that no single failure mechanism dominates the FIT rate in the 

field. Therefore, in order to make a more accurate model for FIT, a preferable approximation is 

that all failures are equally likely and the resulting overall failure distribution resembles a 

constant failure rate process that is consistent with the mil-handbook, FIT rate approach. The 

acceleration of a single failure mechanism is a highly non-linear function of temperature and/or 

voltage. The temperature acceleration factor (AFT) and voltage acceleration factor (AFV) can be 
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calculated separately and are the subject of most studies of reliability physics. The total 

acceleration factor of the different stress combinations are the product of the acceleration factors 

of temperature and voltage: 
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This acceleration factor model is widely used as the industry standard for device qualification. 

However, it only approximates a single dielectric breakdown type of failure mechanism and does 

not correctly predict the acceleration of other mechanisms [90]. 

 

To be even approximately accurate, electronic devices should be considered to have several 

failure modes degrading simultaneously. Each mechanism ‘competes’ with the others to cause an 

eventual failure. When more than one mechanism exists in a system, then the relative 

acceleration of each one must be defined and averaged under the applied condition. Every 

potential failure mechanism should be identified and its unique AF should then be calculated for 

each mechanism at a given temperature and voltage so the FIT rate can be approximated for each 

mechanism separately. Then, the final FIT is the sum of the failure rates per mechanism, as 

described by: 

 

FITtotal = FIT1  +  FIT2  + …. + FITi (1.17) 

 

where each mechanism leads to an expected failure unit per mechanism, FITi. Unfortunately, 

individual failure mechanisms are not uniformly accelerated by a standard HTOL test, and the 
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manufacturer is forced to model a single acceleration factor that cannot be combined with known 

physics of failure models [90]. 

 

1.3.8  Acceleration Factor 

The qualification of device reliability, as reported by a FIT rate, must be based on an acceleration 

factor, which represents the failure model for the tested device. If we assume that there is no 

failure analysis (FA) of the devices after the HTOL test, or that the manufacturer does not report 

FA results to the customer, then a model should be made for the acceleration factor, AF, based 

on a combination of competing mechanisms [90].  

 

Suppose there are two identifiable, constant rate competing failure modes (assume an 

exponential distribution). One failure mode is accelerated only by temperature. We denote its 

failure rate as �1(T). The other failure mode is only accelerated by voltage, and the corresponding 

failure rate is denoted as �2(V). By performing the acceleration tests for temperature and voltage 

separately, we can get the failure rates of both failure modes at their corresponding stress 

conditions. Then we can calculate the acceleration factor of the mechanisms. If for the first 

failure mode we have �1(T1), �1(T2), and for the second failure mode, we have �2(V1), �2(V2), then 

the temperature acceleration factor is: 
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and the voltage acceleration factor is: 

� �
� � 21

12

22 , VV
V
VAFV ��

	
	 . (1.19) 

 



 

 41 
 

The system acceleration factor between the stress conditions of (T1,V1) and (T2,V2) is: 
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The above equation can be transformed to the following two expressions: 
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or 
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These two equations can be simplified based on different assumptions. When �1(T1) = �2(V1) 

where there is an equal probability under normal operating conditions: 

 

2
VT AFAFAF 


� . (1.23) 

 

Therefore, unless the temperature and voltage is carefully chosen so that AFT and AFV are very 

close, within a factor of about 2, then one acceleration factor will overwhelm the failures at the 

accelerated conditions. Similarly, when �1(T2) = �2(V2) i.e., an equal probability during 

accelerated test condition, then the AF will take the form: 
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and the acceleration factor applied to normal operating conditions will be dominated by the 

individual factor with the greatest acceleration. In either situation, the accelerated test does not 

accurately reflect the correct proportion of acceleration factors based on the understood physics 

of failure mechanisms.  

 

Suppose a device has n independent failure mechanisms, and �LTFMi represents the ith failure 

mode at accelerated condition, �useFMi represents the ith failure mode at normal condition, then 

the AF can be expressed in two forms [90]. 

 

If the device is designed, such that the failure modes have equal frequency of occurrence during 

normal operating conditions: 
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If the device is designed, such that the failure modes have equal frequency of occurrence during 

the test conditions: 
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From these relations, it is clear that only if the acceleration factors for each mode are almost 

equal, i.e., AF1 ~ AF2, the total acceleration factor will be AF = AF1 = AF2, and certainly not the 

product of the two (as is currently the model used by industry). If, however, the acceleration of 

one failure mode is much greater than the second, the standard FIT calculation may be incorrect 

by several orders of magnitude.  

 
 

1.4 Motivation and Objectives 

1.4.1  Motivation 

The motivation for further research of scaling effects on microelectronics reliability stems from 

industry scaling trends and the associated reliability implications: 

 

• As devices are scaled down, they become more sensitive to defects and statistical process 

variations. 

• The number of processing steps is increasing dramatically with each new generation 

(approximately 50 more steps per generation and a new metal level every two 

generations). 

• New materials are being introduced with each new generation, replacing proven 

materials, e.g. Cu and low K inter-level dielectrics for Al and SiO2. 

• There is less time to characterize new materials than in the past, e.g., reliability issues 

with new materials and new potential failure modes. 
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• Manufacturers are trending toward providing ‘just enough’ lifetime, reliability, and 

environmental specifications for commercial applications, e.g., < five year product 

lifetimes, trading off ‘excess’ reliability margins for performance. 

• There is a significant rise in the amount of proprietary technology and data developed by 

manufacturers, and there is a reluctance to share that information with hi-rel customers, 

e.g., process recipes, process controls, process flows, design margins, MTTF. 

• There is a focus on the commercial customer, with little or no emphasis on the needs of 

the space customer, e.g., extended life, extreme environments, high reliability. 

• There are increasingly difficult testability challenges due to part complexity. 
 

 

Modern reliability approaches, including a PoF based reliability modeling strategy, are needed to 

better predict long term product reliability, operating margins, and performance of progressively 

scaled technologies in NASA applications.  NASA and other hi-rel users must be able to reliably 

predict end-of-life characteristics and time-to-failure of these advanced scaled technologies for 

the next generation of flight avionics systems.  Further research, modeling, accelerated testing, 

and failure analysis are needed to better understand the impact of nanometer semiconductor 

scaling on microelectronics reliability.  The relationship between smaller technology feature 

sizes, device failure mechanisms, and activation energies must be further investigated to 

quantifiably assess the reliability of current microelectronic products across different stress 

conditions for hi-rel NASA space applications.  Better predictive models explaining the 

anticipated behavior of advanced scaled microelectronic technologies, and the expected 

performance degradation over time are desired. Physics-of-failure derating guidance for 

advanced scaled microelectronics is needed.  A qualification plan, based upon analysis from 
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testing at multiple stress conditions and the failure mechanism process rates, is sought after to 

better design for high reliability and long life. 

 

While earlier AVSI sponsored work has produced some of the empirical models needed for a 

PoF based derating approach, and better simulation models have been developed to predict 

device wearout under various stress conditions, experimental verification and validation of the 

outputs of these models continues.  This work will include a series of experiments to evaluate 

some of the more recent memory technologies to substantiate and validate proposed acceleration 

models for temperature and voltage life-stress relationships across scaled technologies.  The 

purpose of this work is to develop a better understanding of the impact of nanometer technology 

scaling on microelectronics reliability, assess current trends, and provide an independent 

assessment of some of the proposed acceleration models so that we are able to better predict the 

reliability of scaled microelectronic technologies in hi-rel systems, and eventually apply PoF 

based derating models. 

 
 
Empirical and computer-based modeling, simulation, and analyses are being employed to build 

PoF based FR estimation models to assess the impact of various failure mechanisms on product 

reliability, and extrapolate bathtub curves across progressively technologies, e.g., 180nm, 

130nm, 110nm, and 90nm.  This work may lead to more accurate prediction of device life given 

a range of mission operating conditions, and may become particularly beneficial for predicting 

device life of progressive technologies outside of normal operating conditions.  It is the goal of 

this work to investigate and validate reliability trends as a function of technology scaling by 

conducting independent accelerated stress testing at the product level, data analysis of the results, 
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modeling, and failure analysis of several scaled device technologies.  Testing at multiple 

conditions to quantify the rate processes of different failure mechanisms will be attempted. 

Memory devices are excellent choices for product reliability experimentation because of their 

high density of transistors, memory cells, and repetitive layout of memory blocks.  Current 

SDRAM products are available in >512Mb density per semiconductor chip.  

 
 
Predicting long-term performance of scaled microelectronic memory products can be difficult 

because ALT involving elevated stresses can often result in either too few or no failures to make 

realistic predictions or inferences.  It is also possible to overstress the part during accelerated 

stress testing to the point of thermal runaway where the device goes into catastrophic failure.  

Manufacturers often report product FIT rates based on zero failures over a fixed amount of time.  

To overcome this problem, ADT can be used as a means to predict performance in such cases.  

By identifying key performance measures which are expected to degrade over time, product 

reliability can be inferred by the degradation paths without observing actual physical failures.  

Using this approach, the engineer defines a failure as the first time a key performance measure 

exceeds a pre-specified threshold and the degradation path is then correlated to product 

reliability.  Manufacturers will develop specification minimum and maximum limits on key 

operating parameters for their products and establish acceptable ranges for key characteristics.  

Through internal process controls and reliability and qualification testing, manufacturers will 

create acceptable parameter limits to achieve a target reliability FIT.  Often times, however, the 

user does not have access to the actual failure data, failure distribution or confidence level 

bounds for a given product. 
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1.4.2  Objectives 

The main objectives of the research are to: test, analyze, and model competing intrinsic failure 

mechanisms of scaled microelectronic products involving both hard catastrophic and soft 

degradation failures under accelerated conditions; validate existing models and/or propose new 

models describing wearout and performance degradation of several scaled technologies from the 

experimental baseline; and develop conclusions and predictions of the expected failure rate of 

the next product generation. 
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Chapter 2: Scaling Impact on SDRAM  

 

2.1 Overview 

Dynamic RAM is a type of volatile memory that needs to be periodically refreshed to retain its 

contents.  SDRAM has a synchronous interface, meaning that it waits for a clock signal before 

responding to its control inputs. It is synchronized with the computer's system bus, and thus with 

the processor. DRAM is the most common kind of random access memory for personal 

computers, workstations and flight computers, such as the one that will be used in the upcoming 

NASA JUNO mission.  DRAMs use charge storage on a capacitor in each memory cell to 

represent stored binary data values of a logic “1” or a logic “0”.  A DRAM cell consists of a 

transfer device, a MOSFET that acts like a switch and a storage capacitor as is displayed in 

Figure 10 [99].  The absence of a charge on the capacitor represents a logic “0” and the presence 

of a charge indicates a logic “1” in each memory cell.  Millions of these memory cells are 

populated in high density arrays. 

 

The clock is used to drive an internal finite state machine that pipelines incoming instructions. 

This allows the chip to have a more complex pattern of operation than DRAM which does not 

have synchronizing control circuits. Pipelining means that the chip can accept a new instruction 

before it has finished processing the previous one. In a pipelined write, the write command can 

be immediately followed by another instruction without waiting for the data to be written to the 

memory array. In a pipelined read, the requested data appears after a fixed number of clock 
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pulses after the read instruction, and then cycles, during which additional instructions can be 

sent; this delay is called the latency [100].  

 

  

 

 

Figure 10.  1T1C DRAM Cell. 
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While the access latency of DRAM is fundamentally limited by the DRAM array, DRAM has 

very high potential bandwidth because each internal read is actually a row of many thousands of 

bits. To make more of this bandwidth available to users, a Double Data Rate (DDR) interface 

was developed. This uses the same commands, accepted once per cycle, but reads or writes two 

words of data per clock cycle. Some minor changes to the Single Data Rate (SDR) interface 

timing were made and the supply voltage was reduced from 3.3 to 2.5 V.  DDR SDRAM (also 

called "DDR1") doubles the minimum read or write unit; every access refers to at least two 

consecutive words.  DDR2 SDRAM was originally seen as a minor enhancement based on the 

industry standard single-core CPU on DDR1 SDRAM. It mainly allowed higher clock speeds 

and somewhat deeper pipelining better suited for the rapid acceptance of the multi-core CPU in 

2006. With the development and introduction of DDR3 SDRAM in 2007, it is anticipated that 

DDR3 will quickly replace the more limited DDR and newer DDR2 in cutting edge multi-core 

CPU architectures.  The popularity of DRAM for such applications as PCs, wireless access, MP3 

players, digital televisions and DVD video recorders makes this type of memory a leading 

technology driver, with ever increasing pressure to reduce cost per bit with higher densities. 

DRAM makes up over 50% of the embedded memory market. Figures 11a-c display current 

commercial DRAM trends [101].  
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Figure 11a-b.  Current DRAM Trends. 
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Figure 11c.  Current DRAM Trends. 

 
 

2.2 Design of Experiments 

Because manufacturers are generally not willing to share specific design margins, process 

recipes and steps, and detailed product reliability information with the user, who may use their 

products in highly reliable applications, the user may use several approaches to assess the 

reliability the product.  These include empirical methodologies or standards-based prediction 

approach, life or accelerated stress testing approach, and physics-of-failure methodology based 

on the understanding of the failure mechanism and applying the appropriate physics-of-failure 

model to the data.  Stress testing combined with PoF was used in this study to determine the 

relative degradation and reliability of three progressive technologies using the same type and size 

of product for each technology. 
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Commercial 512Mb DDR SDRAMs (three progressive technologies – 130nm, 110nm and 90nm) 

were selected for the experimental baseline to investigate failure and degradation trends as a 

function of scaling. 65nm DRAMs have only recently been released and were not available at the 

commencement of this study. Furthermore, DDR2 and DDR3 SDRAM architectures become 

much more costly and timely to evaluate at the product level due to their complexity.   Table 2 

outlines the experimental baseline.  Table 3 explains the stress test matrix approach to stress the 

parts. The test approach consisted of three experiments; the design of experiments included an 

accelerated stress test to 1000 hours:   

 

� Experiment 1 forced accelerated stress conditions at different clock frequencies and 

temperatures, while voltage was kept fixed (1.5 x Vdd). 

�  Experiment 2 forced accelerated stress conditions at different voltages (1.4, 1.5 & 1.6 x 

Vdd), while the clock frequency and temperature were kept fixed (i.e., Fmax, Tmax).  

� Experiment 3 included evaluation of the retention time performance and degradation of 

the DRAM array. 

 

Parts were dynamically stimulated with address write/read operations and monitored for fail or 

degradation during testing. In addition, functional characterization tests, including address 

write/read/verify and access time measurements were conducted at -70°C, -55°C, +25°C and 

+125°C at periodic intervals.  Data analysis of the performance degradation was conducted from 

the results of the three technology experiment. 
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Table 2.  Experimental Baseline. 
 

 
 
 

Table 3.  Experimental Stress Test Matrix. 
 

 
 

 
Experiment 1 allows accelerated stress test conditions at different clock frequencies and 

temperatures, while the voltage is kept steady. 

 
� (5 pieces) Max Clock Freq @ 25°C and 4.05V  

� (5 pieces) Min Clock Freq @ 25°C and 4.05V (5 pieces) Min Clock Freq @ 125°C and 

4.0V  

 

Experiment 2 allows accelerated stress test conditions at different voltages, while the clock 

frequency and temperature is kept steady. 

� (5 pieces) Max Clock Freq @ 125°C and 3.51V  

� (5 pieces) Max Clock Freq @ 125°C and 3.78V  

Product Technology Memory 
Capacity

Vnom Fmin Fmax 
 

Temp. 
Range 

No. 
Samples

DDR 
SDRAM 

90nm 512Mb 2.5V 77MHz 133MHz 0 to 
+70°C 

36 

DDR 
SDRAM 

110nm 512Mb 2.5V 125MHz 200MHz 0 to 
+70°C 

36 

DDR 
SDRAM 

130nm 512Mb 2.5V 84MHz 166MHz 0 to 
+70°C 

36 

 

Temp .   Freq. Voltage     
Stress   25 °C  125 °C  Min Max 3.51V 

(1.4xVdd)  
3.78V  

(1.5xVdd)   
4 .05V 

(1.6xVdd)  
S1 X     X    X  
S2 X    X     X  
S3   X  X     X  
S4   X   X X     
S5   X   X   X   
S6   X   X    X  
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� (5 pieces) Max Clock Freq @ 125°C and 4.05V  

 
Burn-in boards were developed; each board corresponding to one of the stress test conditions in 

each experiment.  Each board allowed for the testing of fifteen devices (five specimens of each 

technology per board).  Testing was carried out at maximum clock frequencies using Credence 

Sapphire S automated test equipment (ATE).   The Sapphire S features 96 programmable I/Os 

(400 MHz) and 8 digital power supplies (DPS). See Figure 12. 

 

National Instruments test boards (National Instruments PCI-6542) were used for the low 

frequency (Fmin) stress tests.  See Figure 13. The NI test boards features 100MHz maximum 

clock rate, programmable input levels, and 64 Mb/channel on-board memory. 

Sapphire ATE 

Figure 12.  Sapphire S ATE. 
 

NI PCI-6542 

Figure 13.  National Instruments PCI-6542. 
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Thirty components of each technology were submitted to the stress matrix test. Six different 

Burn-In boards with fifteen positions each were designed to accommodate the stress matrix 

conditions.  Refer to Figure 14 and Table 4. 

 

BI -BOARD 15 positions 
Figure 14.  Stress Burn-in Boards. 

 
 

Table 4.  Test Conditions and BI Board Layout. 
 

Stress T°C Freq Voltage Serial number  
(parts) 

BI  
Board 25°C 125°C Min Max 3.51V 3.78V 4.05V 

S1 X   X   X #21 to #25 #5 
S2 X  X    X #26 to #30 #6 
S3  X X    X #16 to #20 #4 
S4  X  X X   #11 to #15 #3 
S5  X  X  X  #6 to #10 #2 
S6  X  X   X #1 to #5 #1 
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2.2.1 Electrical Test Flow 

For each memory device, electrical test software and hardware were developed. Tests were 

performed using an EXA 3000 digital tester. At each electrical test step the following tests were 

conducted: 

DC Tests:  

� Continuity Tests (Vfwd). 

� Input leakage current test (IiL/IiH). 

� Output leakage current test (IozL/IozH). 

� Low/High output current (IoL/IoH). 

� Operating current (ACT-PRE) (Iddo0). 

� Operating current (ACT-READ-PRE) (Iddo1). 

� Idle power down standby current (Iddo2P). 

� Floating idle standby current (Iddo2F). 

� Active power down standby current (Iddo3P). 

� Active standby current (Iddo3N). 

� Operating current (Burst Read Operation) (Iddo4R). 

� Operating current (Burst Write Operation) (Iddo4W). 

� Auto-Refresh Burst Current (Iddo5). 

� Self refresh current (Iddo6). 

� Operating current (4 banks interleaving) (Iddo7). 

 

Functional Tests:  

� Functional test at 133MHz and nominal Vdd . 
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� Functional test at 133MHz and minimum Vdd . 

� Functional test at 133MHz and maximum Vdd . 

Dynamic Tests: 

� DQ output access time from CK, CK/ (tAC). 

 

2.2.2 Electrical Test Conditions and Limits 

The electrical test conditions, limits and patterns for each parameter are described in Table 5 

where: 

 
Device D1 (90nm): 512Mb DDR SDRAM 

Device D2 (110nm): 512Mb DDR SDRAM 

Device D3 (130nm): 512Mb DDR SDRAM 
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Table 5.  DC Tests, Conditions and Limits. 
 

