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Abstract

We are developing onboard planning and scheduling tech-

nology to enable in situ robotic explorers, such as rovers

and aerobots, to more effectively assist scientists in plan-

etary exploration. In our current work, we are focusing

on situations in which the robot is exploring large geo-

graphical features such as craters, channels or regional

boundaries. In to develop valid and high quality plans, the

robot must take into account a range of scientific and engi-

neering constraints and preferences. We have developed a

system that incorporates multiobjective optimization and

planning allowing the robot to generate high quality mis-

sion operations plans that respect resource limitations and

mission constraints while attempting to maximize science

and engineering objectives. An important scientific objec-

tive for the exploration of geological features is selecting

observations that spatially cover an area of interest. We

have developed a metric to enable an in situ explorer to

reason about and track the spatial coverage quality of a

plan. We describe this technique and show how it is com-

bined in the overall multiobjective optimization and plan-

ning algorithm.

1 Introduction

Onboard autonomy is becoming increasingly important

for in situ planetary exploration. The success of the

Mars Exploration Rovers mission, for example, can be

attributed in part to the autonomous capabilities of the

roves. Onboard science planning has been identified as

a critical capability for a proposed Titan aerobot mission

in order to deal with communication delays and blackouts.

Onboard activity planning for in situ spacecraft, such as

rovers and aerobots, has the potential for increasing sci-

ence return while, at the same time, increasing mission

duration and reliability. In current mission operations, the

uplink team must make predictions about spacecraft re-

sources in order to uplink an appropriate set of science

observations. Due to the difficulty in predicting resources

and the high-cost of over-subscribing the spacecraft, the

team often under-utilizes spacecraft resources. The chal-

lenge is even greater for more distant exploration mis-

sions such as the exploration of Titan and Europa. Due

to extended communication blackouts and limited band-

width the robotic explorers would have to be capable of

operating for much longer periods without human inter-

action. Making accurate predations about available re-

sources over such a long period of time will be infeasible.

We are addressing this challenge through the use of

onboard activity planning. With onboard planning, the

operations team can uplink a large set of observations to

the spacecraft and let the onboard planning system, using

up-to-date knowledge of available resources and the state

of the spacecraft, select from these observations. This

increases mission reliability by ensuring that the space-

craft does not oversubscribe resources even if unexpected

events result in a reduction of resources. This will also

result in increased science productivity as the system can

take advantage of extra resource availability.

While onboard planning for spacecraft control has been

demonstrated on previous missions, additional challenges

remain in extending its use in selecting science observa-

tions. In order to make appropriate selections and to be

accepted with the science team, the onboard planner must

take into account preferences from the scientists. Because

there will be a variety of scientific and engineering ob-

jectives, the planner must be capable of reasoning about

interacting preferences.

In our current work, we are focusing on situations in

which the robot is exploring large geological features such

as craters, channels or a boundary between two different

regions. In these cases, an important factor in assessing
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the quality of a plan is how the set of chosen observations

spatially cover the area of interest. Thus, one of the con-

siderations a robot should make when evaluating which

observations should be included in a plan is how well the

candidate observations will increase the spatial coverage

of the plan. The overall goal of this technology is to en-

able the in situ explorer to generate and execute plans that

makes an appropriate balance between detailed study and

broad coverage of a region.

In this paper we describe a technique that allows a robot

to evaluate the spatial coverage quality of a plan. We also

describe our approach for incorporating the spatial cover-

age preference into a planning and optimization system

that combines multiple science and engineering prefer-

ences while ensuring that generated plans respect mission

and resource constraints. Our approach must also be effi-

cient as the system may have to re-evaluate the coverage

quality of the plan and the potential observations during

plan execution.

2 Exploring Geological Features
We are developing onboard planning and scheduling tech-

nology to enable in situ explorers, such as rovers and aer-

obots, to more effectively assist scientists in exploring ge-

ological features. Figure 1 shows examples of geologi-

cal features on Mars illustrating the types of features the

robotic explorer may be directed to explore.

