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ABSTRACT 

A previous rigorous mathematical analysis of drift-diffusion equations was used to 
investigate collected charge in a simple reverse-biased p-n junction diode exposed to an 
ionization source that liberates carriers (electron-hole pairs) in a quasi-neutral region within the 
diode. Each of two simple models was found to agree with the more rigorous analysis when 
carrier liberation is sufficiently intense. One is the sensitive volume (SV) model, and the other 
was called “ambipolar diffusion with a cutoff” (ADC). The earlier rigorous analysis was worked 
out in detail only for a localized source, i.e., a point source of carrier liberation, so it was able to 
validate the applicability of each simple model only for that case. The present paper treats an 
arbitrary spatial distribution of carrier generation and concludes that the ADC model remains 
valid for this more general case, but the SV model does not. 
 
 
Key words: ADC model, ambipolar diffusion, ambipolar diffusion with a cutoff, charge 
collection, charge-collection efficiency, drift-diffusion, sensitive volume, SV model. 
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I. INTRODUCTION 

A previous analysis [1] investigated collected charge in a simple reverse-biased p-n 
junction diode exposed to an ionization source that liberates electron-hole pairs in a quasi-neutral 
region (QNR) within the diode, i.e., carrier liberation was at a location outside the junction 
depletion region (DR). The analysis was worked out in detail only for a localized source as 
shown in Fig. 1. The region labeled “carrier source” in the figure is a thin layer in which 
electron-hole pairs are liberated. The confinement of carrier liberation to within a thin layer is a 
hypothetical case but it is an academically interesting case because an academically interesting 
question is how the collected charge varies as the source is moved to different locations within 
the QNR. The answer given in [1] to this question included plots of charge-collection efficiency 
(defined to be the charge-collection rate divided by the rate that carriers are generated by the 
source) versus the source location XS measured from the DR boundary (DRB)1. Different plots 
were given for different input parameters (e.g., carrier-generation rate, doping density, carrier 
mobility, etc.) and the combined set of plots was sufficiently complete to represent virtually any 
set of input parameters via interpolations. It was concluded in [1] that, when the source strength 
(i.e., carrier-generation rate) is sufficiently large, the collected charge is correctly predicted by 
each of two simple models. One is the sensitive volume (SV) model, which states that there is 
some portion of the QNR, the SV,2 having the property that all charge liberated within this 
region is collected, while charge liberated outside is collected with an efficiency that is 
consistent with pure diffusion from the source to the SV boundary.  

 

p-
n 

ju
nc

tio
n 

D
R

V
QNR

ca
rr

ie
r 

so
ur

ce

XS L-XS

L

D
R

B

 
Figure 1.  Diode with a localized carrier-generation site. 

 
The other model was called “ambipolar diffusion with a cutoff” (designated ADC in this 

paper), which will be explained in the next paragraph. It was pointed out in [1] that the SV model 
is symbolic in the sense of producing correct predictions of collected charge (from a localized 
source) without explaining the relevant physics. Also, the SV model gives correct predictions 
only for a single localized source. If there are multiple sources at different locations, the presence 

                                                 
1 The DRB can be recognized by plotting electron and hole densities, together on the same graph, against a spatial 
coordinate. This will show a reasonably well-defined boundary (the DRB) separating a space-charge region (the 
DR) from a quasi-neutral region (the QNR). Example plots with the DRBs indicated can be found in [2].  
2 The DR is also an SV, and the portion of the QNR that becomes an SV when the source strength is sufficiently 
large is adjacent to the DR, so we could think of the QNR contribution as an extension of the SV. 



 

  3

of one source influences the amount of charge collected from another,3 which is a nonlinear 
effect and is not consistent with the SV model. It was also pointed out in [1] that the ADC model 
gives exactly the same predictions for single localized sources as the SV model, but the ADC 
model has a closer connection with charge-collection physics. This closer connection with actual 
physics suggests that the ADC model might be more versatile in the sense of being applicable to 
an arbitrary spatial distribution of carrier generation. However, this assertion was not verified in 
[1] because a single localized source was the only spatial distribution analyzed in detail. The 
objective of the present paper is to show that the above assertion is correct. 

 
A review of the ADC model rigorously derived in [1] is as follows. This model becomes 

exact4 in the limit of a large generation rate. It is only an approximation for a finite generation 
rate, but the approximation is accurate if the generation rate is sufficiently large. This model 
states that the collected charge can be calculated using three steps.  The first step calculates what 
the collected charge would be if charge collection were purely by diffusion. The second step 
multiplies this estimate by a factor that is intended to include the contribution from drift. The 
diffusion coefficients used in these calculations motivated the name “ambipolar diffusion 
current” for the estimate calculated at the end of the second step. The factor used in the second 
step is a simple function of diffusion coefficients and is intended to convert a calculated number 
into the actual current, but this simple factor does not always accomplish its intended purpose, so 
a third step is needed to correct an error when there is an error. The third step applies a cutoff 
when needed. The charge-collection efficiency corresponding to the current calculated at the end 
of the second step can sometimes exceed 100 percent. If it does not exceed 100 percent, this 
calculated value is the final estimate. If it does exceed 100 percent, a cutoff changes the value to 
100 percent, and this is the final estimate of the charge-collection efficiency. The ADC model 
can be used to derive the SV model when the source is localized. If the source is localized, the 
cutoff used in the ADC model applies when the source is sufficiently close to the DRB. In other 
words, the charge-collection efficiency is 100 percent when the source is within a certain 
distance from the DRB. The SV is defined to be the region contained within this distance from 
the DRB. The ADC model was derived in [1] for the special case of a localized source. As noted 
above, the objective of this paper is to establish the validity of the ADC model for an arbitrary 
spatial distribution of carrier generation by generalizing the derivation to include this more 
general case. 

 
The analysis given here is theoretical because it uses a number of simplifying physical 

approximations (e.g., carrier transport is described by the drift-diffusion equations, electron and 
hole mobilities are constants and related to diffusion coefficients by the Einstein relation, carrier 
recombination in the device interior can be neglected, and ideal boundary conditions are 
assumed). The analysis applies to a hypothetical device that is defined by these assumed 
governing equations. Conclusions are correct for this hypothetical device if the mathematical 
analysis is valid, so this theoretical investigation is a mathematical analysis applied to assumed 
                                                 
3 An example starts with a localized source outside the SV so that the charge-collection efficiency is less than 100 
percent. The addition of a second source of sufficient strength and sufficiently close to the DRB will make the 
charge-collection efficiency for both sources equal to 100 percent. 
4 In this context, “exact” refers to the mathematical treatment of the drift-diffusion equations. These equations are 
themselves only approximations for real devices (e.g., electron and hole mobilities were regarded as constants in 
these equations), so accuracy claims refer to a hypothetical device that is defined by the assumed governing 
equations. 
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equations. Real devices are more complex (e.g., mobilities are functions of a variety of physical 
parameters), and there is a question as to whether this hypothetical device will be a good 
representation of a real device. Comparisons between model predictions and computer 
simulation results in Section V show that the model is accurate for the examples that were 
investigated, but no finite number of examples will be exhaustive, and there will never be 
guarantees that this hypothetical device will be a good representation of some selected real 
device. The contention here is that there is little hope of understanding charge collection in a real 
device if we have not yet understood charge collection in this simpler hypothetical device. Thus, 
an understanding of the simpler problem is a prerequisite to understanding charge collection in a 
real device.  

 
Another limitation is that the analysis is steady-state, i.e., carrier generation is at a quasi-

constant rate (e.g., by photon irradiation). An important application of a charge-collection model 
is in the investigation of single-event effects in which carriers are liberated by a single particle 
(e.g., a heavy ion) traveling through the device. This application makes the high-injection limit 
more than just a mathematical curiosity because the density of liberated carriers can be orders of 
magnitude larger than the doping density. However, this is a highly transient problem, and the 
relevancy of a steady-state analysis is questionable. The contention here is that the transient 
problem is no easier to understand than the simpler steady-state problem, and an understanding 
of the steady-state problem is a prerequisite to understanding the more difficult transient 
problem.  
 

The analysis in [1] was specialized in the sense that carrier generation is confined to 
within a thin layer, but it was general in the sense that the source strength was arbitrary. 
However, the most interesting conclusions (e.g., that an SV is created) apply when the source has 
sufficient strength. Here we consider an arbitrary spatial distribution of carrier generation. The 
analysis is tractable only in the limiting case of a large carrier-generation rate,5 so conclusions 
are derived only for that case. However, this is also the most interesting case because nonlinear 
effects are fairly simple to quantify in this limit (nonlinear effects are represented by a simple 
cutoff in the limiting case). This simplicity leads to fairly simple approximations for cases in 
which the generation rate is finite but large enough for the approximations to apply.  
 

Two versions of the analysis answer the same questions using different levels of 
mathematical rigor. Physical insight is most easily obtained from the less-rigorous version in the 
main text (a qualitative discussion in Section II followed by a quantitative discussion in Section 
III) because the physical concepts are discussed without being distracted by mathematical 
technicalities. However, three postulates (physically reasonable but without obvious guarantees) 
will be taken for granted in Section III, because this version of the analysis is not comprehensive 
enough to prove these postulates. That is the job of the more rigorous analysis in Appendix A. In 
fact, verification of these postulates is the only vital role of the more-rigorous analysis, so 
readers that are willing to believe the postulates in Section III without proof will not have to 
study this appendix. 
 