Test Name Test Conditions Limits 
Min Max 

Continuity Tests Vfwd Iforce : -100uA -800mV -200mV 
Input leakage current test IiL/IiH VDD �Vin � VSS -2μA 2μA 
Output leakage current test IozL/IozH VDDQ � VOUT � VSS -5μA 5μA 
Low output current   

IoL 
VOUT = 0.35V    D1 : 16.8mA 

D2 : 15.2mA 
D3 : 15.2mA 

 
- 

High output current   
IoH 

VOUT = 1.95V D1 : -16.8mA 
D2 : -15.2mA 
D3 : -15.2mA 

 
- 

Operating current (ACT-PRE) 
Iddo0 

VDD = 2.5V - D1 : 115mA 
D2 : 160mA 
D3 : 150mA 

Operating current  
(ACT-READ-PRE) Iddo1 

VDD = 2.5V - D1 : 145mA 
D2 : 220mA 
D3 : 180mA 

Idle power down standby current 
Iddo2P 

VDD = 2.5V 
- 

D1 : 5mA 
D2 : 3mA 
D3 : 3mA 

Floating idle standby current 
Iddo2F 

VDD = 2.5V - D1 : 40mA 
D2 : 35mA 
D3 : 40mA 

Active power down standby 
current Iddo3P 

VDD = 2.5V - D1 : 30mA 
D2 : 30mA 
D3 : 20mA 

Active standby current 
Iddo3N 

VDD = 2.5V - D1 : 45mA 
D2 : 70mA 
D3 : 70mA 

Operating current  
(Burst Read Operation) Iddo4R 

VDD = 2.5V - D1 : 145mA 
D2 : 310mA 
D3 : 210mA 

Operating current  
(Burst Write Operation) Iddo4W 

VDD = 2.5V - D1 : 135mA 
D2 : 310mA 
D3 : 210mA 

Auto refresh current 
Iddo5 

VDD = 2.5V - D1 : 280mA 
D2 : 330mA 
D3 : 290mA 

Self refresh current 
Iddo6 

VDD = 2.5V - D1 : 5mA 
D2 : 4mA 
D3 : 4mA 

Operating current  
(4 banks interleaving) Iddo7 

VDD = 2.5V - D1 : 350mA 
D2 : 550mA 
D3 : 430mA 
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Functional Tests:  

All functional patterns were written in mode: 

     - CAS LATENCY: 2 

     - BURST: 8 

All test patterns were written and performed in the following sequences: 

ZEROS Pattern: 
Symbol: ZEROS 

addr 0 1 .. 1FFF 
data #0000 #0000  #0000 

 
 

ONES Pattern: 
Symbol: ONES 

addr 0 1 .. 1FFF 
data #FFFF #FFFF  #FFFF 

 
 

CHECKERBOARD Pattern 
Symbol: CHECK 

addr 0 1 .. 1FFF 
data #5555 #AAAA  #5555 

 
 

INVERTED CHECKERBOARD Pattern 
Symbol: CHECK/ 

addr 0 1 .. 1FFF 
data #AAAA #5555  #AAAA 

 
 

RANDOM Pattern 
Symbol: RDM 

addr 0 1 .. 1FFF 
data #1234 #ABCD  #0A5B 
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Dynamic Tests: 

The dynamic measurements with test conditions and limits are as follows: 

Test Name Test conditions Limits 
Min Max 

DQ output access Time Tac Vdd : 2.5V  D1 : 700ps 
D2 : 700ps 
D3 :700ps 

Data Retention Time Tret Vdd: 2.5V  64mSec 
 

Test Capability and Accuracy: 

The test capability and accuracy of the SCHLUMBERGER (CREDENCE) Model:  EXA3000 is 

as follows:  

- General overview: 
     

800 Mbps channel 375 
High speed channel (up to 3.2Gbps) 8 
High accuracy analog channel 4 
± 30V analog channel 4 

 
- Static characteristics: 

 
Voltage measurements Range Accuracy 

 1V 0.2% of measured value ± 622μV 
 8V 0.2% of measured value ± 1.4766mV 
 30V 0.2% of measured value ± 4.16mV 

Current measurements Range Accuracy 
 1�A 0.2% of measured value ± 5.1nA 
 8μA 0.2% of measured value ± 6nA 
 64�A 0.2% of measured value ± 13nA 
 512�A 0.2% of measured value ± 68.5nA 
 4mA 0.2% of measured value ± 513.6nA 
 32mA 0.2% of measured value ± 4�A 
 256mA 0.2% of measured value ± 32.5�A 
 1A 0.2% of measured value ± 588μA 

 
- Dynamic characteristics: 

 
Impedance 45� ± 5� 
Maximum capacitive load 60pF 
Overall time accuracy 8ps 
Drivers accuracy ± (0.2% + 10 mV) of programmed value 
Comparators accuracy ± (0.2% +10 mV) of programmed value 
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Experiment 3 included further memory characterization of the three technologies in Table 2. 

Data retention testing was performed by maximizing the device refresh commands.  Weak bit 

failures, distributions and failure times were recorded as a function of temperature.   

 
Memory devices from each SDRAM technology (130nm, 110nm, and 90nm) were characterized 

for data retention under nominal Vdd as a function of temperature.  Initial data retention 

characterization was conducted to determine the approximate refresh time range of data retention 

failures (as defined by 10% of the memory bit fails) by extending the refresh time.  Data 

retention characterization on eight devices of each technology was performed at -55°C, +25°C, 

+75°C and +125°C under nominal Vdd, by extending the refresh time.  Bit fails and passes were 

then recorded until all bits failed. 

 

2.3 Technology and Construction Analysis 
 
Each of the 512Mb DRAM parts representing the three progressive technologies in the 

experiment (130nm, 110nm and 90nm), consist of four memory banks, B0-B3.  Each memory 

bank contains an array of 128Mb of DRAM.  All three technologies run on an external 2.5V Vdd.  

Each part consists of 567 million transistors and each memory cell is configured in a 1-

Transistor, 1-Capacitor configuration (Ref. Figure 19).  There are 512 million 1T1C memory 

cells in each part. The rest of the active transistors comprise the periphery, voltage control and 

regulation, and input-output circuitry.  The periphery, voltage control and regulation, input-

output interface, control logic, and sense amps are CMOS, and each memory cell consists of an 

nMOS transistor and a stacked technology capacitor (STC).  Earlier trench capacitor 

configurations were phased out below the 180nm process designs due to scaling limitations.  As 
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DRAM has scaled down, the amount of charge needed for reliable memory operation has 

basically remained the same.  For current generation DRAM, the capacitance is typically 30-

40fF/cell.  Although the external power supply is 2.5V for each part, internal on-chip voltage 

regulator circuitry subdivides this voltage as follows: 

 

130nm Technology Parts: 

- Peripheral Circuitry Voltage: 2.2V 

- Memory Core Voltage: 1.8V  

110nm Technology Parts: 

- Peripheral Circuitry Voltage: 1.8V 

- Memory Core Voltage: 1.4V  

90nm Technology Parts: 

- Peripheral Circuitry Voltage: 1.4V 

- Memory Core Voltage: 1.0V  

 

The memory cell capacitor dielectric material of the parts is Ta2O5.  The gate oxide thickness for 

the larger peripheral circuitry transistors is approximately 7nm, and the gate oxide thickness for 

the nMOS memory cell transistors is approximately 4.2 nm. 

A basic functional block diagram of the 512Mb SDRAM is shown if Figure 15 [102]. 
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Figure 15.  512Mb SDRAM Functional Block Diagram. 

2.4 Device Characterization 

2.4.1 Voltage Breakdown 

Two devices from each technology were used for voltage breakdown characterization to 

determine the point of breakdown. The following approach was used to characterize the 

breakdown voltage: 

 

Ramp Vdd  from 2.7V to 8V 

-  Continuity I/O test 

-  Continuity  Vdd /VddQ test 

-  Measure Standby Idd 
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For the three technologies, the breakdown voltage was higher than 6V for each of the 2.5V 

nominal parts (130nm, 110 and 90nm).  The 110nm and 130nm samples exhibited breakdown at 

>7V.  

 

2.4.2 Minimum Frequency Operation Characterization 

Two devices from each technology were used to determine the actual minimum operating 

frequency for each technology. Devices were electrically tested at 125°C to determine the 

breakdown voltage for each technology (high temperature, ramp voltage to device breakdown).  

All three technologies remained functional to 50MHz and the 130nm and 110nm parts remained 

functional to 25MHz, well below the specified minimum operating frequency.  The low 

frequency used for electrical stress in the experimentation, Fmin, was 50MHz.  

 

2.5 Stress Test Results 

Most importantly, there were no hard functional failures of any of the devices after being 

subjected to the stress conditions in experiments one and two. Although there were no failures 

from the stress conditions applied from the stress test matrix, Iddo degradation was observed on 

some parameters after 1,000 hours.   Analyses of the results indicate the following parameters 

were most affected by the stress conditions: 

 

• Operating current: Iddo0 

• Auto refresh current : Iddo5 

• Data Retention Time:    Tret 
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A scaling factor was observed; the smaller the technology, the greater the Iddo drifts.  The -70°C 

cold temperature results are misleading and do not represent the actual current measurements.  

At this cold temperature, the amount of moisture and frost build-up on the parts and test fixture 

distorts the actual measurements.  Iddo drifts are plotted in Figures 16a-b. 

 

There was no Tac degradation after 1,000 hours.  This can be correlated to no Fmax degradation 

under the stress conditions. 

 

2.5.1 Stress Test Results (Iddo) 
 

(a)  

Operating Current (Iddo0) Degradation at 1,000 hrs.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

O
pe

ra
tin

g 
C

ur
re

nt
 (I

dd
o)

 
D

eg
ra

da
tio

n:
 %

 

% Degradation -70C 

% Degradation +25C 

% Degradation +125C 

% Degradation -70C 0.44 0.72 5.55

% Degradation +25C 0.32 0.27 2.81

% Degradation +125C 0.58 2.12 5.98

130nm Technology 110nm Technology 90nm  Technology



 

 67 
 

(b)  
Figure 16a-b.  Operating Current and Refresh Current Degradation. 

 

The operating current and refresh current degradation (magnitude increase) are noteworthy 

because they reflect increased leakage through one or multiple points within the complex array 

of internal circuitry.  In both cases (Iddo and Iddo5) the 90nm technology measurements were an 

order of magnitude higher than the 130nm technology devices.  Because leakage current is 

inversely proportional to retention time, further investigation is warranted. 

 

Tables 6a and 6b summarize the Iddo performance degradation after 1,000 hours. 

 
Table 6a.  Iddo Performance Summary. 

Stress Condition Temperature Frequency Voltage* Effect on Iddo 
1 High High High Moderate 
2 High High Medium Moderate 
3 High High Low Moderate 
4 High Low High Moderate 
5 Low High High Negligible 
6 Low Low High Negligible 

  *HV=1.6 x Vdd, MV=1.5 x Vdd, LV=1.4 x Vdd 
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Table 6b.  Iddo Performance Characterization Drifts. 

Stressed at Fmax, 4.05V, 125C
130nm Avg. 110nm Avg. 90nm Avg.

1,000 hr. Drift 1,000 hr. Drift 1,000 hr. Drift
-70C Iddo0 0.44% -70C Iddo0 0.72% -70C Iddo0 5.55%
Measure Iddo1 0.12% Measure Iddo1 1.26% Measure Iddo1 4.87%

Iddo2P 0.19% Iddo2P 3.98% Iddo2P 14.23%
Iddo5 0.32% Iddo5 3.14% Iddo5 4.97%
Iddo6 0.39% Iddo6 1.86% Iddo6 10.99%

Avg. 0.29% Avg. 2.19% Avg. 8.12%

+25C Iddo0 0.32% +25C Iddo0 0.27% +25C Iddo0 2.81%
Measure Iddo1 0.06% Measure Iddo1 0.34% Measure Iddo1 4.22%

Iddo2P 0.17% Iddo2P 1.70% Iddo2P 5.23%
Iddo5 0.14% Iddo5 1.88% Iddo5 3.89%
Iddo6 0.24% Iddo6 0.68% Iddo6 3.08%

Avg. 0.19% Avg. 0.97% Avg. 3.85%

+125C Iddo0 0.58% +125C Iddo0 2.12% +125C Iddo0 5.98%
Measure Iddo1 0.29% Measure Iddo1 3.34% Measure Iddo1 5.14%

Iddo2P 1.09% Iddo2P 4.17% Iddo2P 17.87%
Iddo5 0.79% Iddo5 3.21% Iddo5 5.87%
Iddo6 0.83% Iddo6 3.27% Iddo6 13.45%

Avg. 0.72% Avg. 3.22% Avg. 9.66%  

 

An unexpected finding was that there were no Iddo degradation differences across the different 

voltage conditions.  Degradation appeared to be strictly temperature dependent and the relative 

differences in the voltage inputs in this experiment exhibited no difference in performance.  

Samples from each technology were decapsulated and subjected to construction analysis, e.g. 

emission microscopy, internal probing, and SEM analysis, to determine why this is.  All three 

technologies had voltage regulator and over-voltage protection circuitry, limiting the actual 

voltage applied to the internal memory cells.  This circuitry is capable of maintaining constant 

voltage to the memory core up to an externally applied 6V Vdd.  Thus, there was no voltage 

acceleration to the memory core as a result of the product level testing.  Voltage stress 

acceleration must be applied to representative memory cell test structures; it cannot be applied at 

the product level. 



 

 69 
 

2.5.2 Retention Time Degradation (Tret) 

There were no functional bit failures observed after comparing the data retention characteristics 

to the JEDEC specification (maximum 64mSec).  In general, the data retention is much better at 

lower temperatures compared to higher temperature measurements.  Data retention time 

measurements were better than 6 seconds at -55°C, 5 seconds at +25°C, 0.9 second at +75°C, 

and 100ms at +125°C.  Retention time did degrade, however, over the 1,000 hour test. 

 

A scale factor was evident; the more integrated the device, generally the better the retention time 

across temperature and the tighter the standard deviation. The scale factor may be explained by a 

difference of the oxide layers used in smaller technologies (advanced high-K processes) and 

improvements in cell design and geometry, i.e., vertical/horizontal staked capacitors, materials, 

dimensions, etc.   

 

Figures 17a-f show the data retention time cumulative failed bits for each technology as a 

function of temperature.  Parts were taken out of the auto refresh mode (refresh every 64mSec), 

and the cumulative failures for each technology are plotted at the initial time=0, and 1,000 hour 

points.  The plots show how much data retention degrades as a function of temperature at fixed 

voltage. 
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Figure 17a-b. Effect of Temperature on Data Retention for 90nm Technology. 
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Figure 17c-d. Effect of Temperature on Data Retention for 110nm Technology. 
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Figure 17e-f. Effect of Temperature on Data Retention for 130nm Technology. 
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Chapter 3: SDRAM Degradation and Predictive Model  

 

3.1 Acceleration Model 

Physical acceleration models based upon the physical or chemical theory that describes the 

failure causing process over the range of data may be employed for well understood failure 

mechanisms.  Usually, individual test structures are utilized in the DOE to more accurately 

measure threshold voltage (Vt), drain current (Idsat), and transconductance (gm) shifts, as well as 

dielectric breakdown over a range of stress conditions.  At the complex product level, such as the 

512Mb SDRAM, it is difficult to identify the exact physical mechanism causing minute physical 

characteristic changes embedded deep within the internal circuitry from product level data.  

Often we are constrained by the product performance degradation to develop empirical-based 

acceleration models that fit the observed data. 

 

Data retention (Tret) characteristics were determined to be the best measurable indicator of the 

performance degradation of the DRAMs, as the storage cell’s critical function is to retain a 

charge representing its state.  Each DRAM was tested until each memory cell lost its ability to 

store a ‘1’ in the memory bit locale.  Since all bits were run to failure, the data is said to be 

complete with no right-censoring.  Due to the high number of repetitive bits of information in 

each memory product, a significant sample size was examined from a limited number of 

products. Data retention tests at 100 hour increments, up to 1,000 hours, revealed how the 

retention time degrades over time.  The performance data was analyzed by fitting a degradation 

model to the data showing the relationship between performance, age, stress and technology. 



 

 74 
 

3.1.1   Life Distribution 
 

A likelihood test was conducted at each test interval to determine the appropriate life distribution 

for each data set.  The Weibull distribution had the highest likelihood value, followed by 

Lognormal and Exponential distributions.  The Weibull probability density function is described 

as: 
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where the parameter Eta (�) or � is the scale parameter which influences the distribution and is 

equal to the characteristic life, i.e., life at which 63.2% of the population will have failed, and 

parameter Beta (�) is the shape parameter [103]. Depending on the value of (�), the Weibull 

function can take the form of the following distributions: 

 

� < 1: Gamma 

� = 1: Exponential 

� = 2: Lognormal 

� = 3.5: Normal 

 

The Lognormal probability density function is a two-parameter distribution described as: 
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where μ = E (ln t) and 2
t�  = var (ln t).  The failure rate initially increases with time and then 

decreases depending on the values of parameters μ and 	t [103].  

 

The Exponential probability density function is described as: 

 
� �e ttf 		 �)( , (3.3) 

 

where the parameter Lambda (�) is the rate of occurrence in time interval (t). 

 

3.1.2   Multivariable Life-Stress Relationship 

In the case where there is more than one accelerating variable, both should be considered in the 

life-stress relationship.  Temperature and voltage are the two stress factors in this experiment, 

therefore, the Arrhenius and the Inverse Power Law models may be combined to yield the 

Temperature – Non-Thermal (T-NT) Model [104]: 

 

e V
B

nU

CVUL


�),( , (3.4) 

where, 

• L represents a quantifiable life measure, such as mean life, characteristic life, median life 

or B(x) life, etc. 

• U is the non-thermal stress (voltage),  

• V is the temperature in absolute units, 

• B is one of the model parameters to be determined derived from the relationship:  
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15623.8 ��
eVKe
energyactivation

K
EaB  

• C and n are the 2nd and 3rd model parameters to be determined, (C > 0). 

 

This relationship can be linearized by taking the LN of both sides: 

 

� � � � � �
V
BUnCVUL 
� lnln),(ln . (3.5) 

 

The acceleration factor for the T-NT relationship is explained by: 

 

 , (3.6) 

where, 

• Luse is one life at use stress level,  

• LAccelerated is the life at the accelerated stress level, 

• Vu is the use temperature, 

• VA is the accelerated temperature, 

• UA is the accelerated voltage,  

• Uu is the use voltage, 

• B is one of the model parameters to be determined derived from the relationship:  
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• C and n are the 2nd and 3rd model parameters to be determined, (C > 0). 

 

Combining the joint distribution of stress and life, the Weibull life pdf becomes: 

 

 (3.7) 

 
 

by setting 
 or � = L(U,V) from Equation (4.4). 

 

Expanding upon the statistical properties of the T-NT Weibull Model, the Mean or MTTF is: 
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The standard deviation, 	T, is given by: 
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The Reliability function of the T-NT Weibull Model is described as: 
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and the Conditional Reliability function as specified stress level, t, is given by: 
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The T-NT Weibull failure rate function, �(T), is described as: 

 

 

� �
� �

1

*
,,

),,),,(




�
�
�
�

�

�

�
�
�
�

�

�

��

�

�
	

C

n

CVUTR
VUTfVUT

V
B

V
B

eTUUe
, (3.12) 

 

and Reliable Life, TR, of a unit for a specified reliability starting at age zero is given by: 
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The Maximum Likelihood Estimation for parameter determination is given by substituting the T-

NT Model into the Weibull Log-Likelihood function, yielding: 

 

 

, (3.14) 

 

where, 

• F is the number of groups of exact times-to-failure data points,  

• Ni is the number of times-to-failure data points in the ith time-to-failure data group, 

• � is the Weibull shape parameter (unknown, the 1st of four parameters to be estimated), 

• B is the first T-NT parameter (unknown, the 2nd of four parameters to be estimated), 

• C is the second T-NT parameter (unknown, the 3rd of four parameters to be estimated), 

• n is the third T-NT parameter (unknown, the 4th of four parameters to be estimated), 

• Vi is the temperature stress level of the ith group, 

• Ui is the voltage stress level of the ith group, 
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• Ti is the exact failure time of the ith group, 

• S is the number of groups of suspension data points, 

• N’i is the number of suspensions in the ith group of suspension data points, and 

• T’i is the running time of the ith suspension data group. 

