
&?RTOSIS AF'PROACH FOR NONLINEAR BLIND SOURCE SEPARATION 

Vu A. Duong' and Allen R. Stubbemd* 
'Jet Propulsion Laboratory 

4800 Oak Grove Drive 
Pasadena, CA 9 1 109 
'Department of EECS 

University of California, Irvine 
Irvine, CA 92127 

Vu.A. Duong@jpl.nasa.gov, arstubbe@uci.edu 

Abstract: In this paper, we introduce a new algorithm for blind source simal 
separation for post-nonlinear mixtures. The mixtures are assumed to be linearly 
mixed from unknown sources first and then distorted by nienioryless nonlinear 
functions. The nonlinear functions are assumed to be smooth and can be 
approximated by polynomials. Both the coefficients of the unknown mixing matrix 
and the coefticients of the approximated polynomials are estimated by the gradient 
descent method conditional on the higher order statistical requirements. The results 
of simulation experiments presented in this paper demonstrate the validity and 
usehlness of our approach for nonlinear blind source signal separation 
Keywords: Independent Component Analysis, Kurtosis, Higher order statistics 

1. Introduction 
As it has been shown in the literature 

[2,4,7,12,18] that linear ICA has been successful in 
separating linear mixtures of the blind source signals. 
However, most of the mixing mechanisms in our real 
life follow the non-linear manners in which linear 
ICA algorithm is unable to separate the source 
signals. One example is source signals, which 
propagate in the ocean, are likely to be non-linearly 
nixed due to the inhomogeneous of the water layers 
in the ocean Intrinsic nonlinearities in microphone 
that has been used in speech recording, is another 
example of nonlinear mixing of source signals. To 
cope with these practical problems, there is a need for 
nonlinear ICA. Nonlinear independent component 
analysis can be defined as a nonlinear mapping g 
which takes a random vector x into a random vector y 
= g(x) with a factorizable density, i.e. a product of its 
marginal densities, which implies that the 
components of y are independent 

Non-linear ICA, in general, is an  intractable 
problem, since the indeterminacies in the separating 
solutions are much more severe than in the linear 
case. For example, if X and Y are two independent 
random variables, then any variable AX) and g(Y), 
where f and g are one-to-one functions, are also 
independent. Thus if there is a linear algorithm, 
which is able to fmd some independent outputs, they 
may be different eom the original source signals. 
Recently, researchers have started addressing the 
formulation to the nonlinear mixing models. Burel 
[3] proposed a nonlinear ICA algorithm for 
parametric nonlinearity. The nonlinearity in [20] is 
assumed to depend on unknown coefficients. 
Pajunen and ISarhunen [17] introduced the idea of 

using self-organizing map (SOM) for nonlinear ICA. 
However, this approach can be successfully applied ' 
only to the separation of sources having uniform 
distributions. Taleb and Jutten [20] have applied a 
maximum likelihood approach far separating sources 
from post-nonlinear mixtures. Yang, Amari and 
Cichocki have extended their natural gradient to this 
case using an MLP network. 

Due to the complexity of the general 
nonlinear ICA, this paper focuses on a subclass of 
non-linear ICA called post non-linear ICA. Section 1 
reviews the current development of nonlinear ICA. 
Section 2 is the model for nonlinear ICA. Section 3 is 
the algorithm and section 4 is the simulation results. 

2. Non-linear Independent Component Analysis 
Model 

The simple post nm-linear mixing and 
unmixing models are shown in figure 1. The mixing 
model consists of b o  parts: a linear mixing part and 
a memoryless invertible nonlinear transfer part. The 
unmixing system is the inverse sequence of the 
mixing system in which the non-linear transfer 
function is inverted in each channel at first and the 
results are unmixed by a linear transform W. 7he 
source signals are recovered if each operation in the 
unmixing sequence is the inverse of the 
corresponding operation in the mixing sequence. 
Let $71) = [sl(n) .T~(N) . . . .~.~(n)l~ is an NXI c01umn 
vector of N independent sources at time n, A is NxN 
matrix, f = [fi f2 J4/] is Nxl vector of nonlinear 
functions and f operates componentwise and x(n) = 

[xl(n), x2(n) ,  ..., xA4.(n)lT is a iYx1 coIumn vector of 
mixed signal observed at time n. 