                                                 
5 The analysis is also tractable in the opposite limit of a small generation rate, but the limit of a large generation rate 
is more relevant to studies of single-event effects.  
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II. QUALITATIVE DISCUSSION OF THE AR AND HRR 

A quantitative analysis will be easier to follow if some qualitative concepts are 
understood first. One of the examples in [1] is a good illustration. In this example, the location of 
the source in Fig. 1 was varied, and the charge-collection rate was calculated for each source 
location. This produced a plot of charge-collection efficiency (collection rate divided by creation 
rate) versus source location XS shown in Fig. 2(a) (the other parts of Fig. 2 are discussed later). 
The example shown is characterized by the minority-carrier diffusion coefficient Dm being two 
times the majority-carrier diffusion coefficient DM, and represents a p-type material in which the 
electron mobility is two (in this example) times the hole mobility. The labels distinguishing 
different curves in Fig. 2(a) refer to different source strengths. The source strength is denoted G 
and is the rate per area of electron-hole pair generation, so qG has the same dimensions as a 
current density and can be expressed in units of amperes per square centimeter (A/cm2). The 
remaining symbols appearing in these labels consist of the doping density N and the length L of 
the QNR. The lowest curve in Fig. 2(a) agrees with textbook predictions for low-injection 
conditions, but our interest is in the upper-most curve. This curve is virtually identical to the 
limiting case of an infinite source strength, while the curve next to it is fairly well approximated 
by this limit. Our interest is in the high-injection limit, which we will call the “large-G limit” and 
which is well represented by the upper-most curve in Fig. 2(a). Note that this curve shows the 
presence of an SV. The SV width in this example (the width of the horizontal section of the 
curve) is 2L/3. More generally, it was shown in [1] that the width is DmL/(Dm+DM). Minority-
carriers liberated within the SV are collected with a 100-percent efficiency in the large-G limit. 
The sloped portion of the upper curve in Fig. 2(a) implies that carriers liberated outside the SV 
are collected with an efficiency (in the large-G limit) that is consistent with pure diffusion from 
the source to the SV boundary. It will be seen in Section III that this is not a correct description 
of the actual charge-collection physics, but this model does correctly predict (in the large-G 
limit) the amount of collected charge from a localized source outside the SV; hence, the model is 
symbolic. 
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Figure 2. Charge-collection efficiency versus source location (a), and plots of carrier density for each of 

several source locations (b)–(d). 

 
As already stated, the charge-collection model in the previous paragraph is symbolic in 

the sense of agreeing with the upper curve in Fig. 2(a) without explaining the physics. We now 
explain the physics. First consider a source location near the left end of the SV. This example 
source location is indicated by XS/L = 0.25 in Fig. 2(b), which shows a qualitative plot of the 
excess carrier density versus the observation coordinate x within the QNR. Section III will 
explain why the carrier-density versus x curve is as shown in the figure. For this immediate 
discussion, the plot is regarded as a given. Note that there are two distinct regions in Fig. 2(b). 
The carrier density varies with x in the left region, but the excess carrier density is virtually zero 
in the right region. This partitioning of the QNR into distinct regions should not be confused 
with a partitioning into regions consisting of the SV and the region outside the SV. The latter 
partitioning is relevant to the location of the source, while the former partitioning is relevant to 
plots of carrier density versus x. If the source is within the SV, then a plot of carrier density 
versus x partitions into two regions as illustrated in Fig. 2(b). Also, partitioning the QNR into an 
SV and the region outside the SV is useful only for a localized source, while Section III will 
show that a partitioning into distinct regions illustrated for a localized source in Fig. 2(b) can be 
generalized to apply to an arbitrary spatial distribution of carrier generation. This partitioning 
was discovered in an earlier analysis [3], which assigned the name “ambipolar region” (AR) to 
the left region in Fig. 2(b), and the name “high-resistance region” (HRR) to the right region. The 
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first name was chosen because the carrier density satisfies the ambipolar diffusion equation in 
the left region. The second name was chosen because the electrical conductivity of the right 
region is comparable to the equilibrium conductivity, i.e., it is not significantly enhanced by 
excess carriers. The equilibrium QNR might not normally be thought of as “high resistance,” but 
it is high when compared to the AR. The large number of excess carriers in the AR gives this 
region a very large conductivity, i.e., a small resistance. Therefore, any voltage that is across the 
QNR (Section III derives an estimate for this voltage) is almost entirely across the HRR, with a 
much smaller voltage across the AR. A popular misconception is that there is a region (called a 
“funnel” in the literature) at the left side of the QNR that contains a strong electric field; a 
so-called “strong-field drift region.” 6  In reality, the left side of the QNR is the AR, and it has a 
weak electric field. The strong field is in the HRR on the right.  

 
As previously stated, there is a strong electric field at locations inside the HRR. With this 

fact taken as given for the present discussion, we can now see qualitatively the physical 
mechanisms that make the existence of an HRR possible. The strong electric field prevents 
minority carriers from entering the HRR from the left, and the ideal ohmic contact on the right 
side of the QNR (see Fig. 1) does not supply minority carriers; consequently, the HRR is nearly 
devoid of minority carriers. Majority carriers do enter the HRR from the left, but they move to 
the contact on the right without piling up inside the HRR because quasi-neutrality (together with 
a small number of minority carriers) keeps the majority-carrier density comparable to (or less 
than) the doping density within the HRR, which maintains the high resistance (“high” compared 
to the AR). The HRR is self sustaining; the low conductivity results in a strong electric field that 
maintains the low conductivity. This intuitive explanation makes the existence of an HRR 
credible, but it does not explain the conditions needed for an HRR to form and does not tell us 
how wide the HRR will be when it does form. Section III will answer these questions. A preview 
of an answer to come, for the special case of a localized source, is that an HRR forms (in the 
large-G limit) if the source is inside the SV. 

 
Let us now return to Fig. 2(b). The AR on the left contains a weak electric field, as 

needed for the carrier density to be described by the ambipolar diffusion equation. The HRR on 
the right contains a strong electric field. This electric field prevents minority carriers from 
entering the HRR, so their only way out of the QNR is at the DRB.7 This explains why the 
charge-collection efficiency is 100 percent when the source is at the location indicated in 
Fig. 2(b). Similarly, if the source is moved farther from the DRB, but is still within the SV (as in 
Fig. 2(c)), we see from Fig. 2(c) that the HRR is narrower, but there is still an HRR, and the 
charge-collection efficiency is 100 percent. However, if the source is moved outside the SV, we 
see from Fig. 2(d) that there is no HRR. We can now expect the charge-collection efficiency to 
be less than 100 percent. The fact that the charge-collection efficiency follows the curve in Fig. 
2(a) when the source is outside the SV will be explained in Section III. 
 
                                                 
6 This myth would not have started if investigators had paid more attention to the spacing between equipotential 
surfaces plotted by computer simulations, and to the fact that the electric field is weakest (not strongest) at locations 
where these plotted surfaces are farthest apart. 
7 The AR has a weak electric field, but this does not mean that the electric field has no significance. The electric 
field is weak because the conductivity is correspondingly large (due to a large carrier density), so the electric field 
still influences the current. The influence is whatever is needed to make the minority carriers move to the DRB 
when they are blocked at the other end by the HRR. 
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III. HEURISTIC DERIVATION OF THE ADC MODEL IN 1D 

Physical concepts are most easily understood from a one-dimensional (1D) version of the 
problem because simple illustrative plots make visualization easier. A comprehensive discussion 
of basic concepts is in this section, which considers the 1D problem. Once these concepts are 
understood, a 3D version discussed later in Section IV focuses on geometric issues because the 
physical concepts are the same as those discussed here. 
 

A. Governing Equations 

The quasi-neutral region is contained between two given points x1 and x2 on the x-axis, with 
the DRB at x1 and an ideal ohmic contact at x2. Under steady-state conditions, and with 
recombination neglected in the QNR interior, the well-known drift-diffusion equations (which 
can be found in any textbook on semiconductors) reduce to 

dx

xd
xnq

dx

xdn
DqxJ eee

)(
)(

)(
)(

                (1a) 

dx

xd
xpq

dx

xdp
DqxJ hhh

)(
)(

)(
)(

               (1b) 

)(
)(

),(
)(

xgq
dx

xJd
xgq

dx

xJd he                 (2) 

where Je(x) and Jh(x) are the electron and hole current densities, q is the elementary charge, De 
and Dh are the electron and hole diffusion coefficients (approximated as constants in this 
analysis), e and h are the electron and hole mobilities (also approximated as constants in this 
analysis),  (x) is the electrostatic potential, n(x) and p(x) are the electron and hole densities, and 
g(x) is the carrier-generation rate density. The sign convention for the currents is such that Jh is 
positive when holes move in the direction of increasing x, and Je is positive when electrons move 
in the direction of decreasing x. An additional equation is Poisson’s equation relating the second 
derivative of  to the carrier densities. A region is quasi-neutral when the solution to the 
complete set of equations can be approximated by the solution to the set of equations obtained by 
replacing Poisson’s equation with 

00 , nPnpPp  , 

where P is the excess carrier density (taken to be the same for electrons and holes), p0 is the 
equilibrium hole density, and n0 is the equilibrium electron density. We also use the Einstein 
relations De = VTe and Dh = VTh, where VT is the thermal voltage (sometimes written as KT/q 
and is about 0.026 V at room temperature). This allows us to write (1) as 

dx

d

V

pP

dx

dP

Dq

J

dx

d

V

nP

dx

dP

Dq

J

Th

h

Te

e  00 ,





          (3) 

which is a pair of simultaneous equations used to solve for both P and . For an n-type material, 
we can neglect p0 and set n0 equal to the doping density. For a p-type material, we can neglect n0 
and set p0 equal to the doping density. We can shorten the notation by including only one 
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equilibrium density, and still represent both doping types with the same set of equations, by 
letting Dm denote the diffusion coefficient for minority carriers, DM is the diffusion coefficient 
for majority carriers, and N denotes the doping density. We also define 

















typenfor

typepfor
,

typenfor

typepfor

e

h
M

h

e
m J

J
J

J

J
J         (4a) 

.
typenfor

typepfor












U                    (4b) 

Note that the subscript m to the J denotes minority-carrier current, while the subscript M denotes 
majority-carrier current. The sign convention was selected so that both doping types will be 
described by the same equations. With this sign convention, Jm(x) is positive at any point x at 
which minority carriers are moving towards the DRB, and JM(x) is positive at any point x at 
which majority carriers are moving away from the DRB. Substituting (4) into (2) and (3) gives 

dx

xdU

V

NxP

dx

xdP

Dq

xJ

dx

xdU

V

xP

dx

xdP

Dq

xJ

TM

M

Tm

m )()()()(
,

)()()()( 
    (5) 

)(
)(

),(
)(

xgq
dx

xJd
xgq

dx

xJd Mm  .               (6) 

We will define G by 
 


2

1
)(

x

x
dgqGq                       (7) 

 
so qG is the total rate of charge liberation. It has the same dimensions as a current density, i.e., 
acceptable units are A/cm2. Our interest is in cases in which G is large, so we look for 
approximations that become exact in the large-G limit. 
 