A scientific campaign for exploring a geological feature

would employ a variety of science instruments for collect-

ing data about the region. For example, each Mars Explo-

ration Rover is equipped with remote sensing instruments

including high-resolution panoramic stereo cameras with

a variety of filters (Pancam), navigational (Navcam) and

hazard avoidance (Hazcam) stereo cameras and a Mini

Thermal Emissions Spectrometer (Mini-TES). Each rover

also has an arm with a suite of instruments for close con-

tact measurements: a microscopic imager (MI), two spec-

trometers and a rock abrasion tool (RAT) able to remove

a few millimeters of a rock’s surface.

When humans perform mission planning, there may

be a variety of reasons why a particular observation is

selected in a given plan. The observation may be se-

lected for its scientific merit. As discussed previously,

this may be further broken down into the observation’s

contribution to one or more of the scientific themes (e.g.

atmospheric, geology, . . . ). An observation may provide

benefit from an engineering perspective such as collect-

ing data for long-term route planning or assessing atmo-

spheric dust content to facilitate better energy modeling.

In addition, an observation may be selected as it increases

the area that has been covered by collected data. In many

cases, a single observation may contribute to several of

these criteria in various degrees.

Of course, the mission planning team must also take

into account the limited set of resources that the rovers

have to perform observations. The rovers are constrained

by limited energy, onboard data storage, downlink op-

portunities and bandwidth and time to complete observa-

tions. Each observation places a different set of demands

on these resources. Some are very time consuming, such

as long-term spectrometer integrations, while others are

memory intensive, such as Pancam acquisitions. And

some activities are constrained to occur at certain periods

of the day due to sun angle or ambient temperature.

Each observation also varies in the amount of spatial

coverage that it affords. For example, Navcams and Haz-

cams have a wide field of view while Pancams and Mini-

TES have a narrow field of view. A further challenge is

that terrain features, such as large rocks or hills, may oc-

clude an observation thus limiting the area that it covers.

The quality of coverage afforded by an observation also

degrades as a function of distance from the rover.

Finally, for a given geological feature, scientists may

be more interested in certain sub-regions of that feature

than in others. Thus, observations should also be evalu-

ated based on the relative importance of the area for which

they provide coverage.

The current practice on planetary exploration missions

is to have the science and engineering teams select a sub-

set of observations that achieve an acceptable compromise

among these considerations and respect the team’s esti-

mates of the available resources for accomplishing these

tasks. The drawback to this approach is that the rover has

extremely limited ability to alter the plan if things do not

go as predicted. For example, if tasks take longer than ex-

pected, then later tasks may get dropped, even if they are

deemed higher priority than earlier tasks. Or, if the rover

has extra resources (e.g. more solar array energy than pre-

dicted) then it may have been able to accomplish more

observations than were uplinked. Our objective is to en-

able rovers to reason about science quality onboard so that

they can appropriately adjust the plan when state or envi-

ronment information change.

3 Multiobjective Optimization and
Planning Framework

Our objective is to enable an onboard planner to reason

about multiple science and engineering objectives in as-

sessing plan quality so that it can make more informed

decisions about which observations to perform. This will

enable the ground team to uplink a larger set of observa-

tions and let the planner dynamically select among them

based on the scientific and engineering merit of the re-
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(a) Channels (MGS MOC Image) (b) Craters (MGS MOC Image) (c) Boundary (MGS MOC Image)

(d) Large area characterization (Spirit Image)

Figure 1: Example geological features on Mars.

sulting plan and the planner’s assessment of available re-

sources. During execution, the planner will modify the

plan based on the current estimate of its resources.

Our approach is implemented within the CASPER sys-

tem Estlin et al. [2002], Chien et al. [2000]. CASPER

employs a continuous planning technique where the plan-

ner continually evaluates the current plan and modifies it

when necessary based on new state and resource infor-

mation. Rather than consider planning a batch process,

where planning is performed once for a certain time pe-

riod and set of goals, the planner has a current goal set, a

current rover state, and state projections into the future for

that plan. At any time an incremental update to the goals

or current state may update the current plan. This update

may be an unexpected event (such as a new science tar-

get) or a current reading for a particular resource level

(such as battery charge). The planner is then responsible

for maintaining a plan consistent with the most current

information.

