

# Kinetics of Quasiparticle Tunneling in a Pair of Superconducting Qubits



### **Matthew Shaw**

University of Southern California

### **Roman Lutchyn**

Joint Quantum Institute, University of Maryland

### **Per Delsing**

Chalmers University of Technology

#### Pierre Echternach

Jet Propulsion Laboratory, California Institute of Technology

Many thanks to:

Justin Schneiderman and Ben Palmer

March 11, 2008

This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Funding for this research was provided by a grant from the National Security Agency.







## **Experimental Setup**









- Qubits are based on the Single Cooper-pair box
- Two weakly coupled qubits, can be considered independent
- Multiplexed quantum capacitance readout scheme







# **Quasiparticle Tunneling**





- Low-temperature quasiparticles are not well understood
- Quasiparticle tunneling can be directly observed in the time domain
- QCR phase shift exhibits telegraph noise
- Odd-to-even and even-to-odd transition rates can be extracted independently
- Data can be understood in terms of a kinetic theory
- Understanding Nonequilibrium QP tunneling is essential for qubits







## **Dwell Time Extraction**





- Data record is 1s long, 10<sup>6</sup> points
- Filtered with Schmitt trigger
- Dwell times extracted and binned into histogram







# **Dwell Time Histograms**







Odd-to-even rate ~ 52 kHz at 18 mK

$$N_{odd}(t) \approx \frac{2^{4/3}}{\sqrt{3}} \frac{\Gamma_{oe}^{N}}{\left(\Gamma_{oe}^{N} t\right)^{1/3}} \exp\left(-3\left(\frac{\Gamma_{oe}^{N} t}{2}\right)^{2/3}\right)$$





Even-to-odd rate ~ 5 kHz at 18 mK at degeneracy point

$$N_{even}(t) = \Gamma_{eo} \exp(-\Gamma_{eo}t)$$



Odd-to-even dwell time distribution is non-Poissonian





## **Kinetic Theory**









$$\Gamma_{oe} = \frac{G_N}{e^2} \int_{-\infty}^{\infty} dE \frac{1}{2} \left( 1 - \frac{\Delta_I \Delta_L}{E(E + \delta E)} \right) g_L(E) g_I(E + \delta E) \left( 1 - f(E - \delta \mu_L) \right) f(E + \delta E - \delta \mu_I)$$

destructive interference  $\longrightarrow$   $|\langle n+1|H_T|n\rangle + \langle n+1|H_T|n+2\rangle|^2$ 



R. Lutchyn and L. Glazman, PRB 75, 184520 (2007)





## **Temperature Dependence**





$$\Delta_I = 2.5K$$

$$\Delta_L = 2.6K$$

$$n_{qp} = 7 \times 10^{-20} m^{-3}$$

- Model predicts qualitative features of the data
- Predicts sharp rate increase at low temperatures
- Destructive interference term is necessary
- Direct experimental verification of Lutchyn's model







### Conclusions



- Quasiparticle tunneling can be understood at low temperatures using a nonequilibrium kinetic theory
- Low-temperature tunneling can be suppressed using existing techniques
  - Island-lead gap engineering
  - Lead cooling with SIN junctions
  - Quasiparticle traps
- Problem contains some interesting physics