B. Derivation of the Charge-Collection Efficiency 

Adding the two equations in (5) gives 

 

.
)(

2

)(

2

)(

2

)(

dx

xdU

V

N

dx

xdP

Dq

xJ

Dq

xJ

TM

M

m

m                 (8) 

 

Unlike the two individual currents in (5), the particular combination given by (8) does not have P 
in the coefficient to dU/dx. In the large-G limit, P and its derivative become large, but the 
coefficient to dU/dx in (8) does not. This suggests that an approximation that becomes accurate 
in the large-G limit can be obtained by omitting the dU/dx term in (8). From the qualitative 
discussion in Section II, we can anticipate that omitting this term is correct when the point x is 
sufficiently close to the DRB because the point will be in the AR (a weak-field region). Omitting 
this term throughout the entire QNR may or may not give a correct result because there may or 



 

  10

may not be an HRR. The approach used here is to omit the term, find out what the implications 
are, and see where this takes us. With this term omitted, (8) reduces to 
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The electric field E, which is d/dx in general, is dU/dx for the p-type material, or dU/dx for 
the n-type, so the qualifier “if E can be neglected” is interpreted as “if dU/dx can be neglected in 
(8).” 
 

We now assume that the DR is reverse-biased. To produce a reverse-biasing condition, it 
is not enough that the power supply voltage have the correct polarity. The reason is that there can 
sometimes be a significant voltage across the QNR. The power supply must have enough voltage 
to supply the QNR voltage and still have enough left over to reverse-bias the DR. The required 
voltage will be estimated later. For now we take it as given that the DR is reverse-biased. We 
also specialize to the case in which all carrier liberation is in the QNR on the right side of the DR 
(see Fig. 1), i.e., carriers are not generated anywhere else within the device. With these 
assumptions, the DR blocks the majority-carrier current, i.e., JM(x1) = 0. The total current JT 
(defined to be Jm + JM) is constant in x and can be calculated from JT = Jm(x1) + JM(x1) = Jm(x1). 
Therefore, when (9) is evaluated at x = x1 (where we expect (9) to be accurate in the large-G limit 
even though it has unknown accuracy when evaluated at points further in the QNR), we can 
write the result as 

 

.
)(

2
1xxdx

xdP
DqJ mT



                 (10) 

 
The minority-carrier diffusion current is defined to be qDmdP/dx, so (10) states that the total 
current is twice the minority-carrier diffusion current evaluated at the DRB. This implies that the 
electric field becomes whatever is needed to make the minority-carrier drift current at the DRB 
equal to the minority-carrier diffusion current at the DRB. Another implication of (9) is obtained 
by differentiating while using (6) to get 
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where the ambipolar diffusion coefficient D* is defined by 
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Mm DDD
                     (12) 

 
Note that the coefficient D* that appears in (11), and is used to calculate the gradient of 

P, is different than the coefficient 2Dm that appears in (10) and relates the current to the gradient 
of P. Using terminology in [4], we would call the right side of (10), when P is calculated from 
(11), a “nonstandard diffusion current” because these coefficients are different. In contrast, 
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textbook treatments of low injection-levels would calculate the current by using the coefficient 
Dm (instead of 2Dm because drift is neglected) in (10), and would also use the same coefficient 
Dm (instead of D* because the carrier density satisfies the minority-carrier diffusion equation 
instead of the ambipolar diffusion equation under low-density conditions) in (11). Using 
terminology in [4], these textbook equations describe a standard diffusion current. The traditional 
interpretation of a “minority-carrier diffusion current” refers to these textbook equations, so to 
emphasize that different coefficients are used here, we will use different terminology. The phrase 
“ambipolar diffusion current” will refer to the right side of (10) when P satisfies (11). Alternate 
terminology that will also be used is “a nonstandard diffusion current,” which emphasizes the 
fact that the coefficient D* in (11) is different than the coefficient 2Dm in (10). 
 

Computer simulations have shown that the carrier density at the DRB can be much larger 
than the doping density when G is sufficiently large, even when the DR is reverse-biased. 
However, the carrier density is still much smaller at the DRB (when the DR is reverse-biased) 
than it is elsewhere within the QNR. Therefore, for the purpose of solving (11) for P, we can use 
P(x1) = 0. The excess density is also zero at the ideal ohmic contact, so P(x2) = 0. Solving (11) 
subject to these boundary conditions and substituting the result into (10), and using (12) to write 
the coefficient 2Dm/D* as 1 + Dm/DM, gives 
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      (13) 

 
The validity of (13) is conditional because it requires that the dU/dx term can be neglected in (8). 
A bound for the current that is unconditionally valid can be obtained by noting that the excess 
carrier density P is nonnegative, but it is zero at x2, which implies that dP/dx is less than or equal 
to zero when evaluated at x = x2. Using this together with P(x2) = 0 with the first equation in (5) 
gives Jm(x2)  0. Now use this result when integrating the first equation in (6) between x1 and x2, 
and use JT = Jm(x1), to get 
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In other words, the charge-collection rate cannot exceed the total carrier-generation rate. We can 
express (13) and (14) in terms of the charge-collection efficiency  defined by 
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We also define 
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so that (13) and (14) can be written as 
 

neglected) be can  (if* E                  (17) 
 

.1                          (18) 
 

The integral in the numerator in (16) cannot exceed the integral in the denominator, but 
they can be nearly equal if the carrier generation is sufficiently concentrated near the DRB. For 
example, if g() differs from zero only where   x1, the two integrals will be nearly equal. 
Because of the coefficient 1 + Dm/DM in (16), * will be greater than 1 when the integrals are 
nearly equal. This example is an extreme case in which carrier generation is confined to within a 
narrow region adjacent to the DRB and was selected for illustration. More generally, * will be 
greater than 1 if the “center of the carrier generation” (defined the same way as a center of mass 
except that the generation rate density g replaces a mass density) is sufficiently close to the DRB. 
This condition results in a contradiction between the estimate in (17) and the upper bound in 
(18). This contradiction implies that it was not valid to omit the dU/dx term in (8). This suggests 
that there is an HRR, which in turn suggests that  = 1. The heuristic analysis given here accepts 
these suggestions as a postulate, i.e., the postulate is: 
 

Postulate 1: If * > 1 then, in the large-G limit, there is an HRR, and  = 1. 
 
Based on the analysis given here, the postulate is reasonable but not absolutely certain. The more 
rigorous analysis in Appendix A confirms that this postulate is correct. Now suppose *  1 so 
we have no obvious contradiction. The fact that we are not aware of a contradiction from (17) 
does not imply that the conclusion (17) is correct, but we still postulate that: 
 

Postulate 2: If *  1 then, in the large-G limit, there is no HRR, and  = *. 
 
Again, based on the analysis given here, the postulate is reasonable but not absolutely certain. 
Again, the more rigorous analysis in Appendix A confirms that this postulate is correct. The final 
conclusion is that, in the large-G limit, the charge-collection efficiency  is given by 
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             (19) 

 
Note that * was calculated from the ambipolar diffusion current, which is the right side of (10) 
when P satisfies (11), but (19) includes a cutoff that sets  equal to 1 when * exceeds 1. This 
motivated the name “ambipolar diffusion with a cutoff” for the model in which  is calculated 
from (19). 
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C. Showing Consistency with the Symbolic Model 

We will first show that the literal model (the ADC model) produces the upper curve in 
Fig. 2(a), and then explain why the symbolic model (the SV model) is also consistent with this 
curve in spite of its loose connection with actual physics. 

 
A quantitative prediction of the upper curve in Fig. 2(a) is simple when using the literal 

model. For a localized source we have g() = G (  XS), where  (  XS) is the Dirac delta 
function with source location XS, which can be anywhere within the QNR in this analysis. 
Substituting this g into (16), and letting x1 = 0 so that XS is the distance from the DRB to the 
source, and x2 is the QNR length L, we find that (19) becomes 
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which agrees with the upper curve in Fig. 2(a). 
 

If we were not already aware of the literal model, a casual inspection of the upper curve 
in Fig. 2(a) would strongly suggest the symbolic model. Recall that the symbolic model 
discussed in Section I applies when the source is localized in the sense of having a specific 
location XS, which is the case represented in Fig. 2(a) and is the case considered here. Consider a 
source far from the DRB. In the symbolic model, this is interpreted to mean that the source is 
outside the SV illustrated in Fig. 2(a) (in the literal model, this is interpreted to mean that there is 
no HRR), so the source location is in the sloped portion of the curve. It was stated in Section I 
that the sloped portion of the upper curve in Fig. 2(a) implies that charge collection is consistent 
with pure diffusion from the source to the SV boundary. The meaning of “pure diffusion” in this 
statement is that the current is a standard diffusion current, and the meaning of “to the SV 
boundary” is that the SV boundary behaves as a sink for excess carriers. This is a symbolic 
model because the actual current is a nonstandard diffusion current8, and the actual sink is the 
DRB. The symbolic model will give a correct prediction of collected charge if the SV boundary 
location is selected so that a standard diffusion current to this artificial sink boundary is the same 
as the actual nonstandard diffusion current produced when the DRB is a sink. In other words, the 
SV boundary is an artificial boundary selected to make the symbolic model give correct 
predictions of collected charge. The symbolic model is not comprehensive enough to tell us 
where the SV boundary is, so a more literal model is needed to tell us where the SV boundary 
must be placed in order to make the symbolic model give correct predictions of collected charge.  
The collection efficiency for a standard current becomes 100 percent when the source location is 
moved to the charge-collecting sink, so the SV boundary location needed to make the symbolic 
model give correct predictions satisfies the condition that  = 1 when the source is at this 
location, and  varies linearly with source location when the source is further from the DRB. 

