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Experimental Setup

• Qubits are based on the Single Cooper-pair box
• Two weakly coupled qubits, can be considered independent
• Multiplexed quantum capacitance readout scheme



Quasiparticle Tunneling

• Low-temperature quasiparticles are not well understood
• Quasiparticle tunneling can be directly observed in the time domain
• QCR phase shift exhibits telegraph noiseQCR phase shift exhibits telegraph noise
• Odd-to-even and even-to-odd transition rates can be extracted independently
• Data can be understood in terms of a kinetic theory
• Understanding Nonequilibrium QP tunneling is essential for qubits



Dwell Time Extraction

• Data record is 1s long, 106 pointsg p
• Filtered with Schmitt trigger
• Dwell times extracted and binned into histogram



Dwell Time Histograms
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Odd-to-even dwell time distribution is non-Poissonian



Kinetic Theory
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Temperature Dependence
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• Model predicts qualitative features of the data
• Predicts sharp rate increase at low temperatures

Temperature (mK)

• Destructive interference term is necessary
• Direct experimental verification of Lutchyn’s model



Conclusions

• Quasiparticle tunneling can be understood at low temperatures using a  
nonequilibrium kinetic theory

L t t t li b d i i ti• Low-temperature tunneling can be suppressed using existing 
techniques

• Island-lead gap engineering
• Lead cooling with SIN junctionsg j
• Quasiparticle traps

• Problem contains some interesting physics