The mixing model for the post nonlinear ICA can be 
mathematically represented as 

and the umixing model is represented as 

where u(n) = [u,(n), u2(n), , uN(n)]‘ is an Nxl vector 
of the estimated sources at time n, W ideally is an 
inverted matrix of A and g ideally is inverted 
mapping off  componentwise. 
Model (1) can be written in term of coniponentwise 
as 

x(n)  = f(As(n)), (1) 

4.) =Wg(x(n)), (2) 

N 

Thus the sources s, , j=l,.. .,N are first mixed linearly 
according to the h i c  linear ICA and followed by 
applying a nonlinear functions to get the final 
obsenrations x, . It has been shown [28] that for the 
post nonlinear mixtures, the indeterminacies are 
usually the same as for standard linear ICA that are 
the sources can be separated up to the scaling, 
permutation, and sign indeterminacies under weak 
conditions on the mixing matrix A and source 
distributions. The post-nonlinea.rity assumption is 
useful and reasonable in many signal-processing 
applications because the model can be thought as a 
nonlinear distortion of a sensor system. 

, I /  I 

Figure 1: The mixing and unmixing models for Post 
Nonlinear ICA 

3. Separation of post-nonlinear mixtures using 
mutual information 

Taleb and Jutten have developed a method for 
post-nonlinear ICA. Their results have been reported 
in [20]. A summary of their method is in the 
following. 
A separation procedure for the post-nonlinear 
mixtures (1) is in two subsequent stages: 

1. A nonlinear stage, which cancels the 
nonlinear distortion 5, i=l, ..., N. The 
objective of this part is to estimate nonlinear 
hnctions gi(Oi, u).  The parameters 8, for 
each nonlinear gi are adjusted so that the 
cancellation is achieved. 

2. A linear stage that separate the 
approximately linear mixture v, obtained by 
the nonlinear stage. This can be achieved by 
learning an NxN separating matrix W for 
which components of the output vector u = 

Wv of the separating system are statistically 
independent. 

To achieve the goals for both stages, 
minimization of mutual information I(u) between the 
components ur, ...,u,+ of the output vector is used as 
the objective function for both stages. For the linear 
part, minimization of the mutual information leads to 
the Bell-Sejnowslh algorithm [ 2 ] .  

m ( u )  T -1 T -- - ( W  ) - Y ( u ) x  
m?r 

where component vi of the vector are score 
functions of components ui of the output vector u, a 

a u j )  

Ai 
here p(ui) and ~ , i=1, ..., N a e  the probability 

density functions and their derivatives, respectively. 
The probability p(ui) ,  however, are not available, they 
can be estimated using the kernel method [wolfgang], 

where y(k) is the observation, and K is a kernel 
function. 
For the nonlinear stage, the learning rule can be 
derived using the gradient method, 

where xk is the kh component of the input vector, w,k 
is the element at row i and column k of the matrix W, 

and gk is the derivative of the kth nonlinear function 

g,+. Tbe detailed learning rule particularly depends on 
the specific parameter form of the choosing nonlinear 
mapping gk(Ok,xk). LII [20], a multilayer 

perceptron network is used for modeling the 
nonlinear functions gk(@k,Xk), k=l ,  ..., N. 
ln the linear ICA, it suffices that the score function in 
(5) is theoretically the right type for achieving 
separation. However, their estimation is critical for 
the performance of the separation of both linear and 
nonlinear models. By using the kernel estimator in 
( 6 ) ,  the score function in (5) can be adaptively 

, 



Table 1: A list of the kernel functions 

Conius 7 L K  
-cos(- u) .  jvI 5 1 
4 2  

estimated h m  the output vector u and hence it helps 
to improve the performance of the separation 

4. Separation of post-nonlinear mixtures using 
higher order statistics 

In the previous section, we introduced a 
method of separation a post-nonlinear 1CA based on 
the minimization of the mutual information between 
components of the output vector. In this section, we 
are going to develop a new method for separating a 
post-nonlinear 1CA but based on the higher order 
statistics, particularly kurtosis. While the mutual 
information approach achieves the separation by 
estimating the probability density functions of the 
components of the output vector, the higher order 
statistical approach achieves its separation by using 
the fourth order statistics of the components of the 
output vector. 
As in the mutual information approach, the separation 
procedure for the post-nonlinear mixtures using 
higher order statistics also consists of two subsequent 
stages: 

1. A nonlinear stage that is to estimate 
nonlinear functions g,, the inverse of the 
nonlinear distortion,fi’, i=l,. . .,M. In addition, 
we make a further assumption that the 
nonlinear fincti0ns.f;. are smooth enough so 
that they can be approximated by 
polynomials of Qlh-order. This nonlinear 
stage may be described as 

The inverse gi of the,h in equation (9) is in 
general complicated to determine. Therefore, 
it is assumed that the inverse may be 
approximately by the p‘*-order polynomials 
as follow: 

2. A linear stage that sepatees the 
approximately linear mixture v obtained by 
the nonlinear stage. This can be achieved by 
learning an NXN separating matrix W for 
which components of the output vector u = 

Wv of the separating system are statistically 
independent. 