A plan consists of a set of grounded (i.e., time-tagged)

activities that represent different rover actions and behav-

iors. Rover state in CASPER is modeled by a set of plan

timelines, which contain information on states, such as

rover position, and resources, such as energy. Timelines

are calculated by reasoning about activity effects and rep-

resent the past, current and expected state of the rover over

time. As time progresses, the actual state of the rover

drifts from the state expected by the timelines, reflect-

ing changes in the world. If an update results in a prob-

lem, such as an activity consuming more memory than

expected and thereby over-subscribing RAM, CASPER

re-plans, using iterative repair Zweben et al. [1994], to

address conflicts.

CASPER includes an optimization framework for rea-

soning about soft constraints such as reducing the distance

traversed by the rover and increasing the value of science

data collected. User-defined preferences are used to com-

pute plan quality based on how well the plan satisfies these

constraints. Optimization proceeds similar to iterative re-

pair. For each preference, an optimization heuristic gener-

ates modifications that could potentially improve the plan

score.

We explicitly represent a plan’s score relative to each

science and engineering preference by defining a separate

timeline for each objective. When the plan changes, as-

sociated functions are used to compute the value of each

timeline. For this current work, we used three science ob-

jectives and one engineering objective:

increase geology: collect observations that contribute

toward geologic study

function: each observation specifies its geology con-

tribution, overall plan score is the sum of each

planned observation’s geology contribution.

increase atmospheric: collect observations that con-

tribute toward atmospheric study

function: each observation specifies its atmospheric

contribution, overall plan score is the sum of each

planned observation’s atmospheric contribution.

increase spatial coverage: collect observations that in-

crease the area covered

function: section 4 describes how we track the spa-

tial coverage quality of a plan
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reduce traverse distance: minimize the overall distance

traversed by the vehicle

function: our system uses a path planner to estimate

the travel distance for each traverse activity in the

plan. The overall traverse distance for a plan is the

sum of these distances.

We use a weighted sum to combine these individual ob-

jectives into an overall plan score. This allows users to

adjust the weights to direct the planner toward different

objectives at different points of the mission.

CASPER provides a framework for generating, moni-

toring and repairing a plan and for managing user-defined

preferences. However, an overall control algorithm must

be created to enable integration of these capabilities in a

manner appropriate for a given domain. Figure 2 shows

the algorithm we developed for our work.

Input

A set of prioritized science goals from

Earth

Time constraints

Resource constraints

Preferences

Repeat:

Process any updates from Executive

Save current plan

For i = 1 to num iterations

If there are conflicts

Select a conflict to work on

Select a repair strategy for this

conflict

Apply repair strategy

Else

Select an optimization prefer-

ence

Select an optimization method

for this preference

Apply optimization method

Compute plan score

If current plan is best seen so far, save it

Reload plan with highest score

Figure 2: CASPER control algorithm for rover domain.

The algorithm takes as input a set of goals with asso-

ciated science priorities, a set of time and resource con-

straints and a set of user-defined preferences. The main

loop of the algorithm interleaves iterative repair and it-

erative optimization to search for a conflict-free plan of

high quality. The loop begins by processing any updates

on state and resource timelines or on activity status. The

current plan is saved. It then enters a loop in which it

attempts to improve the plan by repairing conflicts or per-

forming optimization steps.

If the plan has a conflict, CASPER performs a repair

iteration. Otherwise, CASPER attempts to improve the

score by performing an iteration of optimize. If the score

of the resulting plan is higher than the previously saved

plan (based on a set of user-defined preferences), than the

current plan is recorded.

The primary method used to enable the system to rea-

son about spatial coverage of science observations was

to develop an appropriate preference. The preference in-

cludes a means to score a plan based on the spatial cov-

erage quality afforded by the plan. If the spatial cover-

age preference is selected to improve the plan score, the

optimization method is to satisfy one of the requested ob-

servations that is not yet in the plan that will provide the

biggest improvement to the coverage quality of the plan.

The next section provides details on how the spatial

coverage quality of a plan is computed and how obser-

vations are selected to improve this score.

4 Spatial Coverage Preference
Figure 3) provides an example region of terrain that we

want a rover to explore and Figure 4 shows an example set

of observations that are under consideration for the plan.

Figure 3: Digital elevation map of the an example terrain

to be explored.

Figure 4: Set of observations.

With limited available resources, it is unlikely that the

rover will be able to perform all of these observations. As

discussed previously, there are many considerations for

4



determining which subset of observations should be in-

cluded in a plan. The objective of this work is to develop

a preference to encourage spatial coverage to be one of the

considerations during plan generation and modification.