 

The parameter estimate solutions are found by solving for the parameters B, C, n and � so that: 
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Finally, the Maximum Likelihood Estimation for standard deviation parameter determination is 

given by: 

 

 

, (3.15) 

where, 

• F is the number of groups of exact times-to-failure data points,  

• Ni is the number of times-to-failure data points in the ith time-to-failure data group, 

• 	T is the standard deviation of the natural logarithm of the time-to-failure (unknown, the 

1st of four parameters to be estimated), 

• B is the first T-NT parameter (unknown, the 2nd of four parameters to be estimated), 
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• C is the second T-NT parameter (unknown, the 3rd of four parameters to be estimated), 

• n is the third T-NT parameter (unknown, the 4th of four parameters to be estimated), 

• Vi is the temperature stress level of the ith group, 

• Ui is the voltage stress level of the ith group, 

• Ti is the exact failure time of the ith group, 

• S is the number of groups of suspension data points, 

• N’i is the number of suspensions in the ith group of suspension data points, and 

• T’i is the running time of the ith suspension data group. 

 

and, 
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The parameter estimate solutions are found by solving for the parameters 'ˆT� , B̂ , Ĉ , n̂  so that: 
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3.2 Data Analysis 

Data from the accelerated test of each of the three technologies were analyzed and plotted using 

Reliasoft’s Alta 6.5 and Weibull ++7.   First, combining the joint distribution of life with 

temperature and voltage stresses, the Weibull life pdf (Eq. 4.7) was used to model the behavior 
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and relative degradation over 1,000 hours.  Comparative multi-plots showing both the initial and 

1,000 hour data retention degradation properties using the T-NT Model are displayed in the 

following Figures. Figures 18a and 18b show comparative multi-plots of how the failure 

distribution changes over time.  Figure 18a shows the 90nm Life vs. Stress relationship across 

temperature at the worst-case voltage stress condition, 4.05V (1.6 x Vdd) and the 95% confidence 

level.  Figure 18b shows the 90nm Life vs. Stress relationship across voltage at the worst-case 

temperature stress condition, 398.15K, and at the 95% confidence level.  By analyzing both 

stress factors, varying temperature while keeping voltage fixed, and varying voltage while 

keeping temperature fixed, the relative contribution of each stress on the overall AF can be 

determined for each technology bit-cell.  Similarly, the modeling approach was applied to the 

110nm technology data - refer to Figures 19a and 19b, and the 130nm technology data - refer to 

Figures 20a and 20b.  For the modeling, data from four 512Mb SDRAMs (2048 x 106 bits of 

information) from each technology (90nm, 110nm, and 130nm) were analyzed. 
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Figure 18a. 90nm T-NT/Weibull Initial and 1,000 hr. Tret Stress Plots at Fixed Voltage. 
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Figure 18b. 90nm T-NT/Weibull Initial and 1,000 hr. Tret Stress Plots at Fixed Temp. 
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Figure 19a. 110nm T-NT/Weibull Initial and 1,000 hr. Tret Stress Plots at Fixed Voltage. 
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Figure 19b. 110nm T-NT/Weibull Initial and 1,000 hr. Tret Stress Plots at Fixed Temp. 
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Figure 20a. 130nm T-NT/Weibull Initial and 1,000 hr. Tret Stress Plots at Fixed Voltage. 
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Figure 20b. 130nm T-NT/Weibull Initial and 1,000 hr. Tret Stress Plots at Fixed Temp. 
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Model parameters for the T-NT Weibull Model were calculated for each technology up to the 

end of the time terminated stress test, 1,000 hour point.  Model parameters and statistics for each 

technology and stress condition are summarized in Tables 7 and 8.  The retention time Mean (Eq. 

3.8) and Std. Deviation (Eq. 3.9) were calculated for each technology at both stress voltages and 

at four temperatures. Other temperature and voltage stress combinations may also be calculated 

for the desired use condition. 

 

A Use-Level Weibull Probability plot showing the changing Beta slope of the 90nm technology 

parts at worst-case test conditions, 398.15K and 4.05V, is shown in Figure 21.  Likewise, 

equivalent plots may be created for any of the combinations of stress temperatures and voltages. 

The plot shows a decreasing Beta slope over time.  The Beta slopes of the 110nm and 130nm 

technology parts exhibit similar characteristics.  Figure 21 shows a decreasing � over time, 

3.9654 initially vs. 2.7609 at the 1,000 hr. point.   All three regions of the bath-tub curve are 

represented by the Weibull distribution as determined by the value of the shape-parameter, �.  

The Weibull distribution is appropriate for complex components or systems composed of a 

number of constituent components whose failure is governed by the most severe defect or 

weakest link.  For 0 < � < 1, the distribution indicates an early or infant mortality behavior with a 

decreasing failure rate.  For � = 1, the distribution reduces to the exponential distribution 

reflecting CFR region of the bath-tub curve.  For � > 1, the distribution reflects an increasing 

failure rate and models the wearout region of the bath-tub curve [105].  
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Figure 22 shows the changing reliability vs. time of the data retention time degradation after 

1,000 hours at worst-case test conditions, 398.15K and 4.05V.  The Reliability vs. Time plots 

using Eq. 3.10 for the 110nm and 130nm technology parts reveal a comparable shift over time.  

 

The impact of stress on data retention failure rate over time is shown in Figure 23 for the 90nm 

technology parts. Eq. 3.12 was used for this calculation.  The impact on FR over time from the 

changing Beta is evident in this figure.  Comparable shifts were revealed for the 110nm and 

130nm technology parts. 

 

Figure 24 shows the Standard Deviation Plot for the 90nm technology parts across temperature at 

worst-case voltage conditions, 4.05V, at initial and 1,000 hr. points. Using Eq. 3.9, one can see 

in Figure 24 the increase in standard deviation over time. Comparable shifts were observed for 

the 110nm and 130nm technology parts. 
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Table 7. Thermal – Non-Thermal Weibull Model Distribution Paramaters (4.05V). 

Thermal - Non-Thermal/Weibull Model Distributions
90nm-Initial Parameters  110nm-Initial Parameters  130nm-Initial Parameters  

Parameter Bounds Parameter Bounds Parameter Bounds
Lower = 3.9624 Beta = 3.9654 Upper = 3.9685 Lower = 3.6984 Beta = 3.7014 Upper = 3.7044 Lower = 3.6687 Beta = 3.6716 Upper = 3.6746
Lower = 389.9964 B = 390.4031 Upper = 390.8098 Lower = 375.2421 B = 375.6892 Upper = 376.1363 Lower = 367.2766 B = 367.7282 Upper = 368.1797
Lower = 3.9179 C = 3.9247 Upper = 3.9315 Lower = 4.0449 C = 4.0526 Upper = 4.0603 Lower = 4.1209 C = 4.1288 Upper = 4.1367
Lower = 0.4597 n = 0.4607 Upper = 0.4617 Lower = 0.4725 n = 0.4736 Upper = 0.4747 Lower = 0.4784 n = 0.4795 Upper = 0.4806
Eta = 5.4930 Eta = 5.3639 Eta = 5.3168
Ea = 0.0336 Ea = 0.0324  Ea = 0.0317
Temperature (K) = 398.15 Temperature (K) = 398.15 Temperature (K) = 398.15
Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05
Confidence Bounds = 2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev
Upper Limit = 4.979 Upper Limit = 4.8436 Upper Limit = 4.7989
Mean Life (Secs.) = 4.9764 1.42 Mean Life (Secs.) = 4.8408 1.46 Mean Life (Secs.) = 4.7961 1.49
Lower Limit = 4.9737 Lower Limit = 4.8379 Lower Limit = 4.7933
Temperature (K) = 348.15 Temperature (K) = 348.15 Temperature (K) = 348.15
Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 5.7315 Upper Limit = 5.5445 Upper Limit = 5.4791
Mean Life (Secs.) = 5.7289 1.63 Mean Life = 5.5419 1.65 Mean Life (Secs.) = 5.4764 1.67
Lower Limit = 5.7263 Lower Limit = 5.5392 Lower Limit = 5.4738
Temperature (K) = 298.15 Temperature (K) = 298.15 Temperature (K) = 298.15
Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 6.9169 Upper Limit = 6.6413 Upper Limit = 6.5404
Mean Life (Secs.) = 6.9142 1.95 Mean Life = 6.6386 2.01 Mean Life (Secs.) = 6.5377 1.98
Lower Limit = 6.9115 Lower Limit = 6.6359 Lower Limit = 6.535
Temperature (K) = 218.15 Temperature (K) = 218.15 Temperature (K) = 218.15
Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 11.1827 Upper Limit = 10.5315 Upper Limit = 10.2836
Mean Life (Secs.) = 11.176 3.24 Mean Life = 10.5246 3.27 Mean Life (Secs.) = 10.2767 3.15
Lower Limit = 11.1692 Lower Limit = 10.5177 Lower Limit = 10.2699

Fisher Var/Cov Matrix Fisher Var/Cov Matrix Fisher Var/Cov Matrix

VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan
2.45E-06 -4.03E-05 5.40E-07 -5.22E-08 2.33E-06 -4.79E-05 6.82E-07 -4.76E-08 2.31E-06 -5.28E-05 7.58E-07 -4.90E-08

CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn
-4.03E-05 4.30E-02 -5.21E-04 1.02E-05 -4.79E-05 5.20E-02 -6.58E-04 1.05E-05 -5.28E-05 5.30E-02 -6.85E-04 1.05E-05

CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn
5.40E-07 -5.21E-04 1.20E-05 1.09E-06 6.82E-07 -6.58E-04 1.54E-05 1.30E-06 7.58E-07 -6.85E-04 1.63E-05 1.35E-06

CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn
-5.22E-08 1.02E-05 1.09E-06 2.70E-07 -4.76E-08 1.05E-05 1.30E-06 3.09E-07 -4.90E-08 1.05E-05 1.35E-06 3.14E-07

Thermal - Non-Thermal/Weibull Model Distributions
90nm-Final Parameters 110nm-Final Parameters  130nm-Final Parameters

Parameter Bounds Parameter Bounds Parameter Bounds
Lower = 2.7586 Beta = 2.7609 Upper = 2.7632 Lower = 2.5976 Beta = 2.5998 Upper = 2.6019 Lower = 2.4134 Beta = 2.4152 Upper = 2.4171
Lower = 480.7776 B = 481.3743 Upper = 481.9710 Lower = 463.0570 B = 463.7186 Upper = 464.3802 Lower = 609.9189 B = 610.6267 Upper = 611.3345
Lower = 2.7759 C = 2.7830 Upper = 2.7901 Lower = 2.9045 C = 2.9125 Upper = 2.9206 Lower = 1.7264 C = 1.7314 Upper = 1.7364
Lower = 0.4844 n = 0.4859 Upper = 0.4873 Lower = 0.5032 n = 0.5048 Upper = 0.5063 Lower = 0.5917 n = 0.5934 Upper = 0.5951
Eta = 4.7255 Eta = 4.6027 Eta = 3.4993
Ea = 0.0415 Ea = 0.0400  Ea = 0.0526
Temperature (K) = 398.15 Temperature (K) = 398.15 Temperature (K) = 398.15
Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05
Confidence Bounds = 2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev
Upper Limit = 4.2089 Upper Limit = 4.0915 Upper Limit = 3.1053
Mean Life (Secs.) = 4.2056 1.59 Mean Life (Secs.) = 4.0881 1.63 Mean Life (Secs.) = 3.1024 1.42
Lower Limit = 4.2024 Lower Limit = 4.0847 Lower Limit = 3.0996
Temperature (K) = 348.15 Temperature (K) = 348.15 Temperature (K) = 348.15
Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 5.0063 Upper Limit = 4.8342 Upper Limit = 3.8698
Mean Life (Secs.) = 5.0031 2.01 Mean Life (Secs.) = 4.8309 1.99 Mean Life (Secs.) = 3.8669 1.72
Lower Limit = 4.9999 Lower Limit = 4.8276 Lower Limit = 3.864
Temperature (K) = 298.15 Temperature (K) = 298.15 Temperature (K) = 298.15
Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 6.3122 Upper Limit = 6.0406 Upper Limit = 5.1925
Mean Life (Secs.) = 6.3087 2.49 Mean Life (Secs.) = 6.0371 2.52 Mean Life (Secs.) = 5.1892 2.35
Lower Limit = 6.3053 Lower Limit = 6.0336 Lower Limit = 5.1859
Temperature (K) = 218.15 Temperature (K) = 218.15 Temperature (K) = 218.15
Voltage (V) = 4.05 Voltage (V) = 4.05 Voltage (V) = 4.05
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 11.4145 Upper Limit = 10.6723 Upper Limit = 11.0083
Mean Life (Secs.) = 11.4046 4.39 Mean Life (Secs.) = 10.6622 4.42 Mean Life (Secs.) = 10.9972 4.82
Lower Limit = 11.3947 Lower Limit = 10.6521 Lower Limit = 10.986

Fisher Var/Cov Matrix Fisher Var/Cov Matrix Fisher Var/Cov Matrix

VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan
1.35E-06 -7.06E-05 6.73E-07 -4.90E-08 1.23E-06 -6.76E-05 6.41E-07 -5.92E-08 8.90E-07 -5.14E-05 2.24E-07 -9.17E-08

CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn
-7.06E-05 9.27E-02 -8.10E-04 1.80E-05 -6.76E-05 1.14E-01 -1.04E-03 2.16E-05 -5.14E-05 1.30E-01 -6.75E-04 4.13E-05

CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn
6.73E-07 -8.10E-04 1.30E-05 1.61E-06 6.41E-07 -1.04E-03 1.69E-05 1.89E-06 2.24E-07 -6.75E-04 6.52E-06 1.23E-06

CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn
-4.90E-08 1.80E-05 1.61E-06 5.55E-07 -5.92E-08 2.16E-05 1.89E-06 6.27E-07 -9.17E-08 4.13E-05 1.23E-06 7.39E-07
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Table 8. Thermal – Non-Thermal Weibull Model Distribution Paramaters (2.5V). 

 

Thermal - Non-Thermal/Weibull Model Distributions
90nm-Initial Parameters  110nm-Initial Parameters  130nm-Initial Parameters  

Parameter Bounds Parameter Bounds Parameter Bounds
Lower = 3.9624 Beta = 3.9654 Upper = 3.9685 Lower = 3.6984 Beta = 3.7014 Upper = 3.7044 Lower = 3.6687 Beta = 3.6716 Upper = 3.6746
Lower = 389.9964 B = 390.4031 Upper = 390.8098 Lower = 375.2421 B = 375.6892 Upper = 376.1363 Lower = 367.2766 B = 367.7282 Upper = 368.1797
Lower = 3.9179 C = 3.9247 Upper = 3.9315 Lower = 4.0449 C = 4.0526 Upper = 4.0603 Lower = 4.1209 C = 4.1288 Upper = 4.1367
Lower = 0.4597 n = 0.4607 Upper = 0.4617 Lower = 0.4725 n = 0.4736 Upper = 0.4747 Lower = 0.4784 n = 0.4795 Upper = 0.4806
Eta = 6.86 Eta = 6.7407 Eta = 6.7006
Ea = 0.0336 Ea = 0.0324  Ea = 0.0317
Temperature (K) = 398.15 Temperature (K) = 398.15 Temperature (K) = 398.15
Voltage (V) = 2.5 Voltage (V) = 2.5 Voltage (V) = 2.5
Confidence Bounds = 2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev
Upper Limit = 6.218 Upper Limit = 6.0866 Upper Limit = 6.0478
Mean Life (Secs.) = 6.2149 1.75 Mean Life (Secs.) = 6.0833 1.81 Mean Life (Secs.) = 6.0444 1.81
Lower Limit = 6.2118 Lower Limit = 6.08 Lower Limit = 6.0411
Temperature (K) = 348.15 Temperature (K) = 348.15 Temperature (K) = 348.15
Voltage (V) = 2.5 Voltage (V) = 2.5 Voltage (V) = 2.5
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 7.1576 Upper Limit = 6.9675 Upper Limit = 6.9049
Mean Life (Secs.) = 7.1547 2.06 Mean Life = 6.9644 2.23 Mean Life (Secs.) = 6.9018 2.18
Lower Limit = 7.1517 Lower Limit = 6.9612 Lower Limit = 6.8987
Temperature (K) = 298.15 Temperature (K) = 298.15 Temperature (K) = 298.15
Voltage (V) = 2.5 Voltage (V) = 2.5 Voltage (V) = 2.5
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 8.6382 Upper Limit = 8.346 Upper Limit = 8.2426
Mean Life (Secs.) = 8.635 2.41 Mean Life = 8.3426 2.5 Mean Life (Secs.) = 8.2393 2.48
Lower Limit = 8.6317 Lower Limit = 8.3393 Lower Limit = 8.236
Temperature (K) = 218.15 Temperature (K) = 218.15 Temperature (K) = 218.15
Voltage (V) = 2.5 Voltage (V) = 2.5 Voltage (V) = 2.5
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 13.9663 Upper Limit = 13.2351 Upper Limit = 12.9605
Mean Life (Secs.) = 13.9574 3.9 Mean Life = 13.2261 4.01 Mean Life (Secs.) = 12.9515 3.96
Lower Limit = 13.9485 Lower Limit = 13.217 Lower Limit = 12.9426

Fisher Var/Cov Matrix Fisher Var/Cov Matrix Fisher Var/Cov Matrix

VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan
2.45E-06 -4.03E-05 5.40E-07 -5.22E-08 2.33E-06 -4.79E-05 6.82E-07 -4.76E-08 2.31E-06 -5.28E-05 7.58E-07 -4.90E-08

CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn
-4.03E-05 4.30E-02 -5.21E-04 1.02E-05 -4.79E-05 5.20E-02 -6.58E-04 1.05E-05 -5.28E-05 5.30E-02 -6.85E-04 1.05E-05

CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn
5.40E-07 -5.21E-04 1.20E-05 1.09E-06 6.82E-07 -6.58E-04 1.54E-05 1.30E-06 7.58E-07 -6.85E-04 1.63E-05 1.35E-06

CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn
-5.22E-08 1.02E-05 1.09E-06 2.70E-07 -4.76E-08 1.05E-05 1.30E-06 3.09E-07 -4.90E-08 1.05E-05 1.35E-06 3.14E-07

Thermal - Non-Thermal/Weibull Model Distributions
90nm-Final Parameters 110nm-Final Parameters  130nm-Final Parameters

Parameter Bounds Parameter Bounds Parameter Bounds
Lower = 2.7586 Beta = 2.7609 Upper = 2.7632 Lower = 2.5976 Beta = 2.5998 Upper = 2.6019 Lower = 2.4134 Beta = 2.4152 Upper = 2.4171
Lower = 480.7776 B = 481.3743 Upper = 481.9710 Lower = 463.0570 B = 463.7186 Upper = 464.3802 Lower = 609.9189 B = 610.6267 Upper = 611.3345
Lower = 2.7759 C = 2.7830 Upper = 2.7901 Lower = 2.9045 C = 2.9125 Upper = 2.9206 Lower = 1.7264 C = 1.7314 Upper = 1.7364
Lower = 0.4844 n = 0.4859 Upper = 0.4873 Lower = 0.5032 n = 0.5048 Upper = 0.5063 Lower = 0.5917 n = 0.5934 Upper = 0.5951
Eta = 5.9737 Eta = 5.8778 Eta = 5.8072
Ea = 0.0415 Ea = 0.0400  Ea = 0.0526
Temperature (K) = 398.15 Temperature (K) = 398.15 Temperature (K) = 398.15
Voltage (V) = 2.5 Voltage (V) = 2.5 Voltage (V) = 2.5
Confidence Bounds = 2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev Confidence Bounds = 2-Sided @ 95% CL Std Dev
Upper Limit = 5.3204 Upper Limit = 5.2248 Upper Limit = 4.1342
Mean Life (Secs.) = 5.3165 2.08 Mean Life (Secs.) = 5.2207 2.18 Mean Life (Secs.) = 4.1308 1.81
Lower Limit = 5.3126 Lower Limit = 5.2166 Lower Limit = 4.1274
Temperature (K) = 348.15 Temperature (K) = 348.15 Temperature (K) = 348.15
Voltage (V) = 2.5 Voltage (V) = 2.5 Voltage (V) = 2.5
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 6.3284 Upper Limit = 6.1752 Upper Limit = 5.1521
Mean Life (Secs.) = 6.3246 2.5 Mean Life (Secs.) = 6.1712 2.57 Mean Life (Secs.) = 5.1486 2.37
Lower Limit = 6.3208 Lower Limit = 6.1673 Lower Limit = 5.1452
Temperature (K) = 298.15 Temperature (K) = 298.15 Temperature (K) = 298.15
Voltage (V) = 2.5 Voltage (V) = 2.5 Voltage (V) = 2.5
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 7.9793 Upper Limit = 7.7201 Upper Limit = 6.9134
Mean Life (Secs.) = 7.9751 3.12 Mean Life (Secs.) = 7.7158 3.34 Mean Life (Secs.) = 6.9092 3
Lower Limit = 7.9709 Lower Limit = 7.7114 Lower Limit = 6.9051
Temperature (K) = 218.15 Temperature (K) = 218.15 Temperature (K) = 218.15
Voltage (V) = 2.5 Voltage (V) = 2.5 Voltage (V) = 2.5
Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL Confidence Bounds = 2-Sided @ 95% CL
Upper Limit = 14.4301 Upper Limit = 13.6621 Upper Limit = 14.6583
Mean Life (Secs.) = 14.417 5.61 Mean Life (Secs.) = 13.6485 5.67 Mean Life (Secs.) = 14.6424 6.5
Lower Limit = 14.404 Lower Limit = 13.635 Lower Limit = 14.6265