                                                 
8 The right side of (10) when P satisfies (11) is not a standard current because the coefficient 2Dm in (10) is not the 
same as the coefficient D* in (11). 
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The more literal model tells us, via (20), that the SV boundary location that satisfies this 
condition is at x = DmL/(Dm+DM). In summary, the SV boundary is an artificial boundary selected 
to make the symbolic model give correct predictions of collected charge, but a more literal model 
is needed to predict where the SV boundary must be placed in order to do this.  

 

D. Derivation of the HRR Width 

The estimate of the amount of collected charge, derived in Section III.B, does not require 
that we know how to calculate the width of the HRR when there is an HRR. However, the HRR 
width is still interesting, at least from an academic point of view. When an HRR is created, there 
is an AR on the left and an HRR on the right (in Fig. 2(b) for example). The demarcation 
between these regions will be called the AR boundary (ARB). The goal is to solve for the 
location of this boundary, denoted xARB. There is an HRR if and only if the generation function g 
has the property that * defined by (16) is greater than 1, so we consider the case in which this 
condition is satisfied. 
 

Anticipating that the AR on the left is a weak-field region suggests that (11) applies when 
the point of evaluation x is inside the AR. Also, with an HRR on the right, we expect a negligible 
excess carrier density in this region. The heuristic analysis given here accepts this as a postulate. 
That postulate is: 
 
Postulate 3: If *>1, then, in the large-G limit, there exists an interval adjacent to the DRB such 
that (11) applies at each x in this interval, and P(x) is negligibly small when x is outside this 
interval. 
 
The interval mentioned in this postulate is taken to be the definition of the AR, and “outside the 
interval” is taken to be the definition of the HRR. Based on the arguments given here, the 
postulate is reasonable but not absolutely certain. The more rigorous analysis in Appendix A 
confirms that this postulate is correct. The more rigorous analysis replaces the phrase “negligibly 
small” with a quantitative estimate of the carrier density in the HRR, but the implication of this 
estimate is that the excess carrier density is much smaller in the HRR than in the AR, even 
though the excess density in the HRR can be comparable to the doping density in the large-G 
limit. 
 

The analysis that used (10), (11), and (12) to derive (13) is invalid when there is an HRR 
because (11) does not apply when x is outside the AR. However, Postulate 3 implies that the 
analysis becomes valid if the electrode coordinate x2 is replaced by the ARB coordinate xARB. The 
result is (13) but with x2 replaced by xARB. Also, the case considered is described by * > 1 (so 
that there will be an HRR), which implies  = 1, i.e.,  JT is the total generation rate qG. 
Replacing JT with qG on the left side of (13), and replacing x2 with xARB on the right side of (13), 
the equation used to solve for xARB becomes 
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The point xARB has a physical interpretation. Recall that the electric field becomes 
whatever is needed to make the drift current become whatever is needed to make the total current 
equal to the nonstandard diffusion current, which is the right side of (10) when P satisfies (11). 
The diffusion current is (in turn) controlled by boundary conditions, not only at the DRB but also 
by the location of the other sink boundary (the boundary opposite the DRB), so the diffusion 
current depends on the location of the ARB. The left side of (21) is what the current is required 
to be, and it is the total generation rate. The right side is the nonstandard diffusion current when 
the other sink boundary is the ARB.  In other words, the point xARB is the location at which the 
other sink boundary (the ARB) must be placed in order to make the nonstandard diffusion 
current equal to the total carrier-generation rate. The point xARB is on the left of the boundary x2 
because this reduces the diffusion current compared to what the current would be if xARB = x2. 
This reduction is necessary because the latter current is too large (the charge-collection 
efficiency representing the latter current is *, which is greater than 1 and therefore is too large). 
The point xARB is on the left of x2 so that the total current does not exceed the total generation 
rate. 
 

Some of the above discussion of the ARB might be reminiscent of the discussion in 
Section III.C of the SV boundary. In both cases, the boundary location is what is needed to make 
some current satisfy some condition. An important distinction between the two cases is that the 
SV boundary is an artificial boundary because the location is selected to make the calculated 
current equal to the actual current when the calculated current is a fictitious standard diffusion 
current instead of the physically correct nonstandard diffusion current. In contrast, the ARB 
location makes the calculated current equal to the actual current when the calculated current is 
the physically correct nonstandard diffusion current.  Hence, the ARB is a physical boundary 
instead of an artificial boundary. It separates physically distinguishable regions; the AR and 
HRR. Also, the SV boundary is a useful (albeit, artificial) concept for a single localized source, 
but not for an arbitrary spatial distribution of carrier generation. In contrast, the ARB is a 
physically definable boundary for the general case. 
 

For the special case of a localized source, we can substitute g () = G ( – XS) into (21) 
and rearrange some terms to get 
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A necessary condition for this equation to be satisfied is that xARB > XS, because otherwise the 
integral will be zero. Observing this condition when evaluating the integral, the resulting 
equation can be solved for xARB. Taking x1 to be zero so that xARB and XS each refer to a distance 
from the DRB, the result can be expressed as 
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Note that (22) is consistent with the requirement that xARB > XS. However, another requirement is 
that the ARB be contained within the QNR, i.e., xARB  L. In order for the solution to (22) to 
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satisfy this condition, the source location XS must satisfy XS  DmL/(Dm + DM). This is consistent 
with what we already know; that a localized source must be inside the SV in order for an HRR to 
form. For a more general spatial distribution of carrier generation, the concept of an SV no 
longer applies, and it is necessary to use the more general equation (21) to solve for xARB. There 
will be a solution consistent with xARB < L (i.e., there will be an HRR) if g has the property that 
* defined by (16) is greater than 1. 
 

E. Voltage Needed to Reverse-Bias the DR 

The voltage across the QNR can be calculated by integrating (8) between x1 and x2 while 
using P(x1)  0 and P(x2) = 0 to get 
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         (23) 

 
Using the endpoint values Jm(x1) = JT = qG and JM(x1) = 0 when integrating (6) gives 
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and substituting this into (23) gives 
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We can shorten the notation by using the definition (16) of * to write this as 
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If we use (19) to evaluate  in (25) we will calculate a zero voltage (because  = *) 

when *  1 (i.e., when there is no HRR). Recall that a negligible electric field was assumed 
when deriving  = *, so it is not a surprise that we predict what we assumed when substituting 
 = * back into (25). To look at this more carefully, note that (25) does not require that we take 
a large-G limit to become exact, while (19) does. As G is made larger, (19) becomes more 
accurate, so the term *   becomes smaller (when *  1), but this quantity that is becoming 
smaller is multiplying a G that is becoming larger on the right side of (25). Therefore, when  
*  1 (so there is no HRR), it is not obvious from (25) whether we can regard U as large or 
small when compared to some absolute standard (e.g., one volt). However, it is clear that U 
given by (25) is much smaller when *  1 (so that   *) than it is when * > 1 (so that  
  1). In other words, even though it is not clear whether we can regard U as large or small 
(when compared to some absolute standard) when there is no HRR, it is clearly much smaller 
when there is no HRR than when there is an HRR. When there is an HRR is also when (25) 
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becomes useful because we do not have to try to figure out how to multiply a quantity that 
becomes small by another quantity that becomes large. To calculate U, we first use (16) to 
calculate *. If * > 1 then there is an HRR, so we use  = 1. We then calculate U by 
substituting these numbers into (25). Note that in order for the DR to be reverse-biased, as 
assumed throughout the analysis, the power supply that biases the diode must have enough 
voltage to supply the QNR voltage U, plus an additional amount of voltage that will appear as a 
bias voltage across the DR.  
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IV. HEURISTIC DERIVATION OF THE ADC MODEL IN 3D 

With physical concepts already discussed in previous sections, a three-dimensional (3D) 
version of the analysis becomes fairly obvious from the point of view of physical concepts. 
Therefore, physical discussions in this section are brief. Most of the attention here is on the 
mathematical techniques suitable for a 3D geometry. An example 3D device geometry is 
illustrated in Fig. 3. The surface S1 is the DRB, and the surface S2 is the electrode contact. All 
other boundary surfaces are reflective. It will be tacitly assumed throughout this section that the 
medium identified as a QNR in Fig. 3 really is a QNR, i.e., there are no charge layers adjacent to 
reflective boundaries of the type seen under the insulated and biased gate of a metal oxide 
semiconductor field-effect transistor (MOSFET). Boundary conditions satisfied by P are  
P( x


) = 0 when the point x


 is on the surface S2, P( x


)  0 when the point x


 is on the surface S1 

(given that the DR is reverse biased) and P satisfies reflective boundary conditions (the normal 
component of the gradient is zero) on the reflective boundaries. 
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Figure 3. An example 3D geometry shows the notation. The surface S1 is the DRB, and the surface S2 is the 
electrode contact to the QNR. All other boundary surfaces surrounding the QNR are reflective. The spatial 

distribution of carrier generation within the QNR is arbitrary.  

 

A. Governing Equations 

The 3D version of (7) is 
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Note that qG has different dimensions here than it had in the 1D analysis. In the 1D analysis, qG 
had the dimensions of a current density, and acceptable units were amperes per square 
centimeter. Here, it has the dimensions of a current and acceptable units are amperes. This is 
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convenient because our interest now is in terminal currents instead of current densities. The 
terminal currents Im and IM (for minority carrier and majority carrier, respectively) are defined by  
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The normal unit vector in these surface integrals is directed outward from the QNR because this 
is the customary convention when using Green’s theorem. The signs in front of the integrals 
were selected to produce a positive current. Minority carriers will be flowing towards the DRB 
from the QNR interior, which is in the direction of the outer-normal unit vector in the surface 

integral, but the direction of mJ


 is opposite to the direction of minority-carrier flow, so it is 

opposite to the direction of the normal unit vector; hence, a negative sign in front of the integral 
produces a positive current. Given a reverse-biasing condition we will have IM = 0, so 
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The 3D version of (6) is 
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which gives 
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with D* defined by (12). The 3D versions of (8) and (9) are 
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When E can be neglected, which is a good approximation at locations near the DRB, we can use 
(31) together with (27) and (28) to write IT as 
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Also, when E can be neglected, we can combine (31) with (29) to get 
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B. Derivation of the Charge-Collection Efficiency 

In order to continue with (32) and (33), it is helpful to define the function ( x


) by the 
boundary-value problem  
 

( x


) = 1 when x


 is on S1, ( x


) = 0 when x


 is on S2        (34a) 
 

0)(2  x


 in QNR interior                 (34b) 
 
with reflective boundary conditions always assumed on the reflective boundaries. Using (34a) 
together with the boundary conditions for P, and using the fact that both functions satisfy 
reflective boundary conditions on the reflective boundaries, we have 
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where the surface integrals on the right are over the closed surface containing the QNR. Green’s 
theorem applied to the right side gives  
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where we used (34b) to eliminate an integral on the right. When E can be neglected, we can use 
(33) with the above equation to get 
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Combining (35) with (32) and using (12) gives 
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We now define  and * by 
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so that (36) can be written as 
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neglected) be can  (if* E  .                (39) 
 
The two postulates in Section III.B give 
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Note that the 3D results consisting of (38) and (40) are analogous to the 1D results consisting of 
(16) and (19). The ( x


) that appears in (38) and is defined by (34) is the 3D version of the  

(x2-x)/(x2-x1) that appears in (16). 
 