To achieve the goals for both stages, minimization of 
the fourth order cummuiant (kurtosis) of the 
components UT, ..., u,+ of the output vector is used as 
the objective function for both stages. 

The essential idea of using kurtosis for the 
separation criterion is as follow: according to the 
central limit theorem, the distribution of a sum of 
independent random variables asymptotically 
converges to a Gaussian distribution, under certain 
conditions. Loosely speaking, a sum of two 
independent random variables usually has a 
distribution that is closer to Gaussian than any of the 
two original random variables [13]. Hence, the non- 
Gaussianity is used as a measure to determine the 
independency of a component of a random vector. 

In the basic linear 1CA problem, the data x is 
a linear combination of independent components s, 

x = A s  



Assume that all the independent components si have 
identical distributions. Consider a random variable y 
= wTx, where y is a scalar, w is a vector to be 
determined, and x is the observation vector. Random 
variable y can be written in term of s as J'= wTAs.. 
Thus y is a certain linear combination of the si, with 
coefficients given by wTA. If w were one of the rows 
of the inverse of A, the linear combination of wTx 
would equal to one of the coniponent ti. 

Now varying the coefficients in wTA and observe 
how the distribution ofy = wTAs changes. Since y is a 
linear combination of independent random variable si, 
y is theoretically more Gaussian than any of the si and 
becomes least Gaussian when it in fact equals to one 
of the si. 

However, the original vector s is unavailable, 
therefore instead of varying wrA, we vary the 
coefficients o fw  s i n c e y  (W~A)S = w'x. 
Therefore the vector w may be determined by 
maximizing the non-gaussianity of w% which give us 
one of the independent components. 

To measure the non-Gaussianity of a random 
variable y, we use the kurtosis, which is the fourth- 
order cumulant of a random variable. The kurtosis of 
a random variable y, denoted as kurt(y), is defined as, 

here we assume that y is a zero mean random 
variable. The kurtosis of random variable y is simpler 
if y is further assumed to have unit variance, that is 
E (yz}= l .  Then the kurtosis ofy becomes 

l f y  is a Gaussian random variable then its fourth- 

order moment equals 3(E y ) . Thus, kurtosis is 

zero for a Gaussian random variable, and for most of 
non-Gaussian random variables, kurtosis is nonzero, 
which can be positive or negative. Typically, non- 
Gaussianity is measured by the absolute value of 
kurtosis. The square of kurtosis can also be used. 

Learning Rule for Post Nonlinear 1CA 
Let y now represent for a component of the output 
vector u, y= u,, i=l , .  . .aN. 
The objective function for one point post-nonlinear 
ICA is defined as, 

212  

J(Y) = Ik.rtol)l= IW(wTg(x))l (12) 
Where wT = [WI,  w~, . . ,w.~J is a row vector of  the 
separating matrix W and g(x) = [g l (x l ) ,  
g2(x2), . ~ .,g&~)]', and gi(xJ was defined in equation 
(10). 
Substitution of equation (10) into (13) yields, 

For the linear part, the maximization of the objective 
function can be obtained using the gradient of J(y) 
respects to w, which leads to the fixed p i n t  
algorithm [17]. 