Fisher Var/Cov Matrix Fisher Var/Cov Matrix Fisher Var/Cov Matrix

VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan VarBeta CovBetaB CovBetaC CovBetan
1.35E-06 -7.06E-05 6.73E-07 -4.90E-08 1.23E-06 -6.76E-05 6.41E-07 -5.92E-08 8.90E-07 -5.14E-05 2.24E-07 -9.17E-08

CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn CovBetaB VarB CovBC CovBn
-7.06E-05 9.27E-02 -8.10E-04 1.80E-05 -6.76E-05 1.14E-01 -1.04E-03 2.16E-05 -5.14E-05 1.30E-01 -6.75E-04 4.13E-05

CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn CovBetaC CovBC VarC CovCn
6.73E-07 -8.10E-04 1.30E-05 1.61E-06 6.41E-07 -1.04E-03 1.69E-05 1.89E-06 2.24E-07 -6.75E-04 6.52E-06 1.23E-06

CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn CovBetan CovBn CovCn Varn
-4.90E-08 1.80E-05 1.61E-06 5.55E-07 -5.92E-08 2.16E-05 1.89E-06 6.27E-07 -9.17E-08 4.13E-05 1.23E-06 7.39E-07
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Figure 21. 90nm T-NT/Weibull Initial and 1,000 hr. Use Level Plots at Fixed 398.15K and 4.05V. 
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Figure 22. 90nm T-NT/Weibull Initial and 1,000 hr. Reliability Plots at at Fixed 398.15K and 4.05V. 
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Figure 23. 90nm T-NT/Weibull Initial and 1,000 hr. FR Plots at Fixed 398.15K and 4.05V. 
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Figure 24. 90nm T-NT/Weibull Initial and 1,000 hr. SD Plots at Fixed 4.05V. 
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3.3 Degradation Model 
 

Given that the data retention measurements were recorded at 100 hour increments up to 1,000 

hours, degradation analysis is implemented to predict how data retention degrades over time 

under different stress conditions. Retention time degradation was analyzed by fitting the 

appropriate degradation model to the data using the Mean Square Error (MSE) method. This 

model describes the relationship between data retention properties over time for several stress 

conditions and technologies.  As with conventional reliability data, the amount of uncertainty in 

the results is directly related to the number of units or bits of information tested and one must be 

cautious of extrapolation error.  The following models were analyzed and ranked for the best fit 

to the observed degradation: Linear, Exponential, Power, Logarithmic, Gompertz and Lloyd-

Lipow.  The Exponential relationship was the highest ranked model for the observed data: 

 

e bxay )(* � , (3.17) 

 

where y represents the performance stress condition, x represents time-to-fail, and a and b are the 

unknown model parameters to be calculated for different stress conditions.  Model parameters 

for t 0.1 (99.9% Reliability) are calculated in Table 9 using non-linear regression analysis for 

each of the three technologies.  The cold temperature (218K) data retention properties over time 

do not follow any degradation model over the tested period.  Therefore, the degradation model 

can only be applied at > 298K.   Statistical nonlinear regression analysis, results and 95% 

Confidence Levels at each condition are summarized in Appendix A. 
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Table 9.  Exponential Model Parameters. 

Data ID    Parameter a Parameter b 

90nm:  298.15K, 2.5V  8.5506  8.331E-05 

90nm:  348.15K, 2.5V  7.1762  1.354E-04 

90nm:  398.15K, 2.5V  6.1696  1.625E-04 

90nm:  298.15K, 4.05V  6.8529  9.116E-05 

90nm:  348.15K, 4.05V  5.4943  7.289E-05 

90nm:  398.15K, 4.05V  4.8682  1.567E-04 

110nm:  298.15K, 2.5V  8.3135  8.168E-05 

110nm:  348.15K, 2.5V  6.8425  1.203E-04 

110nm:  398.15K, 2.5V  6.0345  1.540E-04 

110nm:  298.15K, 4.05V  6.6194  9.737E-05 

110nm:  348.15K, 4.05V  5.5363  1.322E-04 

110nm:  398.15K, 4.05V  4.8036  1.639E-04 

130nm:  298.15K, 2.5V  8.3441  1.929E-04 

130nm:  348.15K, 2.5V  6.7430  3.071E-04 

130nm:  398.15K, 2.5V  5.4443  3.194E-04 

130nm:  298.15K, 4.05V  6.5241  2.498E-04 

130nm:  348.15K, 4.05V  5.4715  3.727E-04 

130nm:  398.15K, 4.05V  4.7582  4.386E-04 

 

The critical degradation value of data retention time for the devices is 64 milliseconds, the point 

at which bit-cells are automatically refreshed in auto-refresh mode.  Once cell retention time 

degrades below this threshold, data is likely to be lost, i.e., a logic-1 changes states to logic-0 as 

data retention capability falls below the auto-refresh time of the devices.  Figure 25 shows the 

Tret degradation prediction of the three technologies at accelerated conditions.  The 130nm 

technology is the worst performer compared to both the 110nm and 90nm technology parts. As 

was initially noted in Chapter Three, a scale factor is evident; the more integrated the device, 

generally the better the retention time across temperature and the tighter the standard deviation.  

The scale factor is most likely explained by a difference of the oxide layers used in smaller 
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technologies (advanced high-K processes) and improvements in cell design, processing and 

geometry, i.e., vertical/horizontal staked capacitors, materials, dimensions, etc. 

 
Based on the 64 milliseconds critical threshold and substituting the parameter values into the 

Exponential degradation model and solving for x, the t 0.1 time when data retention drops to 

99.9% reliability at different stress levels are summarized in Table 10.  Times were calculated at 

the 95% CL. 

 

Table 10.  Data Retention TTF  (t 0.1 Point). 

 

  Data ID   t 0.1 Time-to-Fail (Hours) 

90nm:  298.15K, 2.5V  67920.4 

90nm:  348.15K, 2.5V  40067.5 

90nm:  398.15K, 2.5V  32852.2    

90nm:  298.15K, 4.05V  51730.2 

90nm:  348.15K, 4.05V  42329.7 

90nm:  398.15K, 4.05V  28027.1   

110nm:  298.15K, 2.5V  68404.7 

110nm:  348.15K, 2.5V  45485.3 

110nm:  398.15K, 2.5V  34222.4   

110nm:  298.15K, 4.05V  47881.2 

110nm:  348.15K, 4.05V  33500.9 

110nm:  398.15K, 4.05V  26417.9   

130nm:  298.15K, 2.5V  28425.5 

130nm:  348.15K, 2.5V  17977.6 

130nm:  398.15K, 2.5V  17161.8   

130nm:  298.15K, 4.05V  18716.5 

130nm:  348.15K, 4.05V  12044.3 

130nm:  398.15K, 4.05V  9912.3   
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Figure 25. Tret Degradation Prediction at Accelerated Conditions. 
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Chapter 4: Physics-of-Failure & Systems Approach 

 

 

4.1  Overview 

Retention time margin may also be measured using a Q-ratio of the time-to-first-failure 

distribution (t1) to the maximum specified refresh time, (tM).  This ratio provides insight into the 

tolerance of each technology generation to degradation with respect to voltage and temperature 

stresses.  The ratio also provides a quality factor demonstrating the amount of margin between 

actual soft breakdown and the manufacturer’s specified refresh time. Table 11 shows the (t1)/(tM) 

Q-ratios for each technology and stress condition.  A high Q-ratio number represents a high 

operating margin; a low number represents low margin. 

 

Data retention characteristics are most robust at low temperature, 218K, and nominal operating 

voltage, 2.5V.  The Q-ratio also reveals that 90nm devices are more robust across the full stress 

profile range than the 110nm and 130nm devices.  While all three technologies reveal 

diminishing margin with increasing temperature and voltage stresses, Table 11 shows that the 

temperature component of the stress profile has a greater effect on data retention margin.  
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Table 11.  Q-Ratio (t1)/(tM) at Initial Test Point. 
 

Test 
Conditions 

90nm 
(t1)/(tM) Q-

Ratio 

110nm 
(t1)/(tM) Q-

Ratio 

130nm 
(t1)/(tM) Q-

Ratio 
218K, 2.5V 140.6 140.6 140.6 
298K, 2.5V 125.0 125.0 125.0 
348K, 2.5V 78.1 62.5 62.5 
398K, 2.5V 46.9 31.3 31.3 
218K, 4.0V 109.4 109.4 109.4 
298K, 4.0V 93.8 93.8 93.8 
348K, 4.0V 46.9 31.3 31.3 
398K, 4.0V 15.6 4.7 3.1 

 

After passing of a memory cell’s retention time, a charged cell has lost a certain threshold charge 

such that the remaining charge is detected as a logic zero. This fixed threshold charge equals the 

average leakage current times the retention time. Therefore, the retention time is inversely 

proportional to the average leakage current, and the distribution of cell leakage currents may be 

determined by measuring the distribution of retention times. Three leakage paths should be 

considered: first, sub-threshold leakage through the access transistors; second, leakage from the 

storage node of the transistor to the substrate; and third, leakage through the dielectric of the 

storage capacitor.  Newer DRAM designs generally bias the cell plate at Vdd/2 in order to reduce 

the electric field in the thin dielectric of the storage capacitor.   The leakage of the dielectric of 

the storage capacitors should be increased by charge injection under stress before breakdown of 

the dielectric. Low temperature testing, 218K, was included in the stress profile in an attempt to 

identify this effect. Thermal carrier generation is based on tunneling through the dielectric, from 

leakage to the substrate and through the access transistor.  
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4.2  Failure Mechanisms 

The data retention time breakdown failure distributions are similar to the time-to-failure 

distributions of the breakdown of thin dielectrics. Therefore, dielectric leakage may be a 

precursor to breakdown, and increased through electrical and thermal stresses before breakdown 

or other loss of functionality occurs. This effect would show up as a shift in the retention time 

distribution measured after stressing the devices.  This will be shown graphically later. 

 

The three paths for storage capacitor charge to leak out are through the capacitor dielectric, 

through the substrate, and through the transistor channel. The two latter effects on the time to 

first-bit failure can be magnified by either increasing or decreasing the substrate bias as was 

shown by Shaw et al [106].  For an n-channel transistor, negative substrate biasing decreases the 

sub-threshold current exponentially. However, at a very large negative bias, substantial current 

may be generated in the depletion region of the storage node’s p-n junction. This current may be 

generated by thermal activation of electrons through near mid-gap centers and is proportional to 

the depletion width. At temperatures high enough to overcome the full bandgap of silicon, 

diffusion of minority carriers may also be a factor. Earlier work shows that a small negative 

substrate bias may be generated on-chip, which in effect suppresses both the sub-threshold and 

the substrate current [106]. 

  

4.3  Discussion 

Model distributions were fitted to the failure distributions for each of the technologies studied. 

The data supports and fits the Thermal – Non-Thermal (T-NT) Model comprised of the 

Arrhenius relationship for the thermal stress, and the Inverse Power Law for the voltage stress.  
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Using this model and the Weibull distribution for plotting, it is shown that the � slope decreases 

over time for each stress condition.  There are two distinct breakdown failure modes as are 

shown in the Weibull distributions in Figures 26 and 27.  The first observed breakdown failures 

in each distribution appear to be caused by random defects, considered to be extrinsic in nature, 

and generally process induced.  These failures may be caused by weak areas or defects in the 

oxide film, contaminants, fine cracks, or pin holes.  Such defects can cause increases in leakage 

within the memory cell and early breakdown.  The randomness of the defect related first failures 

lends itself well for further statistical analysis.   

 

Figure 26 shows that for the 130nm products initial readings at elevated stress conditions, 

approximately 0.34% of the early retention time failures are attributable to randomly distributed 

weak bits.  Similarly, after 1,000 hour stress, Figure 27 shows that at elevated stress conditions a 

higher percentage, approximately 0.58% of the early retention time failures, is attributable to 

randomly distributed weak bits.  At the other end of the spectrum, colder temperature and 

nominal operating voltage, the data retention characteristics are much better.  

 

Figure 28 shows that for the 110nm products initial readings at elevated stress conditions, 

approximately 0.052% of the early retention time failures are attributable to randomly distributed 

weak bits.  Similarly, after 1,000 hour stress, Figure 29 shows that at elevated stress conditions a 

higher percentage, approximately 0.5% of the early retention time failures, is attributable to 

randomly distributed weak bits.  Likewise with the 130nm products, at colder temperature and 

nominal operating voltage, the data retention characteristics are much better.  
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Figures 30 and 31 show that for the 90nm products, initial and 1,000 readings at elevated stress 

conditions correlate much better, demonstrating that approximately 0.32% of the early retention 

time failures are attributable to randomly distributed weak bits.   

 

The second distinct failure breakdown mode consists of the main population of the distribution.  

The soft breakdown related failure mechanism may be related to the robustness of the oxide 

processing.  Although data retention soft errors are plotted, a hard degradation is observed over 

time.   Similar distributions with two distinct populations, randomly distributed weak bits with � 

= 1, and a main population with increasing failure rate with � > 1 were also observed with the 

110nm and 90nm and product technologies.  Refer to Figures 28 – 31.   
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Figure 26. 130nm Bit Failure Distribution at Initial Time (t1), 125°C/4.0V. 
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Figure 27. 130nm Bit Failure Distribution at Time (t2). 
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Figure 28. 110nm Bit Failure Distribution at Initial Time (t1), 125°C/4.0V. 
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Figure 29. 110nm Bit Failure Distribution at Time (t2). 
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Figure 30. 90nm Bit Failure Distribution at Initial Time (t1), 125°C/4.0V. 
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Figure 31. 90nm Bit Failure Distribution at Time (t2). 
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4.3.1  Randomness 
 

The early failures were confirmed to be random by comparing the address locations to the 

physical memory block locations; clustering or systemic patterns of the failure locales were not 

observed. The first early failures are identified by yellow blocks in 90nm SN 2 memory layout 

map in Figure 32. 

 

 

Figure 32. Optical Overview of Memory Block Layout. 
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4.4  Retention Time Early Breakdown 

The Weibull distribution takes the form of the Exponential distribution at � = 1.  This greatly 

simplifies the predictive model, and enables a more straightforward approach in predicting the 

behavior and TTF of the next technology generation.  Table 12 shows the retention time soft 

error rates, calculated at 95% CL, of the randomly distributed weak bits at the 512Mb product 

(system) level at each stress condition. 

 
It is important to note that these calculations reflect the soft error rate of the early retention time 

breakdown at the 1,000 hour test point, and do not reflect the hard failure breakdown of the 

memory product. Up to the 1,000 hour test point, even the first retention time breakdowns for all 

three product technologies are above the specified 64mSec refresh rate, the time one would see 

data loss in an actual application.  Refer to Figures 26-31.  The results in Table 12 reveal that a 

combination of high voltage and high temperature stress yields the largest SER and is the best 

way to identify weak bits in DRAM devices.  It is shown that for each of the three memory 

technologies studied, there is a trend of increasing reliability (decreasing FR) for the same 

density of memory under equivalent stress conditions as the size of the memory cell and feature 

size decreases. 

Table 12.  512Mb Product Level Retention Time Soft Error Rate Calculations. 

 
Stress 

Conditions 

90nm CFR 
(�) %/1Khrs 

90nm 
Equiv. 

FIT/512Mb 

110nm CFR 
(�) %/1Khrs 

110nm 
Equiv. 

FIT/512Mb 

130nm CFR 
(�) %/1Khrs 

130nm 
Equiv. 

FIT/512Mb 
218K, 2.5V 0.0287 287 0.03025 302.5 0.02895 289.5 
298K, 2.5V 0.06065 606.5 0.06215 621.5 0.06865 686.5 
348K, 2.5V 0.08135 813.5 0.08245 824.5 0.09625 962.5 
398K, 2.5V 0.1013 1013 0.10185 1018.5 0.1240 1240 
218K, 4.0V 0.03865 386.5 0.0420 420 0.0429 429 
298K, 4.0V 0.08175 817.5 0.0863 863 0.1017 1017 
348K, 4.0V 0.1096 1096 0.11445 1144.5 0.1426 1426 
398K, 4.0V 0.13645 1364.5 0.1414 1414 0.1837 1837 
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We can approximate a complex integrated circuit by a competing failure or series failure system. 

It is shown that the early failures, the most important failures, are random and that they are well 

approximated by an exponential distribution with a constant failure rate at different stress levels.  

For a constant failure rate system, the FIT is interchangeable with MTTF according to its 

definition such that: 

s
s MTTF

FIT
910

�  (4.1) 

 

Furthermore, the FIT or CFR may be broken down into a temperature stress element and a 

voltage stress element.  Figures 33a-c show the relative impact of the voltage and temperature 

stresses on product (system) level early retention time soft error rates, calculated at 95% CL, of 

the randomly distributed weak bits.  There is a clear trend of decreasing FR with each product 

technology generation for the same density memory under equivalent stress conditions. 

 

Figure 33a. 130nm System Retention Time Soft Error Rates (95% CL, 1,000hrs) 
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Figure 33b. 110nm System Retention Time Soft Error Rates (95% CL, 1,000hrs) 

 

 

Figure 33c. 90nm System Retention Time Soft Error Rates (95% CL, 1,000hrs) 
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The product or system level FR results yield the impact of temperature and voltage on the 

acceleration factor for each of the product technologies.  A test matrix with the corresponding 

influences of both temperature and voltage follows for each product technology follow in Tables 

13a-c. The test matrices show the actual Acceleration Factor or Derating Factor for each stress 

condition to yield the early failures or defects. 

 

Table 13a.  130nm Retention Time Soft Error Rate Test Matrix for Early Failures. 

130nm CFR 
(�) %/1Khrs 218K 298K 348K 398K 

2.5V 0.02895 0.06865 0.09625 0.1240 
4.0V 0.0429  0.1017 0.1426 0.1837 

130nm  AFsys 218K 298K 348K 398K 
2.5V 0.42 1 1.40 1.81 
4.0V 0.62  1.48 2.1 2.68 

 

Table 13b.  110nm Retention Time Soft Error Rate Test Matrix for Early Failures. 

110nm CFR 
(�) %/1Khrs 218K 298K 348K 398K 

2.5V 0.03025 0.06215 0.08245 0.10185 
4.0V 0.0420  0.0863 0.11445 0.1414 

110nm  AFsys 218K 298K 348K 398K 
2.5V 0.49 1 1.33 1.64 
4.0V 0.67  1.39 1.84 2.28 

 

Table 13c.  90nm Retention Time Soft Error Rate Test Matrix for Early Failures. 