C. An Example Geometry: The Isolated Disc 

An example 3D geometry considered here is good for illustration because it leads to a 
fairly simple analysis. It describes the case in which the DRB resembles a flat circular disc, and 
in which all other device structures are sufficiently far away from the disc so that the QNR below 
the DRB can be treated as having an effectively infinite extent. The geometry is shown in Fig. 4 
(the “generation cylinder” in the figure is for a later discussion and is not relevant to this 
discussion). The DR is the shaded region, and the DRB (a.k.a., the surface S1) is the lower 
boundary of this region. The DRB is a circular disc with radius rD. The portion of the upper 
horizontal line that is above the DR represents a surface that includes an electrical contact to the 
DR, but the remainder of this horizontal line represents a reflective surface. The medium below 
this line, excluding the DR, is the QNR. The QNR extends to an effectively infinite distance in 
the lateral directions and in the downward direction, so the QNR contact (a.k.a., the surface S2) is 
the infinite lower hemisphere. We will call this geometry the “isolated disc” geometry. Note that 
even with the infinite dimensions, there is still a finite spreading resistance between the DRB and 
the QNR contact, so these surfaces are not electrically isolated even though there is a large 
(effectively infinite) spatial separation. The spreading resistance for a sufficiently large spatial 
separation between S1 and S2 can be approximated by the spreading resistance for an infinite 
separation. The coordinate system is also shown in Fig. 4. The origin is at the disc center and the 
vertical coordinate z is positive at points within the QNR (below the disc). The radial coordinate 
r is (x2+y2)1/2 and measures distance from the vertical center line. 
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Figure 4. A more specific 3D geometry in which the DRB resembles an isolated disc.  

 
The solution to (34) for this geometry is the electrostatic potential produced by a 

conducting disc at unit potential relative to the infinite distance at zero potential. The solution 
can be found in any textbook that treats electrostatic boundary-value problems, and one way to 
express (x, y, z) as a function of the coordinates is with the equation 

 

  .disc) (isolated),,(
2

tan),,(
2

sin 222222
Drzyxzzyxyx 






 






 


  (41) 

 
This format for expressing the solution has an advantage over an alternate (and more 
cumbersome) format that expresses (x, y, z) explicitly in terms of the coordinates. The 
advantage is that the geometry of constant- surfaces can be seen by inspection. To be more 
explicit, select a positive v that is less than or equal to 1. We can recognize the set of points (x, y, 
z) satisfying (x, y, z) = v because these are the points on the ellipsoid given by 
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An example of a constant- surface is shown in Fig. 4. 
 

Fig. 2(a) plotted charge-collection efficiency versus source location for the 1D problem 
when the source is localized to a constant-x plane. This is the 1D version of a point source. In 
3D, we can consider a true point source and identify those source locations that will produce a 
100-percent collection efficiency in the large-G limit. In other words, we can determine the 
location of the SV boundary (but remember that the concept of an SV is useful only for point 
sources). We will do that now for the isolated disc geometry. 
 

When carrier generation is produced by a point source with source coordinates (XS, YS, 
ZS), (38) reduces to 
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The collection efficiency is 100 percent when * is greater than or equal to 1, and the SV 
boundary is the set of points (XS, YS, ZS) for which the right side of (43) is equal to 1. Therefore, 
SV boundary points are the points (x, y, z) satisfying 
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In other words, the SV boundary is the constant- surface obtained from (42) when  
v = DM/(Dm+DM). The equation for this surface is  
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For example, if Dm = 2DM, then the SV boundary is the ellipsoid that intersects the axis of 
symmetry at a depth (measured from the DRB) of about 1.73  rD. 
 

D. Voltage Needed to Reverse-Bias the DR 

The QNR voltage U, i.e., the voltage between S1 and S2, can also be derived in 3D. This 
is the minimum voltage that a power supply must have in order to reverse-bias the DR. To 
determine the QNR voltage, given that the DR is reversed-biased so that the analysis given here 
is valid, we go back to (30). The 1D analysis prepared us for the fact that approximations that 
will be used will not be useful for estimating U when there is no HRR. The reason is that the 
approximations were derived by neglecting U in (30), so substituting these approximations 
back into (30) just brings us back to U = 0. However, a useful estimate can be obtained when 
there is an HRR, which is also the condition that produces the largest voltage. We start with an 
exact analysis and then use an approximation in the last step. For this purpose, we define P* by 
the boundary-value problem 
 

P*( x


) = 0 when x


 is on S1, P*( x


) = 0 when x


 is on S2        (45a) 
 

)(
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1
)(*2 xg

D
xP
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  in QNR interior.              (45b) 

 
Note that approximations used for P when E can be neglected are the same equations that define 
P*. The difference between P and P* is that these equations are exact for P* (by definition) 
regardless of whether there is an HRR. A result that will be needed later is obtained by using the 
same steps that produced (35) to get  
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which is exact regardless of whether there is an HRR. Now use (45b) with (29) and (30) to get 
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i.e., the square bracket satisfies Laplace’s equation. Setting the square bracket equal to the 
solution to Laplace’s equation that has the same boundary values as the square bracket gives 
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where U1 is the boundary value of U on S1, and U2 is the boundary value of U on S2. Substituting 
this equation into (30) and using U  U2U1 gives 
 

.)(
2

)(*
2

)(

2

)(
x

V

UN
xP

Dq

xJ

Dq

xJ

TM

M

m

m 




  

 
Integrating this equation on the surface S1 while using (27), (28), and (46), and solving for U 
gives 
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Using (37) and (38), we can write this as 
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Note that the 3D result (47) is analogous to the 1D result (25). The reciprocal of the 

surface integral in (47), with ( x


) defined by (34), is the 3D version of the L that appears in 
(25). This surface integral can be related to the electrical resistance through an ohmic medium 
having the same geometry as the QNR and with electrical contacts at S1 and S2. If we take the 
conductivity to be the equilibrium (i.e., without excess carriers) conductivity of the QNR, the 
resistance will have a physical interpretation, at least in a hypothetical measurement. In this 
hypothetical measurement, we imagine that it is somehow possible to replace the DRB with an 
ideal ohmic contact at S1, so the electrical resistance of the QNR between S1 and S2 can be 
measured with the carrier-generation source turned off. When the source is turned off, a 
homogeneous QNR, surrounded by ideal contacts and reflective boundaries, will not contain 
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excess carriers, even with a voltage applied to the contacts so that the resistance can be 
measured. Therefore, the measured resistance will be the equilibrium resistance denoted REQ. To 
relate the surface integral in (47) to REQ, let v denote the voltage applied to S1 (with S2 grounded) 
during the resistance measurement. The electrostatic potential within the QNR during this 
measurement will satisfy Laplace’s equation, and the solution to Laplace’s equation that satisfies 
the same boundary conditions as this electrostatic potential is v( x


). Therefore, the electric field 

is v

( x


). The equilibrium conductivity is qMN, which is the same as qDMN/VT, so the 

current density produced during this resistance measurement is given by  

)(xJ


 = TM VxNvqD /)(


 . Therefore, the terminal current I produced during this resistance 
measurement is given by 
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Combining this with REQ = v/I gives 
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Sometimes the capacitance between two geometric surfaces is easier to find in textbooks 

than the spreading resistance (e.g., the capacitance of an isolated conducting disc relative to a 
surface that is effectively infinitely far away can be found in any textbook on electromagnetic 
theory), in which case it may be more convenient to express the surface integral in terms of a 
capacitance. An alternative to (48a), which is equivalent to (48a), is 
 


C

Sd
S

 1





                     (48b) 

 
where C is the capacitance between S1 and S2 when the QNR is replaced by a dielectric with a 
permittivity constant . The value assigned to  doesn’t matter, because it divides out of the right 
side of (48b) as long as the  in the denominator is the same  used to calculate C, so we have the 
option of using the free-space permittivity constant for  . For example, suppose the DRB 
resembles a flat circular disc of radius r, the electrode contact has an effectively infinite lateral 
extent, and the depth of the electrode relative to the DRB is much larger than r. The capacitance 
is the capacitance of an isolated flat conducting disc, except that we have to divide by 2 because 
we want the capacitance between the disc and the lower infinite hemisphere instead of the 
capacitance between the disc and the complete infinite sphere. The latter capacitance can be 
found in standard textbooks and is 8r. Dividing by 2 gives C/ = 4r for this example.  
 

Substituting (48) into (47) gives us two equivalent alternatives to (47), which are 
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In order to see the similarity between the 1D result (25) and the 3D result (49), we must 

remember that qG has the units of current density in the 1D problem, and it has the units of 
current in the 3D problem. The similarity becomes clear if we let A be the cross-sectional area of 
the 1D device and write (25) as 
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where AG in the 1D problem is the same as G in the 3D problem. With this interpretation of the 
symbolism, it is evident that the above equation is the 1D version of (49b). 
 

As explained in the 1D analysis in Section III.E, the estimate (47), or either of the 
equivalent alternates in (49), is useful when there is an HRR (the condition that produces the 
largest voltage), in which case * calculated from (38) will be greater than 1, and we set  equal 
to 1. 
 