In this section we describe our approach to represent-

ing and reasoning about the spatial coverage quality of a

plan. We begin by describing how we represent a priori

information about the terrain to be explored along with

scientists’ priorities indicating the relative importance of

various sub-regions. We then describe how we model the

coverage quality afforded by a given observation. These

observation models are used to track the spatial coverage

quality of plan, taking into account those observations that

have already been executed and those that are scheduled

to execute in the future. When resources and plan space

is available, all of this information is then used to select

which observations to add to the plan in an attempt to op-

timize the spatial coverage of the plan. Conversely, when

resources are over-subscribed and observations must be

shed, to select an observation that will make the smallest

impact on the spatial coverage of the plan if it were to be

removed.

4.1 Terrain and Terrain Priority Represen-
tation

Knowledge of terrain will enable the system to make bet-

ter predictions about the coverage of observations as it

will know about occlusions from terrain features such as

rocks or hills.

Scientists typically have a variety of a priori informa-

tion that is used to identify candidate observations that can

contribute to the initial terrain map. Images from previous

observations, such as NAVCAM and PANCAM observa-

tions, are the primary source of information for selecting

new targets. In addition, images from orbiting spacecraft

as well as images taken during the spacecraft’s descent,

provide a coarse view of the geological features.

We represent a priori knowledge of the terrain to be ex-

plored as a digital elevation map where each pixel repre-

sents the height of the terrain at that point. Figure 3 shows

an example terrain map.

The resolution of the map has a direct impact on the

space and time complexity of the algorithm. It is not

critical that we compute a highly accurate score for the

amount of terrain covered by a given observation. Rather,

it is important that the relative scores of different obser-

vations be correctly assessed. Thus, we convert the input

terrain map into a coarser resolution such as the one in

Figure 5. The resolution of the terrain map is a parameter

that can be tuned to make a trade-off between accuracy of

coverage quality predictions and computational complex-

ity of the system.

Figure 5: Lower resolution version of terrain in Figure 3.

It is also important to note that the approach does not

require that a priori knowledge be complete or accurate.

Missing or incorrect data in the terrain map will result

in incorrect estimates of the spatial coverage that an ob-

servation will afford which, in turn, could result in lower

quality plans. However, as observations are performed

the terrain map will be updated and the coverage quality

of upcoming observations will be re-assessed.

In addition to the terrain map, the system will take as

input a matrix of weights that define the relative scientific

importance of sub-regions of the terrain map. The ma-

trix is the same size and dimensions as the input terrain

matrix with each cell containing a value between 0 (least

important) and 1 (most important).

4.2 Modeling Observations
In order to evaluate the coverage quality of a plan, it is

necessary to compute the coverage afforded by a given

observation. Figure 6 illustrates the key steps in this com-

putation.

(a) compute observation visibility

(b) compute observation coverage quality

Figure 6: Modeling observation coverage quality.

The first step is to determine which cells of the terrain

are visible from the location of the observation. The loca-

tion of the observation, the range of the instrument and the
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elevation of the terrain determine which cells. For each

cell within range of the observation’s location (as deter-

mined by the range value for the instrument) we perform

an intersection test between the terrain and a line from the

location of the instrument to the cell using the intersection

test Shapira [1990].

Once it has been determined that a cell is visible to an

observation, we compute the coverage quality score which

represents how well that cell is covered by the observa-

tion. A score of 0 indicates that the cell is not covered

at all by this observation (e.g. it is occluded by the rover

body). A score of 1 represents “perfect” coverage, in the

sense that another observation of the cell would not im-

prove upon the cell’s coverage.

This computation of the coverage quality score will

vary based on the type of instrument used. In general,

cells further from the origin of the observation are not

covered as well as those closer in. Figure 6 (b) illustrates

the coverage quality model for a panoramic image obser-

vation. Let d be the distance of the visible cell from the

origin of the observation. The radius r0 represents the

diameter of the rover body. If d ≤ r0 then the cell is

occluded by the rover body and not covered by this ob-

servation. Cells that lie between r0 and r1 are within the

primary range of this instrument. Coverage is high for

cells close to r0 but drops off moving out toward r1.