90nm  CFR (�) 
%/1Khrs 218K 298K 348K 398K 

2.5V 0.0287 0.06065 0.08135 0.1013 
4.0V 0.03865  0.08175 0.1096 0.13645 

90nm  AFsys 218K 298K 348K 398K 
2.5V 0.47 1 1.34 1.67 
4.0V 0.64  1.34 1.81 2.25 
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4.5  Power Relationship as a Function of Scaling 

As was described earlier in Section 1.1.2, a semiconductor device’s lifetime is affected by changing 

its operating parameters, specifically junction temperature, because of heat activated mechanisms as 

well as supply voltage. The device’s operating voltage (Vdd) directly affects many of its parameters, 

including current density (je) and the electric field (Eox) across the gate dielectric. Supply voltage also 

has a significant effect on junction temperature (Tj) which is dependent on the power dissipated from 

the device (PD), the ambient operating temperature (Ta), and the sum of the thermal impedances 

between the die and ambient environment (�ja). The power dissipated of the device is the sum of 

both dynamic and static power dissipation, such that: 

 

PD = Cl*Vdd2 *f  + ilVdd (4.2) 

 

where Cl is the total capacitance load, Vdd is the supply voltage, f is the frequency, and il is the 

load current in the static mode.  The dissipated power of the device is then used to calculate the 

junction temperature such that: 

 

Tj = �ja*PD + Ta (4.3) 

 

where �ja is the junction-to-ambient thermal resistance and Ta is the ambient temperature. 

 

An analysis and comparison of the PD and Tj for the products in this data retention study follows: 
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90nm product PD and Tj calculations: 

PD = (Cl*Vdd2 *f) + Max(Ioh DCmax*(Vdd-Voh), Iol DCmax*Vol)) 

PD (2.5V) = (5x10-12 * 6.25 * 133 x106 )+(16.8mA(2.5V-1.927V))=13.78mW 

Tj(-55C) = 48.4	C/W * 13.78mW + -55	C = -54.3	C 

Tj(+25C) = 48.4	C/W * 13.78mW + 25	C = +25.67	C 

Tj(+75C) = 48.4	C/W * 13.78mW + 75	C = +75.67	C 

Tj(+125C) = 48.4	C/W *13.78mW + 125	C = +125.67	C 

PD (4.0V) = (5x10-12 * 16 * 133 x106 )+(16.8mA(4.0V-1.927V))=45.47mW 

Tj(-55C) = 48.4	C/W * 45.47mW + -55	C = -52.8	C 

Tj(+25C) = 48.4	C/W * 45.47mW + 25	C = +27.2	C 

Tj(+75C) = 48.4	C/W * 45.47mW + 75	C = +77.2	C 

Tj(+125C) = 48.4	C/W * 45.47mW + 125	C = +127.2	C 

 

110nm product PD and Tj calculations: 

PD = (Cl*Vdd2 *f) + Max(Ioh DCmax*(Vdd-Voh), Iol DCmax*Vol)) 

PD (2.5V) =( 5x10-12 * 6.25 * 200 x106 )+(15.2mA(2.5V-1.95V))=14.61mW 

Tj(-55C) = 48.4	C/W * 14.61mW + -55	C = -54.3	C 

Tj(+25C) = 48.4	C/W * 14.61mW + 25	C = +25.7	C 

Tj(+75C) = 48.4	C/W * 14.61mW + 75	C = +75.7	C 

Tj(+125C) = 48.4	C/W * 14.61mW + 125	C = +125.7	C 

PD (4.0V) = ( 5x10-12 * 16 * 200 x106 )+(15.2mA(4.0V-1.95V))=41.16mW 

Tj(-55C) = 48.4	C/W * 41.16mW + -55	C = -53.0	C 

Tj(+25C) = 48.4	C/W * 41.16mW + 25	C = +27.0	C 
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Tj(+75C) = 48.4	C/W * 41.16mW + 75	C = +77.0	C 

Tj(+125C) = 48.4	C/W * 41.16mW + 125	C = +127.0	C 

 

130nm product PD and Tj calculations: 

PD (2.5V) =( 5x10-12 * 6.25 * 166 x106 )+(15.2mA(2.5V-1.95V))=13.55mW 

Tj(-55C) = 48.4	C/W * 13.55mW + -55	C = -54.3	C 

Tj(+25C) = 48.4	C/W * 13.55mW + 25	C = +25.6	C 

Tj(+75C) = 48.4	C/W * 13.55mW + 75	C = +75.6	C 

Tj(+125C) = 48.4	C/W * 13.55mW + 125	C = +125.6	C 

PD (4.0V) = ( 5x10-12 * 16 * 166 x106 )+(15.2mA(4.0V-1.95V))=44.44mW 

Tj(-55C) = 48.4	C/W * 44.44mW + -55	C = -52.8	C 

Tj(+25C) = 48.4	C/W * 44.44mW + 25	C = +27.2	C 

Tj(+75C) = 48.4	C/W * 44.44mW + 75	C = +75.2	C 

Tj(+125C) = 48.4	C/W * 44.44mW + 125	C = +125.2	C 

 
 

It is important to note that with these product technologies, the power dissipation is rather low as 

SDRAM is not considered to be a power device.  Because of this, the junction temperature remains 

close to the ambient temperature and in this study, comparable stress conditions closely correlate to 

comparable junction temperatures across the product technologies.  This is not the case with leading 

edge power processors where the power density is increasing exponentially and junction temperature 

is increasing ~1.45x with each new product generation. 
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4.6  Physical Failure Model 

The soft errors and acceleration factors from each of the different temperature and voltage 

conditions were analyzed against existing competing and multiple mechanism physical failure 

models, e.g. Arrhenius, Inverse Power, Exponential. The models were described earlier in 

Equations 2.4-2.7 and are summarized again here.  First, two multiple failure mechanism models 

were applied:  Multiplication of AF’s (temperature and voltage) using both Exponential and 

Power Law Models:  AF1 = AFt * AFv(e) (Eq. 4.4) and AF2 = AFt * AFv(p) (Eq. 4.5) ; secondly, 

two competing failure mechanism models were applied: A weighted sum model of the AF’s 

where  AF3 = (AFt + AFv(e))/2 (Eq. 4.6) and AF4 = (AFt + AFv(p))/2 (Eq. 4.7).  The data was 

analyzed and the model parameters were calculated for each of the models. The model equations 

are expanded as follows: 
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The calculated Ea, 
, and k parameters are as follows: 

Ea for 130nm = 0.06 

Ea for 110nm = 0.05 

Ea for 90nm = 0.052 

 

Applying the Power Law model for AFv, the derived k for each technology node is: 

k for 130nm: 0.84 

k for 110nm: 0.693 

k for 90nm: 0.637 

 

Applying the Exponential model for AFv, the derived � for each technology node is: 

� for 130nm: 0.263 

� for 110nm: 0.216 

  � for 130nm: 0.1997 

 

The multiple failure mechanism acceleration model, refer to Equation 4.5 (product of AF's using 

the Power Law for AFv) best fits the DRAM retention time data and suggests a single 

temperature and voltage activated breakdown mechanism. The relative contribution of T and V 

on the system level FR is shown pictorially in Figures 33a-c.  The thermal element is the main 

contributor to Tret breakdown degradation, the voltage element contributes to the thermally 

activated mechanism by slightly increasing the junction temperature. 
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As was discussed earlier, for current generation DRAM, the capacitance is typically 30-40fF/cell 

and although the external power supply Vdd is 2.5V for each part, internal on-chip voltage 

regulator circuitry subdivides this voltage as follows: 

 

130nm Technology Parts: 

- Peripheral Circuitry Voltage: 2.2V 

- Memory Core Voltage: 1.8V  

110nm Technology Parts: 

- Peripheral Circuitry Voltage: 1.8V 

- Memory Core Voltage: 1.4V  

90nm Technology Parts: 

- Peripheral Circuitry Voltage: 1.4V 

- Memory Core Voltage: 1.0V  

 

The memory cell capacitor dielectric material is Ta2O5.  The gate oxide thickness for the larger 

peripheral circuitry transistors is approximately 7nm, and the gate oxide thickness for the nMOS 

memory cell transistors is approximately 4.2 nm. 

 

Due to the over-voltage protection circuitry in each of the products, higher Vdd stress is not 

applied directly to the memory cores and this voltage is maintained at the specified amount.  

Therefore, the impact of higher Vdd stress corresponds to an increase in power dissipation for 

each of the products; these are summarized Section 5.5.  There is no feasible method of 

bypassing the over-voltage protection at the product level for product level testing; however, it is 
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important to see the overall impact has on the overall product level power dissipation and 

contribution to the product, or system level FR. 

 

The activation energies are very small for the early retention time breakdown errors, up to the 

1,000 hour test measurement.  As for the entire population of Tret breakdown, the activation 

energies are in the same range. Refer to Tables 13a and 13b.  The slow degradation of Tret over 

time and the low activation energies suggest that hot carrier injection may be the intrinsic 

wearout mechanism at work. 

 

The switching characteristics of a MOSFET can degrade and exhibit instabilities due to the 

charge that is injected into the gate oxide. The typical effect of hot carrier, or hot electron 

degradation, is an increase in the off-state current of a p-channel MOSFET, and a reduction in 

the on-state current of an n-channel MOSFET, e.g., those that comprise each memory cell.  The 

rate of hot carrier degradation is directly related to the length of the channel, the oxide thickness, 

and the voltage of the device. A measure of transistor degradation or lifetime is commonly 

defined in terms of percentage shift of threshold voltage, change in transconductance, or 

variation in drive or saturation current [71].  These parameter shifts, however, were not 

confirmed in this experiment. 

 

Gradual time-dependent dielectric breakdown of the DRAM stacked storage capacitor cell is 

another possible intrinsic wearout mechanism explanation. The stacked capacitor cell (STC) 

relies heavily on the quality and the storage capacity of the dielectric film between two heavily 

doped polysilicon electrodes.  Silicon nitride (Si3N4) films have a high dielectric constant and are 
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known to contain many trap levels which may cause leakage current shifts.  An increase in 

memory capacitor cell leakage current over time as a result of trapped charge, or lacking or 

inconsistent quality of the capacitor dielectric film, could explain the degradation in critical 

charge threshold levels. 

 

4.7  DRAM Scaling and Defect Density 

For DRAM, the product technology represents the half pitch of metal 1 (M1).  See Figure 34 

[107].  As the half pitch of M1 decreases with each technology generation, so does the physical 

transistor gate length (Lg).  The gate length is driven by the necessity to improve transistor speed 

and is generally < 0.5x the DRAM half pitch.  With a 0.7x reduction each technology generation, 

a 0.5x linear scaling reduction is realized every two generations. 

 

 

Figure 34. DRAM Metal Bit Line. 
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Table 14. DRAM Chip and Cell Characteristics. 

DRAM Half Pitch Product Generation 130nm 110nm  
(1/2 node) 

90nm 65nm 

Physical Gate Length 65nm 50nm 37nm 25nm 

Cell Area Factor (a) 8 8 6 6 

Cell Area (CA = af2) μm2 0.130 0.90 .049 0.024 

Cell Array Area (% of chip size) 71.3% 72% 72.6% 73.5% 

Chip Size (mm2) 390/2Gbits 312/2Gbits 287/4Gbits 568/16Gbits 

Gbits/cm2 0.55 0.90 1.49 3.03 

 

The DRAM product technology scaling trend of M1 and the transistor gate length has 

historically been 0.7x/3 year cycle.  However, since 2007, DRAM function size, function 

density, and chip size scaling rate have increased to a 2.5-year cycle with both geometric and 

equivalent scaling design enhancements. Table 14 shows chip and cell characteristics for 130nm 

to 65nm DRAMs [107]. 

 

If defects are randomly distributed over surface area, A, and a Poisson distribution is assumed 

given the random distribution of the first few time-to-fails, the defect density D (number of weak 

defective bits/cm2) can be calculated for each product generation, and extrapolated to the next 

generation, in this case 65nm.   

 

The probability of n defects (D) in cell array area (A) is described as: 

 

]exp[*
!
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n
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n

�  (4.8) 
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and the probability of a cell array area without defects (n=0) is: 

 

]exp[ DAP �  (4.9) 
 
 

The yield defect density is measured before stress is applied; defect density at t = 0.  The 

reliability defect density is the latent defect density and is measured at some time t > 0.  These 

defects may pass the manufacturer’s internal screening and then fail in the field at a later time, t 

> 0, at some given stress level.  Approximately 99.5% of the retention time failures of each 

product technology made up the main population with Weibull � slope ranging from 2.4 to 3.9, 

while the first approximately 0.5% retention  failures were attributed to random defects.  Figure 

35 shows the percentage of manufacturing defects causing the early retention time bit failures for 

each stressed memory product at the 95% CL. 

 

 

 

 

 

 

 

 

 

 

 

Figure 35. Random Defective Bits per Product Generation. 
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Observed 512Mb, 130nm product technology: 0.58% random defective bits 

Observed 512Mb, 110nm product technology: 0.50% random defective bits 

Observed 512Mb, 90nm product technology:   0.32% random defective bits 

Predicted 512Mb, 65nm product technology:   0.08% random defective bits 

 

Each smaller technology generation exhibited fewer random defects than the previous 

generation. Trend analysis predicts the next technology generation, 65nm, to exhibit 0.08% 

random defective bits assuming the trend continues.  Given the option between a 512Mb 130nm 

product and a 512Mb 65nm product under equivalent stress conditions, the data suggests the 

512Mb 65nm product will have fewer defects. This trend is likely to continue due to tighter 

process controls needed for smaller geometries, and the desire to maintain constant product level 

failure rates for ever increasing Gb size memory products. 

 

In actuality, with each new product generation and a 2x bit factor for each progressive full node, 

the standard DRAM product size at the 65nm node is no longer 512 Mbits, but 8 Gbits.  Given 

this trend, the random number of defective bits per cm2 must also be considered. 

 

By incorporating the defect rates for each representative technology and the cell characteristics 

in Table 14, the defect density per cm2 of DRAM memory is calculated as follows: 

 

130nm product generation: DD = 3.19x106 bits/cm2 (0.55 Gb)  

110nm product generation: DD = 4.5x106 bits/cm2 (0.90 Gb) 

90nm product generation: DD = 4.768x106 bits/cm2 (1.49 Gb) 
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Using the predicted random defective bits with the cell characteristics of the 65nm DRAM, the 

defect density per Gbit of DRAM for the next product generation is: 

 

Predicted 65nm product generation: DD = 2.424 x106 bits/cm2 (3.03 Gb) 

 

Note that while there is only a marginal increase in defect density per cm2 per DRAM generation 

(130nm to 90nm), the number of Gbits of memory per cm2 per DRAM generation is increasing 

significantly.  The 65nm DRAM standard product contains 8 Gbits of memory.  Therefore, 

normalizing the defect density to the standard products, the 512Mb 130nm standard product had 

2.9696 x 106 weak bits and an 8 Gbit 65nm product is expected to have 6.5536 x 106  weak bits. 

A 16x increase in memory size from a 130nm 512Mb standard product to an 8 Gbit 65nm 

product, corresponds to a disproportional 2.2x increase in defective weak bits, a much better 

product in terms of proportion of weak bits. 

 

4.8  Soft Error Failure Rate 

The defect density and the soft error failure rate of the random bits must be considered in tandem 

to effectively assess the quality and the reliability of the scaled products.  Data was normalized 

to FIT/Gb of memory and analyses of the soft error failure rate of the random bits are presented 

in Figure 36 and Table 15.  The graph shows how the soft error failure rate of retention time 

behaves for scaled DRAM at multiple stress conditions.  Curves were fit to the data which reveal 

a power relationship as a function of scaling for the higher stresses, > 348K and 2.5V, or > 298K 

and 4.0V; a linear relationship exists for lower stress levels across product generations, e.g., < 

298K and 2.5V, or < 218K and 4.0V.  The lowest failure rates across product generations is 
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observed at standard operating Vdd = 2.5V and 218K.  The linear and power functions showing 

the rate of change at each stress condition for each of the three scaled DRAMs and a prediction is 

extrapolated to the 65nm node. 

 

Given the normalized curves, one can derive the expected soft error failure rate per Gb of 

memory from Figure 36 and Table 15.   

 

 

Figure 36. Normalized Soft Error Failure Rate for Scaled DRAM (FIT/Gb). 
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Table 15. Normalized Soft Error Failure Rate for Scaled DRAM (FIT/Gb). 

Stress 
Condition 130nm 

110nm 
1/2 

Node 90nm 
1/2 

Node 
Predicted 

65nm Relation Function R2 
218K, 2.5V 579 605 574 581 579 Linear y = -2.5x + 591 0.9456
298K, 2.5V 1373 1243 1213 1116 1036 Linear y = -80x + 1436.3 0.8848
348K, 2.5V 1925 1649 1627 1526 1470 Pwr y = 1902.6x-0.1606 0.9117
398K, 2.5V 2480 2037 2026 1860 1774 Pwr y = 2439.1x-0.1948 0.8824
218K, 4.0V 858 840 773 739 696 Linear y = -42.5x + 908.6 0.9003
298K, 4.0V 2034 1726 1635 1525 1458 Pwr y = 2021.1x-0.2029 0.9824
348K, 4.0V 2852 2289 2192 1998 1892 Pwr y = 2815.3x-0.2479 0.9526
398K, 4.0V 3674 2828 2729 2442 2297 Pwr y = 3609.1x-0.2822 0.9321

 

A generalized model of the scaling effect relationship on the SER of scaled DRAM product may 

be expressed as a power function: 

y = 121.79 d (x0.5693) (4.10) 
 

where d is the density factor (product density in Gb) and x is the technology node.  Reference 

Figure 37. 

 
Figure 37. Generalized Soft Error Failure Rate Model for Scaled DRAM (FIT/Gb). 
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Data was also normalized to FIT/cm2 and analyses of the soft error failure rate of the random bits 

are presented in Figure 38 and Table 16.  The graph shows how the soft error failure rate of 

retention time behaves for scaled DRAM at multiple stress conditions per area of memory in 

cm2.  Curves were fit to the data with a power function.  

 

Figure 38. Normalized Soft Error Failure Rate for Scaled DRAM (FIT/cm2). 

 
Table 16. Normalized Soft Error Failure Rate for Scaled DRAM (FIT/cm2). 

Stress 
Condition 130nm 90nm 

Predicted 
65nm Relation Function R2 

218K, 2.5V 318 855 1753 Pwr y = 311.77x1.5388 0.9965 
298K, 2.5V 755 1807 3140 Pwr y = 750.37x1.2931 0.9996 
398K, 2.5V 1364 3019 5375 Pwr y = 1341x1.2373 0.9966 
218K, 4.0V 472 1152 2109 Pwr y = 465.98x1.3548 0.9984 
298K, 4.0V 1119 2436 4418 Pwr y = 1095.2x1.2365 0.9946 
348K, 4.0V 1569 3266 5733 Pwr y = 1537.1x1.1666 0.9945 
398K, 4.0V 2021 4066 6960 Pwr y = 1981.7x1.1131 0.9944 
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Figure 39. Generalized Soft Error Failure Rate Model for Scaled DRAM (FIT/cm2). 

 

A generalized model of the scaling effect relationship on the SER of scaled DRAM in FIT/cm2  

may be expressed as a power function: 

 

y = 1E+07x-1.8714 (4.11) 
 

where x is the technology node.  Reference Figure 39. 
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thickness in order to maintain transistor saturation currents and signal speed.  In general, the 

ITRS roadmap shows the density progression for each successive technology and should be 

considered in future generation projections. 

 

The reliability (FIT/Gb) and quality (DD) of the DRAM parts with respect to retention time 

characteristics is improving with each technology generation under equivalent stress conditions.  

The observed difference in soft error failure rate, however, is more pronounced at higher stress 

conditions. The normalized SER (FIT/cm2) is increasing with each progressive generation, 

therefore. the SER FIT for the product, or system has to take this into account, e.g. the density 

factor in Eq. 5.10.  The user should consider these trends in the selection of a scaled DRAM 

product for a given application and the anticipated operating conditions.   Increases in operating 

frequency, power dissipation, and junction temperature will each have a detrimental effect in 

determining the product reliability for a given application.  The user must also consider the 

impact of SER on the increasing product density with each newer generation. 