E. Terminology Clarification 

Before ending this section, some potential confusion regarding terminology should be 
clarified. The function ( x


) was called a “charge-collection efficiency function” in some earlier 

papers, e.g., in [4] and [5]. This might be confusing because we are now calling  the charge-
collection efficiency. To clarify this, we first consider the motive for the earlier terminology. The 
standard diffusion current corresponding to P* defined by (45) is the left side of (46), because 
this contains the same diffusion coefficient that is in (45). We see from (46) that ( x


) is a 

weight factor that reflects the effect that the location of ionization has on collected charge, when 
“collected charge” is governed by the standard diffusion current (a hypothetical case). It 
measures the relative importance of an increment of charge liberated at one location compared to 
the same amount of charge liberated at another location. To be more explicit, ( x


) is the 

fraction of charge liberated at a point x


 that is collected, i.e., it is the charge-collection 
efficiency (when the current is a standard diffusion current) for a point source located at x


. We 

now see two distinctions between  and ( x


). The first distinction is that  refers to the actual 
current while ( x


) refers to a standard diffusion current. The second distinction is that the 

charge-collection efficiency  is the fraction of the total liberated charge (integrated over the 
source distribution) that is collected. In contrast, the charge-collection efficiency function ( x


) 

is associated with a point within the QNR. At a given point x


 within the QNR, ( x


) is the 
charge-collection efficiency (for the standard diffusion current) for a point source at that 
location. 
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V. COMPARISONS WITH COMPUTER SIMULATION RESULTS 

Because the analytical model presented here was derived from assumed equations 
obtained from simplifying physical approximations, there is a question as to whether the model 
has any ability to represent a more realistic case. As an attempt to answer this question, we 
compare model predictions to the predictions obtained from computer simulations that give a 
more realistic representation of a device. The simulations were performed by the PISCES code 
[6], which solves the drift-diffusion equations subject to bandgap narrowing, Shockley-Read-
Hall and Auger recombination, and with mobilities depending on the doping density and on the 
electric field. These comparisons will reveal both strengths and weaknesses of the analytical 
model. 
 

In all examples listed here, the diode is either n+-p or p+-n, with the heavily doped region 
being a thin layer with a peak doping density of 1020/cm3, and the lightly doped region (which 
contains the QNR of interest) having a uniform doping density of 8  1014/cm3. The Shockley-
Read-Hall lifetime depends on the doping density and is shorter in more heavily doped regions. 
The code allows the user to input a low-concentration lifetime, and then the code modifies this 
lifetime to account for doping density. The input lifetime was arbitrarily chosen to be 1 s. When 
modified for the 8  1014/cm3 QNR doping, the lifetime used by the code became 0.984 s, 
which is very close to the input value. Mobilities are calculated by the code by starting with low-
field mobilities, and then they are modified by the code to include the effect of the electric field. 
The simulation results discussed here were first presented in [3], which listed generic default 
values for the mobilities given by e = 1000 cm2/V-sec and h = 500 cm2/V-sec. Using D = VT, 
the low-field diffusion coefficients become De = 26 cm2/sec and Dh = 13 cm2/sec. These 
diffusion coefficients will be used as inputs when obtaining predictions from the analytical 
model that will be compared to simulation results. 
 

A. First Example: A 1D n+-p Diode with Uniform g 

The first example is a 1D diode with a spatially uniform carrier-generation rate function 
g. The demarcation between n-type and p-type will be called the metallurgical junction (MJ), and 
the DRB is slightly to the right (in the orientation shown in Fig. 1) of the MJ. The MJ is at a 
fixed location in the simulation (in contrast, the DRB location depends on bias voltage and 
carrier-generation strength). The device is described by Fig. 1 except that g is uniform between 
the MJ and the QNR contact, so carrier liberation is occurring not only within the QNR but also 
within the DR. The distance between the MJ and the QNR contact is 5 m, and  
g = 1.25  1025/cm3-sec at all points between the MJ and the QNR contact. With G defined by 
(7), except that the integration limits are changed so the integration is from the MJ to the QNR 
contact, in order to include the DR, we find that this g produces a total charge liberation rate qG, 
which includes the contribution from the DR, of 1000 A/cm2. The simulation found that this 
charge is collected with a 100-percent efficiency, i.e., the device current is 1000 A/cm2, even 
when the biasing voltage at the device terminals is 0.4 V with a forward-biasing polarity. Any 
voltage greater than –0.4 V (the negative sign indicates a forward-bias polarity) produces a 100-
percent charge-collection efficiency. The simulation also showed that when the power supply 
voltage is +1 V (a reverse-biasing polarity), the DR is still forward-biased. The QNR voltage is 
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1.62 V, while the power supply only provides 1 V, implying 0.62 V of forward-biasing across 
the DR9 (incidentally, the DRB is about 0.4 m from the MJ in this example). In spite of this 
forward-biasing of the DR, the charge-collection efficiency is still 100 percent. 

 
A weakness of the analytical model is that it reaches no conclusions when the DR is 

forward-biased (the derivation of this model was based on a reversed-biased DR), and we see 
from the simulation result that such cases can sometimes be encountered even when the power 
supply has a reverse-biasing polarity. Substituting numerical inputs from this example into (25), 
with * calculated from (16) and  calculated from (19), we estimate that the power supply 
voltage must be at least 1.95 V to reverse-bias the DR, and the analytical model will not reach 
any conclusions unless this biasing voltage is provided. However, the model does at least reach 
the correct conclusion under the reverse-biasing condition for which it was derived. When g is 
uniform, (16) gives  
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For a p-type QNR, we have Dm/DM = De/Dh, which makes * greater than 1, which implies that 
 = 1, so all charge liberated within the QNR is collected. All charge liberated within the DR is 
also collected, so the model correctly predicts a 100-percent collection efficiency under reverse-
biasing conditions. Additional work is needed to generalize the analytical model so that it is able 
to reach conclusions under more general biasing conditions. 
 

The derivation of the analytical model is limited to high-injection conditions (a.k.a., the 
large-G limit) and the generation rate used in the simulation was chosen to be large enough to 
produce such conditions. Another simulation considered the same case just described except that 
g was reduced by two orders of magnitude. Results from that simulation found that the device 
current is not adequately represented by approximations derived in the large-G limit. Instead, a 
better approximation is obtained from the opposite limit of low-injection conditions treated in 
elementary textbooks. The transition from low- to high-injection occurs when qG is varied 
between 10 and 1000 A/cm2, with the smaller value producing low-injection conditions and the 
larger value producing high-injection conditions. It is interesting that this assertion, which was 
originally discovered by performing simulations, can also be predicted from Fig. 2(a). This 
figure applies to a specific ratio Dm/DM, but other figures in [1] indicate a universal (i.e., 
independent of Dm/DM) trend; that the qG = 100 qDmN/L curve is well approximated by the 
large-G limit, while the qG = 1 qDmN/L curve is fairly well approximated by the small-G limit. 
Using numerical inputs from the example considered here, we find that the qG = 10 A/cm2 
example is also a qG  1 qDmN/L example, and the qG = 1000 A/cm2 example is also a  
qG  100 qDmN/L example. We can therefore anticipate that the qG = 10 A/cm2 example can be 

                                                 
9 The DR has an equilibrium voltage (a.k.a., built-in voltage) of about 0.87 V for the doping levels in this example. 
About 0.62 V was removed from the DR and given to the QNR, where it was added to the 1 V from the power 
supply to produce 1.62 V across the QNR. The DR is now left with 0.87  0.62 = 0.25 V. This voltage is 0.62 V less 
than the equilibrium voltage, so the DR is 0.62 V forward-biased. This example shows that the DR can be forward-
biased even when the power supply has a reverse-biasing polarity, if the power supply voltage is not large enough to 
force a reverse-biasing condition. 
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approximated by the small-G limit, while the qG = 1000 A/cm2 example can be approximated by 
the large-G limit, which is consistent with simulation results. 
 

B. Second Example: A 1D n+-p Diode with Localized Source near the QNR 
Center 

The second example is just like the first except that carrier generation is changed from 
being spatially uniform to being a localized source midway between the MJ and the QNR 
contact. The total generation rate qG is still 1000 A/cm2, as in the first example. The simulation 
found the device current in this example to be virtually identical to the current in the first 
example for any biasing condition. The analytical model cannot predict this observation for 
arbitrary bias conditions, but it can predict this observation under the reverse-biasing condition 
for which it was derived. If the source was at the exact center of the QNR, * given by (16) 
would be the same for this source as it is for a uniform g, where we already concluded that  
* > 1. The source is actually a little to the left of this midpoint (it is midway between the MJ 
and contact, with the MJ slightly to the left of the DRB), which increases *, so we still have  
* > 1. The analytical model predicts a 100-percent collection efficiency for this example, the 
same as for the first example, so the analytical prediction is consistent with simulation results 
showing that the two cases are indistinguishable. 
 

C. Third Example: A 1D n+-p Diode with Localized Source near the Contact 

The third example is just like the first two except that carrier generation is now from a 
localized source that is 1 m from the QNR contact. The total generation rate qG is still 
1000 A/cm2, as in the first two examples. The simulation predicted the terminal current to be  
740 A/cm2 when the power supply voltage is 1 V with a reverse-biasing polarity. This is the first 
example in which the collection efficiency is less than 100 percent. 

 
To obtain a prediction from the analytical model, we need to know the dimensions of the 

QNR and the location of the source relative to the DRB. The DRB location was not recorded 
when performing this simulation, but a rough estimate will do because the model prediction is 
not extremely sensitive to this estimate. A rough estimate of the DR width at a 1-V biasing 
voltage is 1 m. The length L of the QNR is then 4 m, and the distance XS from the source to 
the DRB is 3 m. Substituting these numbers into (20) gives a model prediction of  = 0.75. 
Note that this is less than 1, so we expect no HRR, and we therefore anticipate that the applied 
reverse-biasing voltage actually does reverse-bias the DR (the simulation confirms this). 
Therefore, the model prediction is expected to be applicable. The predicted current associated 
with this  is 750 A/cm2. This is very close to the simulation result of 740 A/cm2. 
 