The range between r1 and r2 is used to encourage

“spreading out” of observations. The idea is that, all else

being equal, one might prefer to have observations spread

out across the terrain rather than clustered in a small re-

gion. The extend to which spreading out is encouraged

can be tuned by increasing or decreasing r2.

Finally, the coverage of the cell is multiplied by the

weight in the scientific priority matrix resulting in the

cell’s spatial coverage quality provided by this observa-

tion.

4.3 Tracking Coverage Quality

Now that we have a way of computing the spatial coverage

for a given observation, the next step is to keep track of the

spatial coverage provided by a set of observations. We do

this by recording the spatial coverage quality afforded by

the observations into a coverage quality matrix. A cover-

age quality matrix is the same dimension and resolution

as our terrain matrix with each cell containing a coverage

quality value. If multiple observations cover the same cell

in the coverage quality matrix we record the max cover-

age quality score afforded by these observations. Figure 7

shows an example coverage quality matrix reflecting the

coverage quality for a set of observations.

We maintain two separate coverage qualities matrices.

We keep track of an Executed Coverage Quality Matrix

(a) coverage quality for a set of observations

(b) coverage quality overlayed on terrain map

Figure 7: Example coverage quality for a set of observa-

tions.

that keeps track of the coverage quality afforded by the

observations that have already executed. The second ma-

trix is the Pending Coverage Quality Matrix and includes

the coverage quality from the executed observations and

the predicted coverage quality that will be obtained after

the pending observations in the plan have been executed.

As will be seen, maintaining these matrices will improve

efficiency when the terrain map is updated and when se-

lecting observations to add to or remove from the plan.

Each coverage quality matrix has a score which is equal

to the sum of the coverage quality of each of its cells.

4.4 Ranking Observations

We rank observations with respect to how well they are

expected to improve the coverage quality of the plan. We

maintain two rankings, one for the requested observations,

those that are not yet in the plan, and the pending obser-

vations, those that are in the plan but have not yet exe-

cuted. When selecting a requested observation to add to

the plan we select the highest ranked observation from the

requested observations ranking. If we must shed a pend-

ing observation to resolve a conflict, we select the lowest

observation from the pending observations rankings.

In actuality, rather than always selecting the highest ob-

servation to add (or lowest when deleting) we perform

a probabilistic selection from the ranked list of observa-

tions with a probability of selecting a particular observa-

tion proportional to the coverage quality it is expected to

contribute to the plan. This enables the system to avoid

getting stuck trying to satisfy an observation for which
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there are insufficient resources to perform.

Because observations may overlap, the coverage qual-

ity an observation will contribute to a plan depends in part

on the other observations already in the plan. Thus, when

we rank the requested observations we do so relative to the

pending coverage quality matrix. Similarly, the coverage

quality contribution of a pending observation depends on

the observations that have already been executed. There-

fore, the pending observations are ranked relative to the

executed coverage quality matrix.

Figure 8 shows the algorithm used to rank a set of ob-

servation relative to a coverage quality matrix. A contri-

bution score is computed for each observation which is

equal to how much the score of the coverage quality ma-

trix would increase if this observation were added.

Input

Unranked Observations

Initial Coverage Quality Matrix

For each observation in Unranked Observa-

tions

Observation’s contribution score = how

much the score of the coverage quality

matrix would improve if this observa-

tion were included

Sort observations based on contribution

score

Figure 8: Ranking a set of observations relative to a cov-

erage quality matrix.

Note that the algorithm in Figure 8 ranks only the single

next observation to add (or remove) and does not indicate

which order the remaining observations should be added

(or removed). Instead, we use an iterative approach since

we will add or remove activities one at a time.

This iterative approach represents a greedy algorithm

for selecting observations to add and remove and does not

guarantee an optimal solution except in the case where

the observations do not overlap. We have chosen not to

attempt an optimal solution for three main reasons. First,

observations are selected for a variety of reasons, not just

spatial coverage. Thus, we cannot count on the spatial

coverage ranking being honored when observations are

added and removed. Second, because we will have to

re-rank observations during execution (when observations

are added and removed or when the terrain map is up-

dated) we want a fast computation. Finally, we expect

that observations will not overlap significantly and thus

the greedy approach will not be far from optimal.