 



 

 134 
 

Chapter 5: Conclusion 

 

5.1  Background 

A description of the historical and modern approaches in assessing and predicting 

microelectronics reliability, including the motivation for further investigation into this important 

field of study, particularly for high reliability applications such as NASA spacecraft avionics is 

provided.  A synopsis of microelectronics derating and reliability modeling and simulation is 

presented. CMOS technology scaling has an impact on circuit performance, power, circuit 

design, burn-in and long term reliability in modern day microelectronics; these effects and trends 

on microelectronics reliability are discussed.  In addition, the Physics-of-Failure methodology, 

competing mechanism theory, common intrinsic failure mechanisms and statistical models, and 

the multiple failure mechanism model, are discussed and different approaches to calculate 

acceleration factors are summarized. 

 

5.2  Conclusion 

A design of experiments and an accelerated stress test on scaled commercial SDRAMs was 

performed.  The goal of the SDRAM experiment was to investigate failure mechanism induced 

degradation at the product level, and determine if long term performance is random (constant 

rate process) or degrades over time (increasing failure rate).  Additionally, characterization of 

product sensitivities to temperature and voltage at the product level across different scaled 

technologies was conducted. 
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Technology and construction analysis, device characterization, and data analysis led to a 

degradation and predictive model, reliability assessment and defect density calculations of three 

current SDRAM technologies for different stress conditions.  Product, or system level soft error 

rates for data retention were calculated, and an AF test matrix with the acceleration factors for 

different combinations of temperature and voltage stresses is proposed.  A methodology to 

determine the density of random defects per cm2 of DRAM memory, and a forecast for the next 

technology generation of scaled DRAM is included.  This technique may be applied to other 

scaled microelectronic devices and key parameters. 

 

Retention time margin of several product generations is measured using a Q-ratio of the time-to-

first-failure distribution (t1) to the maximum specified refresh time, (tM).  This ratio provides 

insight into the tolerance of each technology generation to degradation with respect to voltage 

and temperature stresses.  The ratio also provides a quality factor demonstrating the amount of 

margin between actual soft breakdown of a memory cell, and the manufacturer’s specified 

refresh time. 

 

A direct comparison of the data retention characteristics across three DRAM product 

technologies reveals that a recoverable soft error breakdown occurs with each memory cell, and 

that memory retention time gradually degrades over time. Two distinct populations are evident 

with data retention breakdown; the main population soft error rate of each product generation 

follows a Weibull distribution with a � slope > 2.4, while early failures are randomly distributed 

with a � slope ~ 1.0.  Data retention breakdown is accelerated by both temperature and voltage 

stresses as is shown in Chapter 4.  The study shows that up to 0.58% of the 130nm memory cells 
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in the scaled DRAM products studied are statistically random defective bits, and that the 

percentage of random defective bits decreases to 0.32% for the 90nm memory cells. A prediction 

is made for the number of random defective bits for the 65nm technology node given the ever 

tighter process controls needed for nanometer scaled semiconductors and memory products.  By 

incorporating the defect rates for each representative technology with the cell characteristics, the 

defect density per cm2 of DRAM memory ranges from 3.19x106 bits/cm2  for the 130nm product 

technology, to 4.768x106 bits/cm2 for the 90nm product technology. A defect density prediction 

is made for the next generation 65nm technology node. 

 

Early soft errors and acceleration factors from each of the different temperature and voltage 

conditions were analyzed against existing competing and multiple mechanism physical failure 

models. The multiple failure mechanism AF model using the Power Law for AFv best fits the 

DRAM retention time data and suggests a single temperature and voltage activated breakdown 

mechanism. 

 

Data was normalized to FIT/Gb and FIT/cm2 for the soft error rates to compare technology 

generations, and a generalized model of the scaling effect relationship was developed. It was 

shown that the reliability in FIT/Gb and quality (defect density) of the DRAM parts with respect 

to retention time characteristics is improving with each technology generation under equivalent 

stress conditions.  The observed difference in soft error failure rate, however, is more 

pronounced at higher stress conditions. The normalized SER (FIT/cm2) is increasing with each 

progressive generation, therefore, the SER FIT for the product, or system must be considered.   

The user must balance this knowledge with the anticipated application operating conditions.   
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Increases in operating frequency, power dissipation, and junction temperature will each have a 

detrimental effect in determining the product reliability for a given application.  

 

The data and the derived acceleration and derating factors demonstrate that a combination of 

temperature and voltage stresses are better for screening out and/or qualification of scaled 

DRAM products for defects that may lead to premature failure in the application. 

 

A summary of the nonlinear regression analysis for the SDRAM study is included in Appendix 

A. 

 

The DRAM experimental results are particularly important for several reasons: 

 

1) For the same density memory chip and equivalent stress conditions, the product or system 

reliability should increase for each successive technology generation as manufacturers 

strive to maintain product FIT rates for higher density memories. The DRAM results 

support this trend. 

 

2) NASA and the aerospace industry have historically used temperature only as a stress 

driver to screen and qualify parts.  This data supports that a combination of temperature 

and voltage stresses better accelerates both thermally and voltage driven mechanisms that 

could impact long term parts reliability.  This method also better identifies the weak 

memory cells that lead to early breakdown.  
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3) A temperature and voltage stress test matrix approach shows the expected acceleration 

factor or derating factor for different temperature and voltage stress combinations on the 

data retention soft error rate for 130nm, 110nm and 90nm SDRAM product technologies. 

A similar screening and/or qualification approach may be adapted for other parts and 

newer product generations. The user should use caution and test the specific product 

family, technology, and manufacturer to determine accurate acceleration and derating 

factors at different stress combinations, especially for critical applications.  Differences in 

over-voltage protection schemes, device layout, design, and other factors can impact the 

level of voltage stress actually applied deep inside the core of the chip circuitry.  In many 

cases, discrete level testing is desirable and preferred to determine accurate voltage 

acceleration factors for the core circuitry, as these may be different than those observed at 

the product level. 

 

4) Results show that early failures are dominated by CFR, Beta = 1, for each technology in 

the study. 

 

5) Results show that the reliability is improving and failure rate (FIT/Gb) is decreasing with 

each new technology under equivalent stress conditions. 

 

6) Results show that for the same size memory, e.g. 512Mb, the quality (defect density) is 

improving with each new technology generation. Therefore, the 90nm products exhibit 

better retention time characteristics and fewer defects/cm2 than the larger 110nm and 

130nm technologies. 
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7) Results show that the normalized soft error rate (FIT/cm2) is increasing with each new 

technology generations. 

 

5.3  Future Work 

Ongoing research, accelerated stress testing, and modeling of scaling effects on microelectronics 

reliability continues throughout the industry. Newer product technologies, including 65nm, 

45nm, and 32nm need to be studied to determine if developments in materials, design, layout, 

and processing will inherently affect the reliability of next generation microelectronics. The 

evaluation methodology described herein, however, may be applied to other product 

technologies. 
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Appendix A 
 

Nonlinear Regression: 90nm,  298.15K, 2.5V 
 
[Variables] 
x = col(2) 
y = col(3) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 8.55057}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 8.3314e-005}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.96296200 Rsqr = 0.92729580 Adj Rsqr = 0.91921756 
 
Standard Error of Estimate = 0.0667  
 
  Coefficient Std. Error t P  
a 8.5506 0.0383 223.3188 <0.0001  
b 0.0001 0.0000 10.7438 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.5105 0.5105 114.7893 <0.0001  
Residual 9 0.0400 0.0044  
Total 10 0.5506 0.0551  
 
PRESS = 0.0689  
 
Durbin-Watson Statistic = 0.3805  
 
Normality Test:  K-S Statistic = 0.1884 Significance Level = 0.7865 
 
Constant Variance Test:  Passed (P = 0.7755) 
 
Power of performed test with alpha = 0.0500: 0.9999 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 8.5505 0.0845 1.2671 1.5474 1.7029  
5 8.4796 0.0504 0.7553 0.8663 0.8531  
6 8.4093 0.0007 0.0109 0.0120 0.0113  
7 8.3395 -0.0395 -0.5923 -0.6334 -0.6110  
8 8.2703 -0.0603 -0.9044 -0.9526 -0.9472  
9 8.2017 -0.0717 -1.0750 -1.1276 -1.1472  
10 8.1336 -0.0536 -0.8044 -0.8486 -0.8342  
11 8.0662 -0.0562 -0.8422 -0.9024 -0.8921  
12 7.9992 -0.0092 -0.1386 -0.1524 -0.1439  
13 7.9329 0.0471 0.7066 0.8067 0.7896  
14 7.8671 0.1080 1.6201 1.9459 2.4105  
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Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 0.5884 0.3295 1.1938  
5 0.1184 0.2399 0.4793  
6 0.0000 0.1722 0.0051  
7 0.0288 0.1255 -0.2314  
8 0.0497 0.0987 -0.3135  
9 0.0637 0.0910 -0.3631  
10 0.0407 0.1015 -0.2803  
11 0.0604 0.1291 -0.3435  
12 0.0024 0.1731 -0.0658  
13 0.0986 0.2326 0.4347  
14 0.8382 0.3069 1.6039  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 8.5505 8.4639 8.6371 8.3765 8.7245  
5 8.4796 8.4057 8.5535 8.3116 8.6476  
6 8.4093 8.3467 8.4719 8.2459 8.5726  
7 8.3395 8.2861 8.3929 8.1795 8.4996  
8 8.2703 8.2229 8.3177 8.1122 8.4285  
9 8.2017 8.1562 8.2472 8.0441 8.3593  
10 8.1336 8.0856 8.1817 7.9753 8.2920  
11 8.0662 8.0120 8.1204 7.9059 8.2265  
12 7.9992 7.9365 8.0620 7.8358 8.1626  
13 7.9329 7.8601 8.0056 7.7654 8.1004  
14 7.8671 7.7835 7.9506 7.6946 8.0395  
 

Nonlinear Regression: 90nm, 348.15K, 2.5V 
 
[Variables] 
x = col(6) 
y = col(7) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 7.17615}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000135366}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.99126396 Rsqr = 0.98260423 Adj Rsqr = 0.98067137 
 
Standard Error of Estimate = 0.0422  
 
  Coefficient Std. Error t P  
a 7.1762 0.0245 292.7811 <0.0001  
b 0.0001 0.0000 22.5331 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.9069 0.9069 508.3672 <0.0001  
Residual 9 0.0161 0.0018  
Total 10 0.9229 0.0923  
 
PRESS = 0.0236  
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Durbin-Watson Statistic = 1.2438  
 
Normality Test:  K-S Statistic = 0.1407 Significance Level = 0.9710 
 
Constant Variance Test:  Passed (P = 0.1987) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 7.1761 -0.0214 -0.5056 -0.6208 -0.5982  
5 7.0797 0.0203 0.4815 0.5530 0.5305  
6 6.9845 -0.0045 -0.1060 -0.1165 -0.1099  
7 6.8906 0.0194 0.4601 0.4917 0.4699  
8 6.7979 0.0321 0.7595 0.7997 0.7823  
9 6.7065 0.0435 1.0295 1.0799 1.0913  
10 6.6163 -0.0663 -1.5709 -1.6581 -1.8759  
11 6.5274 -0.0574 -1.3588 -1.4569 -1.5714  
12 6.4396 -0.0296 -0.7014 -0.7714 -0.7526  
13 6.3530 0.0070 0.1647 0.1878 0.1774  
14 6.2676 0.0570 1.3490 1.6122 1.8024  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 0.0978 0.3367 -0.4262  
5 0.0488 0.2420 0.2997  
6 0.0014 0.1718 -0.0500  
7 0.0172 0.1244 0.1771  
8 0.0348 0.0980 0.2579  
9 0.0585 0.0912 0.3458  
10 0.1569 0.1024 -0.6338  
11 0.1589 0.1302 -0.6080  
12 0.0623 0.1732 -0.3445  
13 0.0053 0.2302 0.0970  
14 0.5566 0.2998 1.1795  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 7.1761 7.1206 7.2315 7.0656 7.2865  
5 7.0797 7.0327 7.1267 6.9732 7.1861  
6 6.9845 6.9449 7.0241 6.8811 7.0879  
7 6.8906 6.8569 6.9243 6.7893 6.9919  
8 6.7979 6.7680 6.8278 6.6978 6.8980  
9 6.7065 6.6777 6.7354 6.6067 6.8063  
10 6.6163 6.5858 6.6469 6.5160 6.7167  
11 6.5274 6.4929 6.5619 6.4258 6.6290  
12 6.4396 6.3999 6.4794 6.3361 6.5431  
13 6.3530 6.3072 6.3989 6.2471 6.4590 
14 6.2676 6.2153 6.3199 6.1587 6.3766  
 

Nonlinear Regression: 90nm, 398.15K, 2.5V 
 
[Variables] 
x = col(10) 
y = col(11) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 6.16959}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.00016254}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
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''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.98318715 Rsqr = 0.96665697 Adj Rsqr = 0.96295219 
 
Standard Error of Estimate = 0.0599  
 
  Coefficient Std. Error t P  
a 6.1696 0.0349 176.6067 <0.0001  
b 0.0002 0.0000 16.1867 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.9351 0.9351 260.9215 <0.0001  
Residual 9 0.0323 0.0036  
Total 10 0.9674 0.0967  
 
PRESS = 0.0510  
 
Durbin-Watson Statistic = 0.6007  
 
Normality Test:  K-S Statistic = 0.1920 Significance Level = 0.7668 
 
Constant Variance Test:  Passed (P = 0.6731) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 6.1695 0.0454 0.7586 0.9340 0.9267  
5 6.0701 0.0799 1.3344 1.5337 1.6824  
6 5.9723 0.0177 0.2965 0.3257 0.3089  
7 5.8760 -0.0760 -1.2689 -1.3556 -1.4326  
8 5.7812 -0.0712 -1.1898 -1.2525 -1.2996  
9 5.6880 -0.0380 -0.6351 -0.6662 -0.6442  
10 5.5963 -0.0463 -0.7736 -0.8168 -0.8003  
11 5.5061 -0.0361 -0.6028 -0.6465 -0.6242  
12 5.4173 0.0027 0.0449 0.0494 0.0465  
13 5.3300 0.0500 0.8357 0.9516 0.9461  
14 5.2440 0.0725 1.2104 1.4428 1.5515  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 0.2251 0.3404 0.6657  
5 0.3776 0.2430 0.9534  
6 0.0110 0.1715 0.1406  
7 0.1298 0.1238 -0.5385  
8 0.0849 0.0977 -0.4277  
9 0.0223 0.0914 -0.2043  
10 0.0383 0.1030 -0.2712  
11 0.0315 0.1308 -0.2422  
12 0.0003 0.1733 0.0213  
13 0.1344 0.2289 0.5154  
14 0.4380 0.2962 1.0065  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 6.1695 6.0905 6.2485 6.0127 6.3263  
5 6.0701 6.0034 6.1369 5.9191 6.2211  
6 5.9723 5.9162 6.0283 5.8257 6.1188  
7 5.8760 5.8283 5.9236 5.7324 6.0195  
8 5.7812 5.7389 5.8236 5.6393 5.9231  
9 5.6880 5.6471 5.7290 5.5465 5.8295  
10 5.5963 5.5529 5.6398 5.4541 5.7385  
11 5.5061 5.4571 5.5551 5.3621 5.6501  
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12 5.4173 5.3609 5.4737 5.2706 5.5640  
13 5.3300 5.2652 5.3948 5.1798 5.4801  
14 5.2440 5.1703 5.3177 5.0899 5.3982  
 

Nonlinear Regression: 90nm,  298.15K, 4.05V 
 
[Variables] 
x = col(2) 
y = col(3) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 6.85286}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 9.11558e-005}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.98384944 Rsqr = 0.96795972 Adj Rsqr = 0.96439969 
 
Standard Error of Estimate = 0.0379  
 
  Coefficient Std. Error t P  
a 6.8529 0.0218 314.5287 <0.0001  
b 0.0001 0.0000 16.5178 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.3903 0.3903 271.8964 <0.0001  
Residual 9 0.0129 0.0014  
Total 10 0.4033 0.0403  
 
PRESS = 0.0228  
 
Durbin-Watson Statistic = 0.4847  
 
Normality Test:  K-S Statistic = 0.2474 Significance Level = 0.4524 
 
Constant Variance Test:  Passed (P = 0.2569) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 6.8529 0.0613 1.6189 1.9788 2.4822  
5 6.7907 0.0293 0.7740 0.8879 0.8764  
6 6.7291 -0.0191 -0.5029 -0.5527 -0.5302  
7 6.6680 -0.0380 -1.0028 -1.0722 -1.0823  
8 6.6075 -0.0275 -0.7255 -0.7641 -0.7450  
9 6.5475 -0.0375 -0.9905 -1.0390 -1.0442  
10 6.4881 -0.0281 -0.7421 -0.7829 -0.7646  
11 6.4292 -0.0192 -0.5079 -0.5443 -0.5218  
12 6.3709 0.0091 0.2401 0.2640 0.2499  
13 6.3131 0.0169 0.4462 0.5093 0.4872  
14 6.2558 0.0529 1.3960 1.6755 1.9043  
 
Influence Diagnostics:  
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Row Cook'sDist Leverage DFFITS  
4 0.9672 0.3307 1.7446  
5 0.1246 0.2402 0.4928  
6 0.0318 0.1721 -0.2418  
7 0.0823 0.1253 -0.4096  
8 0.0319 0.0986 -0.2464  
9 0.0541 0.0911 -0.3305  
10 0.0347 0.1016 -0.2571  
11 0.0220 0.1293 -0.2010  
12 0.0073 0.1731 0.1143  
13 0.0392 0.2323 0.2680  
14 0.6183 0.3058 1.2639  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 6.8529 6.8036 6.9021 6.7540 6.9517  
5 6.7907 6.7487 6.8327 6.6952 6.8861  
6 6.7291 6.6935 6.7646 6.6363 6.8219  
7 6.6680 6.6377 6.6983 6.5771 6.7589  
8 6.6075 6.5806 6.6344 6.5176 6.6973  
9 6.5475 6.5217 6.5734 6.4580 6.6371  
10 6.4881 6.4608 6.5154 6.3982 6.5781  
11 6.4292 6.3984 6.4601 6.3382 6.5203  
12 6.3709 6.3352 6.4066 6.2781 6.4637  
13 6.3131 6.2718 6.3544 6.2179 6.4082  
14 6.2558 6.2084 6.3032 6.1579 6.3538  
 

Nonlinear Regression: 90nm,  348.15K, 4.05V 
 
[Variables] 
x = col(6) 
y = col(7) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 5.49431}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 7.28894e-005}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.98239160 Rsqr = 0.96509326 Adj Rsqr = 0.96121474 
 
Standard Error of Estimate = 0.0257  
 
  Coefficient Std. Error t P  
a 5.4943 0.0147 373.8763 <0.0001  
b 0.0001 0.0000 15.7850 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.1638 0.1638 248.8299 <0.0001  
Residual 9 0.0059 0.0007  
Total 10 0.1697 0.0170  
 
PRESS = 0.0099  
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Durbin-Watson Statistic = 0.8447  
 