D. Fourth Example: A 1D p+-n Diode with Uniform g 

This example is the same as the first example except that doping types are interchanged, 
so Dm/DM is now ½ instead of 2. The polarity of the power supply is reversed, so it still supplies 
1 V with a reverse-biasing polarity. The simulation predicted the terminal current to be  
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791 A/cm2. To obtain a prediction from the analytical model, we start with (50) to get * = 0.75. 
Note that this is less than 1, so we expect no HRR, and we therefore anticipate that the applied 
reverse-biasing voltage actually does reverse-bias the DR (the simulation confirms this). 
Therefore, the model prediction is expected to be applicable. We therefore use  = *, so  = 
0.75. However, this applies only to the carriers liberated in the QNR. The carriers liberated in the 
DR are collected with a 100-percent efficiency. The simulation found the DR width to be 
1.1 m, producing a QNR length of 3.9 m. Applying a 75-percent collection efficiency to the 
carriers liberated in the 3.9-m region, and a 100-percent collection efficiency to the carriers 
liberated in the 1.1-m region, produces a net collection of 80.5 percent of the total generation 
rate. The current is predicted to be 805 A/cm2, which is very close to the simulation result of  
791 A/cm2. 
 

E. Fifth Example: A 3D n+-p Diode with a Custom g 

The 3D device in this example was constructed by starting with a cylinder with a 50-m 
radius, with a 50-m height and containing a p-type material. A thin layer of n+-type material 
(with an electrical contact) that extends to a 5-m radius was added at the top end of the 
cylinder, and the remainder of the cylinder top is reflective. The bottom end of the cylinder is the 
electrical contact to the p-type material, and the vertical wall of the cylinder is reflective. The 
cylinder dimensions were chosen to be large so that the geometry will mimic the isolated disc 
shown in Fig. 4. The spatial distribution of carrier generation was an arbitrary choice, selected 
for no particular reason, and is confined to a smaller cylinder having the same radius as the  
n+-layer, i.e., the same radius as the MJ. This smaller cylinder where carriers are generated is the 
“generation cylinder” in Fig. 4. In this example, L = rD = 5 m.  Carrier generation is spatially 
uniform within the cylinder and is given by g = 6.25  1024/cm3-sec. This number was selected 
so that the surface-average current density through the MJ (terminal current divided by MJ area) 
will be 1000 A/cm2 when the charge-collection efficiency is 100 percent. This is the same 
current density produced in the previous 1D examples (when the collection efficiency is 100 
percent) for which it was found that the carrier generation was strong enough to produce high-
injection conditions. 
 

The power supply voltage was 1 V with a reverse-biasing polarity. As with the first 
example, the simulation found that the DR is actually forward-biased, but the charge-collection 
efficiency was 100 percent in spite of this DR bias. The charge-collection efficiency will also be 
100 percent under the reverse-biasing condition for which the analytical model was derived, so 
to show agreement with the analytical model we merely have to show that the model predicts a 
100-percent collection efficiency. This is done by showing that * defined by (38) is greater than 
or equal to 1. 

 
It will not be necessary to accurately calculate the integrals in (38) because a simple 

inequality will be enough to reach the conclusion that * > 1. An example of a constant- 
contour is shown in Fig. 4. These contours are ellipsoidal surfaces, and the one that intersects the 
generation cylinder at its lower end (i.e., at the point x =0, y = rD and z = L) will completely 
enclose the cylinder. All constant- contours contained within this contour have larger values of 
, so if (x, y, z) is any point in the interior of the generation cylinder we will have (x, y, z) > 
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(0, rD, L). But L = rD in this example so (x, y, z) > (0, rD, rD). Using this inequality together 
with Dm = 2DM in (38) gives * > 3(0, rD, rD). Using (41) we find that (0, rD, rD) satisfies  
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which can be solved for (0, rD, rD) to give (0, rD, rD) = 0.424. Using this with  
* > 3(0, rD, rD) gives * > 1.27, so the analytical model agrees with the simulation prediction 
that the collection efficiency is 100 percent. 
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APPENDIX A: A MORE RIGOROUS DERIVATION  
OF THE ADC MODEL 

The pair of equations in (5) is a set of simultaneous equations used to solve for both P 
and U. We can eliminate U and obtain an equation containing P alone by multiplying the first 
equation in (5) by P+N, multiply the second equation by P, and add the resulting equations. This 
gives 
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Boundary conditions that are included from the start were explained in the main text and are 
 

.0)(,0)( 12  xJxP M                  (A2) 
 
Note that the second condition listed in (A2) makes JM(x) a known function of x by integrating 
(6). Similarly, if Jm(x1) is a known quantity, then Jm(x) becomes a known function of x. If Jm(x1) 
is not a known quantity, then Jm(x) becomes a known function of x plus an unknown constant. A 
complete solution to (A1) and (A2) can be obtained using either of two approaches. One 
approach regards the boundary value P(x1) as given and solves for Jm(x1). The other approach 
regards Jm(x1) as given (i.e., Jm(x) is a known function of x) and solves for P(x1). If the given 
information is a statement about P(x1) instead of Jm(x1), we can still follow the second approach 
that solves for P(x1) in terms of Jm(x1), because this relation can then be inverted to solve for 
Jm(x1) in terms of the given P(x1). We follow that approach here, i.e., we proceed with the 
analysis as if Jm(x1) were known, even though the ultimate goal is to solve for Jm(x1). As in the 
main text, we use Jm(x1) = qG, with G defined by (7), so specifying (or solving for) Jm(x1) is 
equivalent to specifying (or solving for) the charge-collection efficiency . 
 

The same steps that produced (24) in the main text give 
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It is convenient to define H(x) by 
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We define H(x1) by taking the limit. Also, by comparing (A4) to (16) we find an expression for 
H(x2). The results are 
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.*)(,0)( 21  xHxH                  (A5) 
 
Another property of H can be seen by using (A4), together with the fact that g is nonnegative, to 
show that the derivative of H is nonnegative, so H is increasing. These steps also show that H(x) 
is strictly increasing (the derivative is positive) at any point x in the open interval (x1, x2), having 
the property that there exists an x between x1 and x such that g(x) > 0. It is also easy to show 
from (A4) that H satisfies 
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Combining (A6) with (24), (A3), and (A1) gives 
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We now explain the meaning of the “large-G limit.” The shape of the function g(x) is 

held fixed. The function is made large by multiplying it by a large scale factor. This is done by 
selecting some normalized function, denoted gnorm(x), that has the desired shape. The 
normalization condition is arbitrary but is held fixed, i.e., the function gnorm(x) is the same 
function throughout the analysis. We then select a positive  and let g(x) = gnorm(x)/ . The “large-
G limit” of any quantity is obtained by taking the limit as  approaches zero on the positive side. 
Note that the function H given by (A4) does not depend on   because the scale factors divide out 
on the right side of (A4). Also, the independent parameter  will be held fixed when taking this 
limit, so it will not depend on . Similarly, the doping density and diffusion coefficients will be 
held fixed when taking this limit. The G that appears in (A7) is defined by (7) in the main text, 
and it does depend on . It is given by G = Gnorm/, where Gnorm is the integral of gnorm(x). Also, 
the solution P to (A7) will depend on . The notation should show this dependence because we 
want to investigate the limiting behavior of the solution, so the solution will be denoted P (x). 
With these replacements, (A7) becomes  
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Information about the limiting behavior of P can be obtained by investigating the limiting 
behavior of  defined by 

.)()( xPx                         (A9) 

Substituting (A9) into (A8) gives 
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Let  (x) denote  (x) when  equals zero. It is tempting to solve for  (x) by solving the equation 
that (A10) becomes when  equals zero, which is 
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The boundary condition is 
 

.0)( 2 x                      (A11b) 
 
The problem with this approach is that solutions to (A11) are not unique, particularly if the 
derivative d (x)/dx is allowed to be discontinuous.10 Because solutions to (A11) are not unique, 
we cannot simply define  (x) to be “the” solution to (A11). Instead, we have to define  (x) as 
the limit of  (x). However, it is evident from (A11) that any point x in the open interval (x1, x2) 
satisfying  (x) > 0 is also a point where11 
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This analysis does not solve carrier transport equations on the left side of the DRB in 

Fig. 1, so boundary conditions at the DRB must be given in order to have a complete set of 
equations. A boundary condition assumed here is motivated by computer simulations which 
show that, while the excess carrier density is much smaller at the DRB than at other locations in 
the QNR interior, the excess density at the DRB can still be much greater than the doping density 
when carrier generation is sufficiently intense, and the excess density at the DRB increases with 
an increasing carrier-generation rate. We interpret this to mean that  (x1) is not zero. It is small 
compared to  (x) at some interior points, and  (x1) will be approximated as being zero in some 
selected equations that will follow, but it is not exactly zero. This means that there is some 
interval (x1, xc) for which (A12) applies. Integrating (A12) from x1 to any point x contained in 
this interval gives 

                                                 
10 The limit of a sequence of functions, which is the interpretation of  (x), often has a discontinuous derivative. 
Such a discontinuity is allowed by (A11) if it occurs at a point x at which  (x) = 0. Therefore, we should be 
prepared for the possibility that the derivative could be discontinuous. 
11 Mathematicians will complain that in order to establish (A12) we must first answer some questions, such as 
whether the derivative of the limit is equal to the limit of the derivative, and the question as to whether each of these 
quantities even exists. A more rigorous analysis was worked out by this author to address these issues but is not 
included here. The conclusion from that analysis is that (A12) is correct.  
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This applies at any point x such that the right side is positive. 
 

Recall that we can regard  as given (but it was shown in the main text that  must be 
less than or equal to 1) with  (x1) the quantity to be solved, or vice versa. Some information 
regarding  (x1) is available (explained later) so the goal here is to use (A13), together with  
  1, to solve for  in terms of  (x1). To solve for  it is necessary to also utilize the fact that  
 (x2) = 0. Different steps are used to utilize this fact for different cases. There are two such cases 
and they are discussed separately below. 
 