4.5 Updating Spatial Coverage During Ex-
ecution

During the course of executing the plan, the system will

need to update its rankings. Through the collection of ob-

servations, we will be collecting new information about

the terrain being explored. We can update the terrain map

when this happens. Doing so will improve the accuracy

of the coverage quality predictions. However, when the

terrain is updated we will need to re-compute the cover-

age quality afforded by each of the observations and re-

compute our rankings.

We must also re-compute rankings when observations

are added to or removed from the plan since the contribu-

tion score of an observation depends on the order in which

it is added to the plan.

5 Related Work
The spatial coverage problem we are solving is similar to

a classic computational geometry problem called the Art

Gallery Problem [O’Rourke, 1987]. Given a polygon, rep-

resenting the floor plan of an art gallery, the problem is to

select the minimum number of locations to place guards

such that every point in the polygon is in view of at least

one guard. It is assumed that guards can see in all di-

rections and can see out to infinity unless an edge of the

polygon obstructs its view. This has been show to be NP-

Hard, but a popular approximation runs in time O(nlogn.

The approximation triangulates the polygon and then per-

forms three-coloring on the resulting vertices. Guards are

posted at the vertices that were colored by the minimum

color class (the color class that was used the least amount

of times to color vertices).

While similar, there are significant difference between

the Art Gallery Problem and the problem we wish to

solve. Most significant is that the Art Gallery Problem

is restricted to 2D while we are modeling and selecting

observations in 3D. The triangulation approximation de-

scribed above does not scale to the 3D case. Furthermore,

it is unrealistic to model observations the way guards are

modeled. Some observations cannot see in all directions

and the quality of the observation is not constant with re-

spect to the distance of a point from the origin of the ob-

servation. Finally, the Art Gallery Problem does not con-

sider the costs of posting guards.

The ROPE (Rank and Overlap Elimination) system se-

lects locations for video cameras for visual surveillance

of large 3D open spaces [Rana, 2005]. ROPE discretizes

the area into cells and then uses a greedy algorithm to se-

lect camera locations by first placing a camera in the cell

from which the largest number of other cells are visible.

The selected cell and the visible cells are removed from
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the area and the process is repeated until no cells remain.

This greedy approach is similar to the approach we take in

ranking observations. However, like the Art Gallery Prob-

lem, ROPE does not model the quality of coverage and it

does not consider cost.

The swath coverage problem for orbital satellites is

similar to the spatial coverage problem addressed in this

paper. A satellite collects images as it orbits and may ac-

quire images of the same location on subsequent orbits.

The problem is to select which images to downlink to

maximize science value while respecting onboard storage

and downlink capacities. Knight presents an optimal so-

lution using depth first branch and bound and a network

flow formulation for a heuristic reward estimator [Knight

and Smith, 2005]. The ASTER system uses a greedy ap-

proach for selecting images similar to ROPE [Muraoka

et al., 1998]. Both approaches take into account resource

cost of observations and can take into account quality of

coverage. The heuristic used in Knight assumes that the

reward for an observation scales with its cost. This is not

necessarily the case for rovers where the cost of an obser-

vation may vary independent of the reward due to many

factors such as distance to the observation and terrain con-

ditions. Our greedy algorithm is essentially the same as

that used in ASTER. The main difference in our work is

the modeling of instrument observations and the incorpo-

ration of this work into surface operations and other opti-

mization preferences.

Leonard et al. [2007] present an optimization method

for coordinating the search patterns of multiple vehicles

for optimal data collection. Their system uses a global op-

timization function that combines all constraints and pref-

erences. In contrast, our approach separates these factors.

The trade-off is that a combined approach may result in

more optimized results while the factored approach is typ-

ically easier to incorporate new or changing capabilities,

constraints and preferences

6 Conclusions
We have presented a set of algorithms that enable a rover

to compute the spatial coverage quality of a plan and

to rank candidate observations by how well they are ex-

pected to improve coverage quality. Using this technique,

a rover is better able to assist in the exploration of geo-

logical features by generating high quality operations se-

quences that take into account spatial coverage along with

other science considerations. We have currently imple-

mented and tested these algorithms and have tested them

in a stand-alone mode. We are in the process of integrat-

ing the preferences into our rover planning and execution

system. In future work, we will focus on techniques for

combining multiple preferences functions so that the sys-

tem can more effectively trade-off science and engineer-

ing objectives when generating and executing plans.
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