Normality Test:  K-S Statistic = 0.1741 Significance Level = 0.8587 
 
Constant Variance Test:  Passed (P = 0.2096) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 5.4943 0.0457 1.7808 2.1726 2.9703  
5 5.4544 0.0056 0.2178 0.2497 0.2363  
6 5.4148 -0.0248 -0.9667 -1.0625 -1.0712  
7 5.3755 -0.0255 -0.9930 -1.0620 -1.0706  
8 5.3364 -0.0264 -1.0305 -1.0855 -1.0979  
9 5.2977 -0.0177 -0.6892 -0.7229 -0.7022  
10 5.2592 0.0008 0.0309 0.0326 0.0308  
11 5.2210 0.0090 0.3504 0.3754 0.3567  
12 5.1831 0.0369 1.4386 1.5819 1.7553  
13 5.1455 0.0045 0.1773 0.2024 0.1913  
14 5.1081 -0.0081 -0.3151 -0.3789 -0.3601  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 1.1526 0.3281 2.0758  
5 0.0098 0.2395 0.1326  
6 0.1175 0.1723 -0.4887  
7 0.0811 0.1257 -0.4059  
8 0.0647 0.0989 -0.3637  
9 0.0262 0.0910 -0.2222  
10 0.0001 0.1013 0.0103  
11 0.0104 0.1289 0.1372  
12 0.2619 0.1731 0.8030  
13 0.0062 0.2331 0.1054  
14 0.0320 0.3083 -0.2404  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 5.4943 5.4611 5.5276 5.4274 5.5612  
5 5.4544 5.4260 5.4828 5.3898 5.5190  
6 5.4148 5.3907 5.4389 5.3520 5.4776  
7 5.3755 5.3549 5.3961 5.3139 5.4370  
8 5.3364 5.3182 5.3547 5.2756 5.3973  
9 5.2977 5.2802 5.3152 5.2371 5.3583  
10 5.2592 5.2407 5.2777 5.1983 5.3201  
11 5.2210 5.2002 5.2418 5.1594 5.2827  
12 5.1831 5.1590 5.2072 5.1202 5.2460  
13 5.1455 5.1174 5.1735 5.0810 5.2099  
14 5.1081 5.0759 5.1403 5.0417 5.1745  
 

Nonlinear Regression: 90nm, 398.15K, 4.05V 
 
[Variables] 
x = col(10) 
y = col(11) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 4.86817}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000156699}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
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[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.98191836 Rsqr = 0.96416367 Adj Rsqr = 0.96018186 
 
Standard Error of Estimate = 0.0474  
 
  Coefficient Std. Error t P  
a 4.8682 0.0276 176.1274 <0.0001  
b 0.0002 0.0000 15.5904 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.5446 0.5446 242.1418 <0.0001  
Residual 9 0.0202 0.0022  
Total 10 0.5649 0.0565  
 
PRESS = 0.0381  
 
Durbin-Watson Statistic = 0.8096  
 
Normality Test:  K-S Statistic = 0.2390 Significance Level = 0.4974 
 
Constant Variance Test:  Passed (P = 0.3241) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 4.8682 0.1018 2.1472 2.6424 5.2617  
5 4.7925 -0.0025 -0.0522 -0.0600 -0.0566  
6 4.7180 -0.0380 -0.8005 -0.8795 -0.8673  
7 4.6446 -0.0446 -0.9407 -1.0050 -1.0056  
8 4.5724 -0.0624 -1.3157 -1.3852 -1.4723  
9 4.5013 -0.0113 -0.2384 -0.2501 -0.2366  
10 4.4313 -0.0013 -0.0279 -0.0294 -0.0277  
11 4.3624 -0.0024 -0.0511 -0.0548 -0.0517  
12 4.2946 -0.0046 -0.0969 -0.1066 -0.1006  
13 4.2278 0.0222 0.4676 0.5325 0.5102  
14 4.1621 0.0435 0.9174 1.0941 1.1078  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 1.7959 0.3397 3.7738  
5 0.0006 0.2428 -0.0321  
6 0.0801 0.1716 -0.3947  
7 0.0714 0.1239 -0.3782  
8 0.1040 0.0978 -0.4847  
9 0.0031 0.0914 -0.0750  
10 0.0000 0.1029 -0.0094  
11 0.0002 0.1307 -0.0200  
12 0.0012 0.1733 -0.0460  
13 0.0421 0.2291 0.2781  
14 0.2528 0.2970 0.7200  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 4.8682 4.8056 4.9307 4.7440 4.9923  
5 4.7925 4.7396 4.8453 4.6729 4.9121  
6 4.7180 4.6735 4.7624 4.6018 4.8341  
7 4.6446 4.6068 4.6824 4.5309 4.7583  
8 4.5724 4.5389 4.6059 4.4600 4.6848  
9 4.5013 4.4689 4.5337 4.3892 4.6134  
10 4.4313 4.3969 4.4657 4.3187 4.5440  
11 4.3624 4.3236 4.4012 4.2483 4.4765  
12 4.2946 4.2499 4.3393 4.1784 4.4108  
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13 4.2278 4.1765 4.2792 4.1089 4.3468  
14 4.1621 4.1036 4.2206 4.0399 4.2843  
 

 
Nonlinear Regression: 110nm,  298.15K, 2.5V 
 
[Variables] 
x = col(2) 
y = col(3) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 8.31352}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 8.16831e-005}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.99297544 Rsqr = 0.98600023 Adj Rsqr = 0.98444470 
 
Standard Error of Estimate = 0.0271  
 
  Coefficient Std. Error t P  
a 8.3135 0.0156 533.9676 <0.0001  
b 0.0001 0.0000 25.1983 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.4665 0.4665 633.8679 <0.0001  
Residual 9 0.0066 0.0007  
Total 10 0.4731 0.0473  
 
PRESS = 0.0117  
 
Durbin-Watson Statistic = 0.5723  
 
Normality Test:  K-S Statistic = 0.1620 Significance Level = 0.9102 
 
Constant Variance Test:  Passed (P = 0.7965) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 8.3135 0.0291 1.0720 1.3090 1.3716  
5 8.2459 0.0141 0.5202 0.5966 0.5740  
6 8.1788 0.0112 0.4126 0.4535 0.4325  
7 8.1123 -0.0123 -0.4524 -0.4837 -0.4621  
8 8.0463 -0.0263 -0.9686 -1.0203 -1.0230  
9 7.9808 -0.0208 -0.7675 -0.8050 -0.7879  
10 7.9159 -0.0259 -0.9546 -1.0070 -1.0079  
11 7.8515 -0.0215 -0.7925 -0.8492 -0.8348  
12 7.7876 -0.0076 -0.2812 -0.3092 -0.2931  
13 7.7243 0.0057 0.2110 0.2409 0.2278  
14 7.6614 0.0544 2.0038 2.4072 3.8029  
 
Influence Diagnostics:  
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Row Cook'sDist Leverage DFFITS  
4 0.4207 0.3294 0.9612  
5 0.0562 0.2398 0.3224  
6 0.0214 0.1722 0.1973  
7 0.0168 0.1255 -0.1751  
8 0.0570 0.0988 -0.3386  
9 0.0324 0.0910 -0.2493  
10 0.0572 0.1014 -0.3386  
11 0.0534 0.1291 -0.3214  
12 0.0100 0.1731 -0.1341  
13 0.0088 0.2327 0.1255  
14 1.2840 0.3071 2.5316  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 8.3135 8.2783 8.3487 8.2428 8.3843  
5 8.2459 8.2158 8.2759 8.1776 8.3142  
6 8.1788 8.1533 8.2043 8.1124 8.2453  
7 8.1123 8.0905 8.1340 8.0472 8.1774  
8 8.0463 8.0270 8.0656 7.9819 8.1106  
9 7.9808 7.9623 7.9993 7.9167 8.0449  
10 7.9159 7.8964 7.9354 7.8515 7.9803  
11 7.8515 7.8295 7.8735 7.7863 7.9167  
12 7.7876 7.7621 7.8132 7.7212 7.8541  
13 7.7243 7.6947 7.7539 7.6561 7.7924  
14 7.6614 7.6274 7.6954 7.5913 7.7316 
 
 
Nonlinear Regression: 110nm,  348.15K, 2.5V 
 
[Variables] 
x = col(6) 
y = col(7) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 6.84254}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000120308}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.95758184 Rsqr = 0.91696299 Adj Rsqr = 0.90773665 
 
Standard Error of Estimate = 0.0812  
 
  Coefficient Std. Error t P  
a 6.8425 0.0470 145.6813 <0.0001  
b 0.0001 0.0000 10.0099 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.6552 0.6552 99.3854 <0.0001  
Residual 9 0.0593 0.0066  
Total 10 0.7145 0.0714  
 
PRESS = 0.1004  
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Durbin-Watson Statistic = 0.3621  
 
Normality Test:  K-S Statistic = 0.1456 Significance Level = 0.9606 
 
Constant Variance Test:  Passed (P = 0.8601) 
 
Power of performed test with alpha = 0.0500: 0.9997 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 6.8425 0.1219 1.5009 1.8400 2.1965  
5 6.7607 0.0493 0.6070 0.6970 0.6756  
6 6.6799 0.0001 0.0017 0.0018 0.0017  
7 6.6000 -0.0600 -0.7388 -0.7896 -0.7717  
8 6.5211 -0.1011 -1.2447 -1.3107 -1.3738  
9 6.4431 -0.0831 -1.0232 -1.0733 -1.0836  
10 6.3660 -0.0760 -0.9363 -0.9882 -0.9867  
11 6.2899 -0.0299 -0.3682 -0.3947 -0.3754  
12 6.2147 0.0153 0.1888 0.2076 0.1962  
13 6.1404 0.0596 0.7346 0.8377 0.8225  
14 6.0669 0.1043 1.2843 1.5371 1.6875  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 0.8515 0.3347 1.5578  
5 0.0773 0.2414 0.3811  
6 0.0000 0.1719 0.0008  
7 0.0444 0.1247 -0.2912  
8 0.0936 0.0982 -0.4534  
9 0.0578 0.0912 -0.3432  
10 0.0555 0.1022 -0.3328  
11 0.0116 0.1299 -0.1450  
12 0.0045 0.1732 0.0898  
13 0.1053 0.2309 0.4506  
14 0.5108 0.3019 1.1096  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 6.8425 6.7363 6.9488 6.6304 7.0547  
5 6.7607 6.6705 6.8510 6.5561 6.9654  
6 6.6799 6.6037 6.7560 6.4810 6.8787  
7 6.6000 6.5351 6.6648 6.4052 6.7948  
8 6.5211 6.4635 6.5786 6.3286 6.7135  
9 6.4431 6.3876 6.4985 6.2512 6.6349  
10 6.3660 6.3073 6.4247 6.1732 6.5588  
11 6.2899 6.2237 6.3561 6.0947 6.4851  
12 6.2147 6.1382 6.2911 6.0157 6.4136  
13 6.1404 6.0521 6.2286 5.9366 6.3441  
14 6.0669 5.9660 6.1678 5.8574 6.2765  
 
 
Nonlinear Regression: 110nm, 398.15K, 2.5V 
 
[Variables] 
x = col(10) 
y = col(11) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 6.03454}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000153988}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
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[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.99286227 Rsqr = 0.98577550 Adj Rsqr = 0.98419500 
 
Standard Error of Estimate = 0.0361  
 
  Coefficient Std. Error t P  
a 6.0345 0.0210 286.8718 <0.0001  
b 0.0002 0.0000 24.9744 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.8134 0.8134 623.7110 <0.0001  
Residual 9 0.0117 0.0013  
Total 10 0.8252 0.0825  
 
PRESS = 0.0194  
 
Durbin-Watson Statistic = 1.2077  
 
Normality Test:  K-S Statistic = 0.1836 Significance Level = 0.8119 
 
Constant Variance Test:  Passed (P = 0.7755) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 6.0345 0.0488 1.3502 1.6611 1.8807  
5 5.9423 -0.0123 -0.3414 -0.3923 -0.3730  
6 5.8515 -0.0315 -0.8729 -0.9591 -0.9543  
7 5.7621 -0.0121 -0.3353 -0.3582 -0.3402  
8 5.6741 0.0259 0.7184 0.7563 0.7368  
9 5.5874 0.0226 0.6271 0.6579 0.6357  
10 5.5020 -0.0520 -1.4392 -1.5194 -1.6614  
11 5.4179 -0.0379 -1.0495 -1.1256 -1.1448  
12 5.3351 -0.0151 -0.4184 -0.4601 -0.4390  
13 5.2536 0.0164 0.4546 0.5178 0.4956  
14 5.1733 0.0474 1.3124 1.5656 1.7304  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 0.7085 0.3393 1.3477  
5 0.0247 0.2427 -0.2112  
6 0.0953 0.1716 -0.4344  
7 0.0091 0.1240 -0.1280  
8 0.0310 0.0978 0.2426  
9 0.0218 0.0913 0.2016  
10 0.1323 0.1028 -0.5624  
11 0.0952 0.1306 -0.4438  
12 0.0222 0.1733 -0.2010  
13 0.0399 0.2293 0.2703  
14 0.5186 0.2973 1.1256  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 6.0345 5.9870 6.0821 5.9400 6.1291  
5 5.9423 5.9021 5.9826 5.8513 6.0334  
6 5.8515 5.8177 5.8854 5.7631 5.9399  
7 5.7621 5.7333 5.7909 5.6755 5.8487  
8 5.6741 5.6485 5.6996 5.5885 5.7597  
9 5.5874 5.5627 5.6120 5.5020 5.6727  
10 5.5020 5.4758 5.5282 5.4162 5.5878  
11 5.4179 5.3884 5.4474 5.3310 5.5048  
12 5.3351 5.3011 5.3691 5.2466 5.4236  
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13 5.2536 5.2145 5.2927 5.1630 5.3442  
14 5.1733 5.1288 5.2179 5.0803 5.2664  
 
 
Nonlinear Regression: 110nm,  298.15K, 4.05V 
 
[Variables] 
x = col(2) 
y = col(3) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 6.61935}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 9.73741e-005}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.99404435 Rsqr = 0.98812417 Adj Rsqr = 0.98680463 
 
Standard Error of Estimate = 0.0235  
 
  Coefficient Std. Error t P  
a 6.6194 0.0135 489.0502 <0.0001  
b 0.0001 0.0000 27.3844 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.4138 0.4138 748.8418 <0.0001  
Residual 9 0.0050 0.0006  
Total 10 0.4188 0.0419  
 
PRESS = 0.0081  
 
Durbin-Watson Statistic = 0.6441  
 
Normality Test:  K-S Statistic = 0.1696 Significance Level = 0.8791 
 
Constant Variance Test:  Passed (P = 0.2209) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 6.6194 0.0192 0.8188 1.0015 1.0017  
5 6.5552 0.0248 1.0546 1.2101 1.2468  
6 6.4917 -0.0017 -0.0718 -0.0789 -0.0744  
7 6.4288 -0.0188 -0.7990 -0.8542 -0.8401  
8 6.3665 -0.0065 -0.2759 -0.2906 -0.2753  
9 6.3048 -0.0148 -0.6293 -0.6601 -0.6380  
10 6.2437 -0.0237 -1.0081 -1.0637 -1.0725  
11 6.1832 -0.0332 -1.4122 -1.5135 -1.6526  
12 6.1233 -0.0033 -0.1396 -0.1535 -0.1449  
13 6.0639 0.0261 1.1083 1.2647 1.3149  
14 6.0052 0.0319 1.3576 1.6285 1.8281  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
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4 0.2487 0.3315 0.7054  
5 0.2318 0.2405 0.7015  
6 0.0006 0.1721 -0.0339  
7 0.0522 0.1252 -0.3178  
8 0.0046 0.0985 -0.0910  
9 0.0218 0.0911 -0.2020  
10 0.0641 0.1017 -0.3609  
11 0.1702 0.1294 -0.6371  
12 0.0025 0.1731 -0.0663  
13 0.2415 0.2320 0.7226  
14 0.5818 0.3050 1.2109  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 6.6194 6.5887 6.6500 6.5580 6.6807  
5 6.5552 6.5291 6.5813 6.4960 6.6144  
6 6.4917 6.4696 6.5137 6.4341 6.5493  
7 6.4288 6.4100 6.4476 6.3724 6.4852  
8 6.3665 6.3498 6.3832 6.3107 6.4222  
9 6.3048 6.2887 6.3208 6.2492 6.3603  
10 6.2437 6.2267 6.2607 6.1879 6.2995  
11 6.1832 6.1641 6.2023 6.1267 6.2397  
12 6.1233 6.1012 6.1454 6.0657 6.1809  
13 6.0639 6.0383 6.0896 6.0049 6.1230  
14 6.0052 5.9758 6.0346 5.9444 6.0659  
 
Nonlinear Regression: 110nm, 348.15K, 4.05V 
 
[Variables] 
x = col(6) 
y = col(7) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 5.53632}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000132161}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.98683279 Rsqr = 0.97383896 Adj Rsqr = 0.97093217 
 
Standard Error of Estimate = 0.0393  
 
  Coefficient Std. Error t P  
a 5.5363 0.0228 242.6812 <0.0001  
b 0.0001 0.0000 18.2529 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.5185 0.5185 335.0230 <0.0001  
Residual 9 0.0139 0.0015  
Total 10 0.5324 0.0532  
 
PRESS = 0.0206  
 
Durbin-Watson Statistic = 1.0134  
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Normality Test:  K-S Statistic = 0.1706 Significance Level = 0.8749 
 
Constant Variance Test:  Passed (P = 0.0762) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 5.5363 0.0056 0.1418 0.1740 0.1644  
5 5.4636 -0.0336 -0.8550 -0.9819 -0.9797  
6 5.3919 -0.0119 -0.3026 -0.3325 -0.3154  
7 5.3211 -0.0211 -0.5366 -0.5735 -0.5509  
8 5.2513 0.0087 0.2224 0.2342 0.2215  
9 5.1823 0.0177 0.4498 0.4718 0.4504  
10 5.1143 0.0557 1.4167 1.4953 1.6262  
11 5.0471 0.0729 1.8525 1.9863 2.4989  
12 4.9809 -0.0209 -0.5302 -0.5831 -0.5604  
13 4.9155 -0.0255 -0.6472 -0.7378 -0.7176  
14 4.8509 -0.0478 -1.2160 -1.4537 -1.5668  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 0.0077 0.3363 0.1170  
5 0.1538 0.2418 -0.5533  
6 0.0115 0.1718 -0.1436  
7 0.0234 0.1244 -0.2077  
8 0.0030 0.0981 0.0730  
9 0.0112 0.0912 0.1427  
10 0.1275 0.1024 0.5492  
11 0.2952 0.1302 0.9666  
12 0.0356 0.1732 -0.2565  
13 0.0814 0.2303 -0.3926  
14 0.4534 0.3003 -1.0263  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 5.5363 5.4847 5.5879 5.4334 5.6392  
5 5.4636 5.4199 5.5074 5.3645 5.5628  
6 5.3919 5.3550 5.4288 5.2956 5.4882  
7 5.3211 5.2897 5.3525 5.2267 5.4155  
8 5.2513 5.2234 5.2791 5.1580 5.3445  
9 5.1823 5.1554 5.2092 5.0893 5.2753  
10 5.1143 5.0858 5.1427 5.0208 5.2077  
11 5.0471 5.0150 5.0792 4.9525 5.1417  
12 4.9809 4.9438 5.0179 4.8845 5.0773  
13 4.9155 4.8728 4.9582 4.8168 5.0142  
14 4.8509 4.8022 4.8997 4.7494 4.9524  
 
Nonlinear Regression: 110nm, 398.15K, 4.05V 
 
[Variables] 
x = col(10) 
y = col(11) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 4.80363}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000163859}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
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tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.99731150 Rsqr = 0.99463023 Adj Rsqr = 0.99403359 
 
Standard Error of Estimate = 0.0186  
 
  Coefficient Std. Error t P  
a 4.8036 0.0109 441.6168 <0.0001  
b 0.0002 0.0000 40.7878 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 0.5790 0.5790 1667.0493 <0.0001  
Residual 9 0.0031 0.0003  
Total 10 0.5821 0.0582  
 