A1. The First Case 

The first case considered is that in which g(x) and  (x1) have the property that H(x) 
defined by (A4) satisfies 
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Using the fact that   1, it is easy to show that (A14) implies that the right side of (A13) is 
negative when evaluated at x = x2. The right side of (A13) is a continuous function of x, and it is 
positive when x is sufficiently close to x1, so there is some point in the open interval (x1, x2), call 
it xC, at which the right side of (A13) is zero at x = xC and negative at larger values of x. In other 
words, xC satisfies 
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Note that  (x) = 0 at any point x to the right of xC, which can be seen by contradiction. If 

 (x) > 0 at such an x, (A13) would apply. But the right side of (A13) is negative at this x, which 
contradicts the assumption  (x) > 0. Recall that  (x) is the limit of P (x) as  approaches zero, 
so the conclusion is that P (x) approaches zero as  approaches zero if x is any point between xC 
and x2. This information alone does not tell us whether P (x) is increasing or decreasing with . It 
just tells us that the rate of increase (if there is an increase at all) is slower than the rate at which 
 approaches zero. To make a connection with the boundary condition P (x2) = 0, we must 
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investigate the limiting behavior of P (x) with greater resolution. For this purpose, we go back to 
(A8) and rearrange terms to write the equation as 
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We now take the limit as  approaches zero. With the understanding that x is between xC and x2, 
we have already established that P (x) approaches zero for any point x in this interval, so the 
derivative d[P (x)]/dx approaches zero. The limit of (A16) becomes 
 

  

























 NxP

N
xHxx

xd

d

DD

DD

Mm

Mm

)(2
lim)()(

0
1


  

  ). (when)()( 21 xxxxHxx
xd

d
C     (A17) 

 
An inequality will be needed to continue the analysis of (A17). This inequality is derived from 
the third condition in (A15), which implies 
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which can be written as 
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It is clear from (A6) that the derivative inside the integral is increasing in  at any point  
between x1 and x2, so  
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and combining this with (A18) gives 
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We can now return to (A17). We have just established that the right side of (A17) is positive, and 
this implies that the denominator inside the limit on the left side does not increase without bound 
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as  approaches zero. The denominator also does not approach zero, because it contains the 
constant N, so the limit of the ratio in (A17) is the ratio of limits, i.e., 
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where P0(x) is the limiting value of P (x). Substituting this result into (A17) gives 
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The same result can be expressed in alternate notation by using (7) and (A6) to get 
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It is evident from this equation that in order to satisfy the boundary condition P0(x2) = 0 we must 
have  = 1, so the above equation becomes 
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and the important conclusion is 
 

).conditions 1 Case(under   1                (A21) 
 
Note that  was held fixed when taking the limit as  approaches zero, but the value assigned to 
 in (A21) satisfies boundary conditions for this limiting case. Therefore, even though the 
notation does not emphasize this fact,  is what the charge-collection efficiency becomes in the 
limit as  approaches zero, i.e., in the large-G limit.  
 

Before deriving (A21), we knew that there exists an xC satisfying (A15) but we did not 
know how to calculate this xC because the  appearing in (A15) was unknown. Now that  is 
known, the same condition that defines xC can also be used to calculate xC, and that condition is 
(A15) with  = 1, i.e.,  
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Similarly, (A13) now becomes 
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A2. The Second Case 

The second case considered is that in which g(x) and  (x1) have the property that H(x) 
defined by (A4) satisfies 
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We can find the  in (A13) that produces the boundary condition  (x2) = 0 by guessing and then 
verifying that the guess does produce that boundary condition, and also satisfies   1. The guess 
is 
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It is evident from (A24) that this tentative  satisfies   1, so we now investigate the boundary 
condition. With this tentative  substituted into the right side of (A13), the right side becomes 
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Note that H is increasing, so the curly bracket on the right is nonnegative for any x between x1 
and x2. Also, the first term on the right is positive for any x between x1 and x2. Therefore, the left 
side, which is the right side of (A13), is positive for any x between x1 and x2. Therefore, when 
evaluated at this , (A13) applies to any x between x1 and x2, and it becomes 
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Boundary values are implied by (A25) by taking limits, producing  (x2) = 0, which verifies that 
the tentative  satisfies the boundary conditions. The conclusion is 
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As previously explained in the discussion of Case 1, the value given to  by (A26) is what the 
charge-collection efficiency becomes in the limit as  approaches zero, even though the notation 
does not emphasize that this value is a limit.  
 

A3. Ideal Boundary Conditions 

As previously stated, this analysis does not solve carrier transport equations on the left 
side of the DRB in Fig. 1, so boundary conditions at the DRB must be given in order to have a 
complete set of equations. Assumptions used here regarding boundary conditions are motivated 
by computer simulations which show that, while the excess density at the DRB can be much 
greater than the doping density when carrier generation is sufficiently intense, the excess carrier 
density is still much smaller at the DRB than at other locations in the QNR interior. One 
implication is that if we use either (A23) or (A25) to solve for  (x), and if errors are considered 
acceptable when they are a small fraction of the maximum (in x) of  (x), then we obtain 
acceptable accuracy by neglecting  (x1) in these equations. Similarly, the observation that  (x1) 
is small is interpreted to mean that xC calculated from (A22), or  calculated from (A26), can be 
approximated by neglecting  (x1) in these equations. In other words, it is assumed that each of 
these quantities can be approximated by the quantities produced by ideal boundary conditions, 
where “the quantities produced by ideal boundary conditions” are defined by the equations 
obtained by omitting  (x1). To be more explicit, the quantities produced by ideal boundary 
conditions are ,  (x), xC (when it exists), and P0(x) given by 

 
If H(x2) > 1 then: 
 

(a)  = 1. 
 

(b) There is an xC in the open interval (x1, x2) satisfying H(xC) = 1 and also satisfying  
H(x) > 1 for any x satisfying xC < x < x2. 
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If H(x2)  1 then: 
 

(e)  = H(x2). 
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(f) Throughout the entire QNR we have   )()()(
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We will now change terminology and symbolism to conform to the main text. Instead of xC 

we will now write xARB, which defines the ARB. The region to the left is called the AR, and the 
region to the right is called the HRR. Using (A5), we can write H(x2) as *. As previously stated, 
 given by either item (a) or item (b) is the limit as  approaches zero, which we will call the 
large-G limit. Also, instead of writing P0(x), we will call this P(x) in the large-G limit. Finally, 
consider Item (c). Recall that  (x) is the limit of   (x), with  (x) defined by (A9), so Item (c) is 
equivalent to the statement that the approximation 
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becomes exact as  approaches zero. If we divide both sides by , the resulting approximation 
becomes exact as  approaches zero if error is defined as a fractional or relative error instead of 
an absolute error. This approximation can be written as 
 

  ).()(1
2

)( 1xxxH
D

G
xP

m

  

 
and we will say that P(x) becomes equal to the right side in the large-G limit, with the 
understanding that it is relative error rather than absolute error that goes to zero in the limit. 
Similar considerations apply to Item (f). With this change in notation and terminology, solutions 
produced by ideal boundary conditions are now described by 
 
If * > 1 then in the large-G limit we have: 
 

(a)  = 1. 
 

(b) There is an ARB in the QNR interior that separates the AR on the left from the HRR on 
the right. The location of the ARB is xARB satisfying H(xARB) = 1 and also satisfying H(x) 
> 1 for any x satisfying xARB < x < x2. 

(c) For any x within the AR we have   )()(1
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If *  1 then in the large-G limit we have: 
 

(e)  = *. 
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(f) There is no ARB. 

(g) Throughout the entire QNR we have   )()(*
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APPENDIX B:  
ABBREVIATIONS, ACRONYMS, AND NOMENCLATURE 

 A cross-sectional area of the 1D device 

ADC ambipolar diffusion with a cutoff  

AG  the 1D quantity that is the same as G in the 3D problem 

AR ambipolar region  

ARB AR boundary 

 

C capacitance between S1 and S2 when the QNR is replaced by a dielectric with a 
permittivity constant  

  

De  electron diffusion coefficient 

Dh  hole diffusion coefficient 

Dm  minority-carrier diffusion coefficient  

DM majority-carrier diffusion coefficient  

DR depletion region  

DRB depletion region boundary  

 

E  electric field 

 

g carrier-generation rate function 

g(x)  carrier-generation rate density 

G  source strength  

 

HRR high-resistance region  

H(x) (Defined by Eq. (A4))  

 

Im  minority-carrier terminal current  

IM majority-carrier terminal current 

IT total terminal current 

 

Jm minority-carrier current density (plus or minus depending on doping type) 

JM  majority-carrier current density (plus or minus depending on doping type) 

Je(x) electron current density 

Jh(x) hole current density 
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JT  total current density 

 

KT/q thermal voltage (written here as VT) 

 

large-G limit high-injection limit  

L length of the QNR 

 

MJ metallurgical junction  

MOSFET metal oxide semiconductor field-effect transistor  

 

n0  equilibrium electron density 

n(x) electron density 

N doping density 

 

p0  equilibrium hole density 

P  excess carrier density 

P* (defined by Eq. (45)) 

p(x) hole density 

 

q elementary charge  

qG  total rate of charge liberation defined by Eq. (7) in 1D or by Eq. (26) in 3D   

QNR quasi-neutral region 

 

rD radius of circular disc (in example geometry IV.C) 

 

S1 surface S1, also referred to as the depletion region boundary (DRB) 

S2 surface S2, also referred to as the quasi-neutral region (QNR) contact  

SV sensitive volume  

 

U plus or minus (depending on doping type) of the electrostatic potential 

 

VT  thermal voltage (sometimes written as KT/q) 

 

x1 thru xn points on the x axis  

xARB boundary location between an ambipolar region (AR) and a high-resistance region 
(HRR) (also called the AR boundary, ARB).  
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xC point at which the right side of (A13) is zero and negative at larger values of x 

XS source location 

 

1D one dimensional 

3D three dimensional 

 
 charge-collection efficiency 

* defined by Eq. (16) in 1D or by Eq. (38) in 3D 

 

  permittivity constant  

 

e electron mobility 

h hole mobility 

 

 (x) electrostatic potential 

 

( x


) weight factor that reflects the effect that the location of ionization has on collected 
charge from pure diffusion and is defined by Eq. (34)  

 