PRESS = 0.0057  
 
Durbin-Watson Statistic = 1.4607  
 
Normality Test:  K-S Statistic = 0.2475 Significance Level = 0.4523 
 
Constant Variance Test:  Passed (P = 0.0883) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 4.8036 0.0372 1.9942 2.4560 4.0320  
5 4.7256 -0.0156 -0.8352 -0.9599 -0.9553  
6 4.6488 -0.0188 -1.0068 -1.1061 -1.1219  
7 4.5732 -0.0132 -0.7088 -0.7572 -0.7378  
8 4.4989 -0.0089 -0.4767 -0.5019 -0.4799  
9 4.4258 -0.0058 -0.3094 -0.3246 -0.3079  
10 4.3538 0.0162 0.8672 0.9157 0.9066  
11 4.2831 0.0169 0.9080 0.9740 0.9709  
12 4.2135 -0.0135 -0.7226 -0.7948 -0.7771  
13 4.1450 -0.0050 -0.2677 -0.3048 -0.2889  
14 4.0776 0.0105 0.5622 0.6700 0.6481  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 1.5582 0.3407 2.8982  
5 0.1480 0.2431 -0.5413  
6 0.1266 0.1715 -0.5104  
7 0.0405 0.1237 -0.2773  
8 0.0136 0.0977 -0.1579  
9 0.0053 0.0914 -0.0976  
10 0.0482 0.1030 0.3072  
11 0.0714 0.1308 0.3767  
12 0.0662 0.1733 -0.3557  
13 0.0138 0.2288 -0.1573  
14 0.0944 0.2960 0.4202  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 4.8036 4.7790 4.8282 4.7548 4.8524  
5 4.7256 4.7048 4.7463 4.6786 4.7726  
6 4.6488 4.6313 4.6662 4.6031 4.6944  
7 4.5732 4.5584 4.5880 4.5285 4.6179  
8 4.4989 4.4857 4.5121 4.4547 4.5431  
9 4.4258 4.4130 4.4385 4.3817 4.4698  
10 4.3538 4.3403 4.3674 4.3096 4.3981  
11 4.2831 4.2678 4.2983 4.2382 4.3279  
12 4.2135 4.1959 4.2310 4.1678 4.2591  
13 4.1450 4.1248 4.1652 4.0983 4.1917  
14 4.0776 4.0547 4.1006 4.0296 4.1256  



 

 156 
 

 
 
Nonlinear Regression: 130nm,  298.15K, 2.5V 
 
[Variables] 
x = col(2) 
y = col(3) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 8.34415}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000192898}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.97546068 Rsqr = 0.95152354 Adj Rsqr = 0.94613727 
 
Standard Error of Estimate = 0.1159  
 
  Coefficient Std. Error t P  
a 8.3441 0.0681 122.6069 <0.0001  
b 0.0002 0.0000 13.2135 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 2.3740 2.3740 176.6571 <0.0001  
Residual 9 0.1209 0.0134  
Total 10 2.4950 0.2495  
 
PRESS = 0.1766  
 
Durbin-Watson Statistic = 0.8093  
 
Normality Test:  K-S Statistic = 0.0966 Significance Level = 0.9999 
 
Constant Variance Test:  Passed (P = 0.9676) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 8.3441 -0.1048 -0.9044 -1.1172 -1.1350  
5 8.1847 -0.0647 -0.5584 -0.6423 -0.6199  
6 8.0284 -0.0184 -0.1584 -0.1740 -0.1643  
7 7.8750 0.0550 0.4746 0.5068 0.4848  
8 7.7245 0.1155 0.9961 1.0484 1.0550  
9 7.5770 0.1830 1.5790 1.6567 1.8735  
10 7.4322 0.0878 0.7574 0.8000 0.7826  
11 7.2902 0.0098 0.0845 0.0907 0.0855  
12 7.1509 -0.1909 -1.6470 -1.8114 -2.1424  
13 7.0143 -0.1023 -0.8825 -1.0040 -1.0045  
14 6.8803 0.0289 0.2493 0.2963 0.2807  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 0.3282 0.3447 -0.8231  
5 0.0666 0.2442 -0.3523  
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6 0.0031 0.1712 -0.0747  
7 0.0180 0.1231 0.1817  
8 0.0593 0.0974 0.3465  
9 0.1384 0.0916 0.5949  
10 0.0370 0.1036 0.2661  
11 0.0006 0.1315 0.0333  
12 0.3439 0.1733 -0.9809  
13 0.1483 0.2274 -0.5449  
14 0.0181 0.2921 0.1803  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 8.3441 8.1902 8.4981 8.0401 8.6482  
5 8.1847 8.0551 8.3143 7.8922 8.4772  
6 8.0284 7.9198 8.1369 7.7446 8.3122  
7 7.8750 7.7830 7.9670 7.5971 8.1529  
8 7.7245 7.6427 7.8064 7.4498 7.9992  
9 7.5770 7.4976 7.6563 7.3030 7.8509  
10 7.4322 7.3478 7.5166 7.1567 7.7077  
11 7.2902 7.1951 7.3853 7.0113 7.5692  
12 7.1509 7.0418 7.2601 6.8669 7.4350  
13 7.0143 6.8893 7.1394 6.7238 7.3048  
14 6.8803 6.7386 7.0220 6.5822 7.1784 
 
 
Nonlinear Regression: 130nm, 348.15K, 2.5V 
 
[Variables] 
x = col(6) 
y = col(7) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 6.74299}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000307091}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.98137920 Rsqr = 0.96310513 Adj Rsqr = 0.95900570 
 
Standard Error of Estimate = 0.1210  
 
  Coefficient Std. Error t P  
a 6.7430 0.0726 92.8213 <0.0001  
b 0.0003 0.0000 15.3632 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 3.4393 3.4393 234.9363 <0.0001  
Residual 9 0.1318 0.0146  
Total 10 3.5711 0.3571  
 
PRESS = 0.2217  
 
Durbin-Watson Statistic = 0.4790  
 
Normality Test:  K-S Statistic = 0.1130 Significance Level = 0.9979 
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Constant Variance Test:  Passed (P = 0.6531) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 6.7430 0.1588 1.3126 1.6414 1.8487  
5 6.5391 0.0609 0.5037 0.5809 0.5582  
6 6.3413 -0.0313 -0.2587 -0.2840 -0.2690  
7 6.1495 -0.0195 -0.1614 -0.1721 -0.1626  
8 5.9636 -0.1136 -0.9385 -0.9873 -0.9857  
9 5.7832 -0.1832 -1.5141 -1.5895 -1.7670  
10 5.6083 -0.0983 -0.8125 -0.8593 -0.8456  
11 5.4387 -0.0587 -0.4851 -0.5212 -0.4990  
12 5.2742 0.0258 0.2131 0.2344 0.2216  
13 5.1147 0.0753 0.6223 0.7053 0.6841  
14 4.9600 0.1886 1.5585 1.8328 2.1827  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 0.7593 0.3605 1.3880  
5 0.0557 0.2482 0.3208  
6 0.0083 0.1700 -0.1217  
7 0.0020 0.1208 -0.0603  
8 0.0520 0.0963 -0.3219  
9 0.1289 0.0926 -0.5645  
10 0.0438 0.1061 -0.2914  
11 0.0210 0.1339 -0.1962  
12 0.0057 0.1731 0.1014  
13 0.0708 0.2215 0.3649  
14 0.6432 0.2769 1.3507  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 6.7430 6.5787 6.9073 6.4237 7.0622  
5 6.5391 6.4027 6.6754 6.2333 6.8449  
6 6.3413 6.2285 6.4542 6.0452 6.6374  
7 6.1495 6.0544 6.2447 5.8598 6.4393  
8 5.9636 5.8786 6.0485 5.6770 6.2501  
9 5.7832 5.6999 5.8665 5.4971 6.0693  
10 5.6083 5.5191 5.6975 5.3204 5.8962  
11 5.4387 5.3385 5.5388 5.1472 5.7301  
12 5.2742 5.1603 5.3881 4.9778 5.5707  
13 5.1147 4.9859 5.2435 4.8122 5.4172  
14 4.9600 4.8160 5.1041 4.6507 5.2693  
 
 
Nonlinear Regression: 130nm, 398.15K, 2.5V 
 
[Variables] 
x = col(10) 
y = col(11) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 5.44426}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000319428}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
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tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.89745925 Rsqr = 0.80543310 Adj Rsqr = 0.78381455 
 
Standard Error of Estimate = 0.2520  
 
  Coefficient Std. Error t P  
a 5.4443 0.1517 35.8959 <0.0001  
b 0.0003 0.0001 6.1554 0.0002  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 2.3663 2.3663 37.2566 0.0002  
Residual 9 0.5716 0.0635  
Total 10 2.9379 0.2938  
 
PRESS = 1.2230  
 
Durbin-Watson Statistic = 1.3834  
 
Normality Test:  K-S Statistic = 0.2084 Significance Level = 0.6724 
 
Constant Variance Test:  Failed (P = 0.0290) 
 
Power of performed test with alpha = 0.0500: 0.9849 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 5.4443 0.6001 2.3813 2.9817 25.4908  
5 5.2731 -0.2731 -1.0837 -1.2502 -1.2966  
6 5.1073 -0.2073 -0.8227 -0.9029 -0.8927  
7 4.9468 -0.1668 -0.6617 -0.7056 -0.6845  
8 4.7912 -0.1212 -0.4811 -0.5061 -0.4841  
9 4.6406 -0.0606 -0.2405 -0.2525 -0.2389  
10 4.4947 -0.0447 -0.1775 -0.1878 -0.1774  
11 4.3534 -0.0434 -0.1723 -0.1852 -0.1749  
12 4.2166 0.0434 0.1724 0.1895 0.1791  
13 4.0840 0.1060 0.4206 0.4765 0.4550  
14 3.9556 0.1752 0.6952 0.8166 0.8001  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 2.5241 0.3622 19.2085  
5 0.2586 0.2486 -0.7458  
6 0.0834 0.1698 -0.4038  
7 0.0341 0.1206 -0.2535  
8 0.0136 0.0963 -0.1580  
9 0.0033 0.0927 -0.0764  
10 0.0021 0.1064 -0.0612  
11 0.0027 0.1341 -0.0688  
12 0.0038 0.1731 0.0819  
13 0.0322 0.2208 0.2422  
14 0.1267 0.2753 0.4931  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 5.4443 5.1012 5.7874 4.7789 6.1097  
5 5.2731 4.9888 5.5574 4.6361 5.9102  
6 5.1073 4.8724 5.3423 4.4907 5.7240  
7 4.9468 4.7488 5.1447 4.3433 5.5503  
8 4.7912 4.6144 4.9681 4.1943 5.3882  
9 4.6406 4.4670 4.8142 4.0447 5.2366  
10 4.4947 4.3087 4.6807 3.8951 5.0944  
11 4.3534 4.1446 4.5622 3.7463 4.9606  
12 4.2166 3.9794 4.4537 3.5991 4.8340  
13 4.0840 3.8161 4.3519 3.4541 4.7139  
14 3.9556 3.6565 4.2547 3.3118 4.5994  
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Nonlinear Regression: 130nm, 298.15K, 4.05V 
 
[Variables] 
x = col(2) 
y = col(3) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 6.52409}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000249826}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.99420186 Rsqr = 0.98843734 Adj Rsqr = 0.98715260 
 
Standard Error of Estimate = 0.0544  
 
  Coefficient Std. Error t P  
a 6.5241 0.0323 202.0870 <0.0001  
b 0.0002 0.0000 27.7099 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 2.2745 2.2745 769.3677 <0.0001  
Residual 9 0.0266 0.0030  
Total 10 2.3011 0.2301  
 
PRESS = 0.0437  
 
Durbin-Watson Statistic = 0.8986  
 
Normality Test:  K-S Statistic = 0.1885 Significance Level = 0.7860 
 
Constant Variance Test:  Passed (P = 0.9676) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 6.5241 0.0136 0.2502 0.3110 0.2948  
5 6.3631 0.0469 0.8621 0.9930 0.9922  
6 6.2061 0.0539 0.9908 1.0880 1.1007  
7 6.0530 -0.0430 -0.7909 -0.8440 -0.8293  
8 5.9037 -0.0537 -0.9868 -1.0384 -1.0435  
9 5.7580 -0.0380 -0.6988 -0.7334 -0.7130  
10 5.6159 -0.0159 -0.2929 -0.3096 -0.2935  
11 5.4774 -0.0474 -0.8711 -0.9354 -0.9282  
12 5.3422 -0.0322 -0.5926 -0.6518 -0.6295  
13 5.2104 0.0096 0.1763 0.2002 0.1892  
14 5.0819 0.1073 1.9743 2.3340 3.5025  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 0.0263 0.3525 0.2175  
5 0.1611 0.2462 0.5671  
6 0.1218 0.1706 0.4993  
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7 0.0495 0.1220 -0.3091  
8 0.0578 0.0968 -0.3416  
9 0.0273 0.0920 -0.2270  
10 0.0056 0.1048 -0.1004  
11 0.0669 0.1327 -0.3630  
12 0.0445 0.1733 -0.2882  
13 0.0058 0.2245 0.1018  
14 1.0830 0.2845 2.2086  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 6.5241 6.4511 6.5971 6.3810 6.6671  
5 6.3631 6.3021 6.4242 6.2258 6.5004  
6 6.2061 6.1553 6.2569 6.0730 6.3392  
7 6.0530 6.0100 6.0960 5.9227 6.1833  
8 5.9037 5.8654 5.9419 5.7748 6.0325  
9 5.7580 5.7207 5.7953 5.6295 5.8865  
10 5.6159 5.5761 5.6558 5.4866 5.7452  
11 5.4774 5.4326 5.5222 5.3465 5.6083  
12 5.3422 5.2910 5.3934 5.2090 5.4754  
13 5.2104 5.1521 5.2687 5.0743 5.3465  
14 5.0819 5.0163 5.1475 4.9425 5.2213  
 
Nonlinear Regression: 130nm, 348.15K, 4.05V 
 
[Variables] 
x = col(6) 
y = col(7) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 5.47147}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000372677}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
iterations=100 
 
R = 0.99709819 Rsqr = 0.99420480 Adj Rsqr = 0.99356089 
 
Standard Error of Estimate = 0.0453  
 
  Coefficient Std. Error t P  
a 5.4715 0.0276 198.5888 <0.0001  
b 0.0004 0.0000 39.0512 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 3.1710 3.1710 1544.0089 <0.0001  
Residual 9 0.0185 0.0021  
Total 10 3.1895 0.3190  
 
PRESS = 0.0305  
 
Durbin-Watson Statistic = 1.1364  
 
Normality Test:  K-S Statistic = 0.2382 Significance Level = 0.5019 
 
Constant Variance Test:  Passed (P = 0.1017) 
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Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 5.4715 0.0049 0.1087 0.1369 0.1292  
5 5.2713 0.0087 0.1916 0.2213 0.2092  
6 5.0785 0.0415 0.9161 1.0050 1.0057  
7 4.8927 -0.0027 -0.0597 -0.0636 -0.0600  
8 4.7137 -0.0137 -0.3027 -0.3184 -0.3019  
9 4.5413 -0.0313 -0.6903 -0.7250 -0.7044  
10 4.3752 -0.0252 -0.5551 -0.5876 -0.5649  
11 4.2151 -0.0151 -0.3333 -0.3584 -0.3403  
12 4.0609 -0.0709 -1.5646 -1.7203 -1.9798  
13 3.9124 0.0076 0.1688 0.1909 0.1803  
14 3.7692 0.0977 2.1552 2.5195 4.3758  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 0.0055 0.3696 0.0989  
5 0.0082 0.2503 0.1209  
6 0.1028 0.1692 0.4538  
7 0.0003 0.1196 -0.0221  
8 0.0054 0.0960 -0.0984  
9 0.0271 0.0934 -0.2261  
10 0.0208 0.1077 -0.1963  
11 0.0100 0.1352 -0.1346  
12 0.3092 0.1728 -0.9050  
13 0.0051 0.2179 0.0952  
14 1.1637 0.2683 2.6495  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 5.4715 5.4091 5.5338 5.3515 5.5915  
5 5.2713 5.2200 5.3226 5.1567 5.3860  
6 5.0785 5.0363 5.1206 4.9676 5.1893  
7 4.8927 4.8573 4.9282 4.7842 5.0012  
8 4.7137 4.6820 4.7455 4.6064 4.8210  
9 4.5413 4.5100 4.5726 4.4341 4.6485  
10 4.3752 4.3415 4.4088 4.2673 4.4831  
11 4.2151 4.1774 4.2528 4.1059 4.3243  
12 4.0609 4.0183 4.1035 3.9499 4.1719  
13 3.9124 3.8645 3.9602 3.7992 4.0255  
14 3.7692 3.7161 3.8223 3.6538 3.8847  
 
 
Nonlinear Regression: 130nm, 398.15K, 4.05V 
 
[Variables] 
x = col(10) 
y = col(11) 
reciprocal_y = 1/abs(y) 
reciprocal_ysquare = 1/y^2 
'Automatic Initial Parameter Estimate Functions 
xnear0(q) = max(abs(q))-abs(q) 
yatxnear0(q,r) = xatymax(q,xnear0(r)) 
[Parameters] 
a = yatxnear0(y,x)  ''Auto {{previous: 4.75819}} 
b = if(x50(x,y)-min(x)=0, 1,  -ln(.5)/(x50(x,y)-min(x)))  ''Auto {{previous: 0.000438572}} 
[Equation] 
f = a*exp(-b*x) 
fit f to y 
''fit f to y with weight reciprocal_y 
''fit f to y with weight reciprocal_ysquare 
[Constraints] 
b>0 
[Options] 
tolerance=0.0001 
stepsize=100 
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iterations=100 
 
R = 0.99727239 Rsqr = 0.99455223 Adj Rsqr = 0.99394692 
 
Standard Error of Estimate = 0.0436  
 
  Coefficient Std. Error t P  
a 4.7582 0.0268 177.3685 <0.0001  
b 0.0004 0.0000 40.1613 <0.0001  
 
Analysis of Variance:  
  DF SS MS F P  
Regression 1 3.1216 3.1216 1643.0509 <0.0001  
Residual 9 0.0171 0.0019  
Total 10 3.1387 0.3139  
 
PRESS = 0.0267  
 
Durbin-Watson Statistic = 1.3963  
 
Normality Test:  K-S Statistic = 0.1552 Significance Level = 0.9339 
 
Constant Variance Test:  Failed (P = 0.0234) 
 
Power of performed test with alpha = 0.0500: 1.0000 
 
Regression Diagnostics: 
Row Predicted Residual Std. Res. Stud. Res. Stud. Del. Res.  
4 4.7582 0.0407 0.9339 1.1849 1.2160  
5 4.5540 0.0560 1.2843 1.4852 1.6117  
6 4.3586 -0.0586 -1.3447 -1.4745 -1.5962  
7 4.1716 -0.0516 -1.1835 -1.2605 -1.3096  
8 3.9926 -0.0426 -0.9770 -1.0274 -1.0310  
9 3.8213 -0.0213 -0.4879 -0.5127 -0.4906  
10 3.6573 0.0527 1.2091 1.2811 1.3358  
11 3.5004 -0.0004 -0.0084 -0.0091 -0.0085  
12 3.3502 -0.0002 -0.0039 -0.0042 -0.0040  
13 3.2064 -0.0064 -0.1472 -0.1660 -0.1568  
14 3.0688 0.0336 0.7702 0.8951 0.8842  
 
Influence Diagnostics:  
Row Cook'sDist Leverage DFFITS  
4 0.4281 0.3788 0.9496  
5 0.3722 0.2523 0.9363  
6 0.2199 0.1683 -0.7180  
7 0.1067 0.1184 -0.4799  
8 0.0559 0.0957 -0.3354  
9 0.0137 0.0943 -0.1583  
10 0.1007 0.1093 0.4680  
11 0.0000 0.1365 -0.0034  
12 0.0000 0.1724 -0.0018  
13 0.0038 0.2143 -0.0819  
14 0.1405 0.2597 0.5237  
 
95% Confidence: 
Row Predicted Regr. 5% Regr. 95% Pop.  5% Pop.  95%  
4 4.7582 4.6975 4.8189 4.6424 4.8740  
5 4.5540 4.5045 4.6036 4.4437 4.6644  
6 4.3586 4.3182 4.3991 4.2520 4.4652  
7 4.1716 4.1377 4.2055 4.0673 4.2759  
8 3.9926 3.9621 4.0231 3.8894 4.0958  
9 3.8213 3.7910 3.8516 3.7181 3.9244  
10 3.6573 3.6247 3.6899 3.5534 3.7612  
11 3.5004 3.4639 3.5368 3.3953 3.6055  
12 3.3502 3.3092 3.3911 3.2434 3.4569  
13 3.2064 3.1608 3.2521 3.0978 3.3151  
14 3.0688 3.0186 3.1191 2.9582 3.1795  
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