AW cc. sign(kurt(w g(n)))E(g(x)(wrg(x,,3]. (14) 
T 

W 
w e -  

Iiwil 
An adaptive version of this algorithm can be obtained 
by dropping the expectation operation in the 
algorithm, which yields, 

T 
Aw = sign(kurt(w g ( x ) ) ) o ( ~ ) ( w ~ g ( x ) ) ~ )  (16) 

For the nonlinear part, taking the derivative of' (14) 
with respect to the gb yields, 

L 

Equation (1 8) is rewritten in vector notation form as 
T -- - sign(kurt(w g(x))) 

JJ( Y 1 

%i 

T 2  
-12E ( (w g(x))  ] E {  (wTg(x))wkxk-')j. (19) 

Since we are working with the instantaneous values 
of xk, the expectation operator E in (19) can be 
dropped, and the adaptive rules for gk, now becomes 

T 
-8~ig~1(kur t (w g(l)))  

@kj 

Equation (20) is the learning rule for estimating one 
independent component. For multiple independent 
components, we run the algorithm several times with 
different initial points and the independent constrain 



between components. Since each nonlinear functi0n.f; 
does not contribute into the mixing process of the 
original signals, the nonlinear functions g, ,  in the 
inverse process, are adaptively learned without any 
constrains. 
hand, is constrained due to the reason that the 
independence of components requires that they are 
uncorrelated, and in the whitened space, the 
expectation of E((yTz)(wjTz)} = wTwjT7 and 
therefore uncorellatedness is equivalent to 
orthogonality. This proprty is a direct consequence 
of the fact that after whitening, the mixing matrix can 
be taken to be orthogonal. Hence, the constrains is 
that the row vectors w,, w2, ..., wN of the unmixing 
matrix W are orthogonal to each other. 

were then nonlinearly distorted componentwise by 
the log sigmoid functions. The plots of the nonlinear 
mixtures are shown in the Figure 2c). The final 
mixtures are in the form. 

The linear unmixing matrix, on the other x = logsig(As), (21) 

5 .  Simulation and results 
Example 1 
Prepare the simulation data 

Figure 21) Source s ip l s :  a sine wave oflOO E and 
Randomnoise 

Figure 2b) k a l y  mixd signals h m  the sou~ces in 
Figure 2a 

In this example, a sine wave of lOOHz and a 
random Gaussian noise were used as the two 
unknown independent source signals to create the 
mixed signals. The two independent sources are 
shown in Figure 2a). The procedure to generate the 
mixtures is as follow: The two independent source 
signals were linearly mixed together first by a 
randomly generated 2x2 matrix A and their plots are 
depicted in the Figure 2b). The linearly mixed signals 

Figure 2c) Nonlinearly mixed signals f m  the linear 
mixtures in Figure 2b by log sigmoid h t i o n  

Recover the original independent signal process 
The independent sources were recovered 

from the mixture in the following procedure: First the 
DC biases of the mixtures were removed by 
subtracting the means from each signal. The resulting 
unbiases mixtures were then entered into a repeating 
loop which consist of following steps. 

Step 1: the signals were passed through nonlinear 
functions that are approximated by 9Ih order 
polynomials with their coefikients adaptively 
adjusted after each iteration, in order to remove the 
nonlinear distorted which is the logsigmoid functions 
in this particular simulation. 

Step 2: the signals which come out of the nonlinear 
stage are then whitened which produced uncorrelated 
mixture with unit variances. 

Step 3: The whiten signal from step 3 were linearly 
recovered by the un-mixing matrix. 

Step 4: coefficients of the polyncimials from step 1 
and coefficients of the un-mixing matrix were 
updated follow the learning rules 21 and 17, 
respectively. 

The process goes back to step 1 until the criteria are 
met. It took 5 iterations for the simulation to 
converge. The plots of the recovered signals are 
shown in figure 2d). Comparing the original signals 
in the Figure la) and the recovered signals in the 
Figure Id), we can see that the original signals have 
been successfully recovered except that the recovered 
signals phases changed 180 degree and their 
amplitudes have been scaled. However, these changes 
have been predicted theoretically in the previous 
section. 



Example 2 
In the example 1, we did the simulation with 

a sine wave of lOOHz and a random Gaussian noise 
as the unknown independent sources. In this example 
we are going to perform the experiment with two sine 
waves of 100 Hz and 400Hz, respectively as the 
unknown independent sources. 

Figure 2d) Approximaled signals h n  the nonlinear mkTures 
in Figure 2c 

Prepare the data set 

Figure 3a) Source signals: a sine wave of 100 Hz and a ske 
wave of 400 Hz 

shown in Figure 3a). The procedure to generate the 
mixtures is as the same as in the previous example: 
The two independent source signals were linearly 
mixed together first by a randomly generated 2x2 
matrix A and their plots are depicted in the Figure 
3b). The linearly mixed signals were then nonlinearly 
distorted compcnentwise by the log sigmoid 
functions. The plots of the nonlinear mixtures are 
shown in the Figure 3c). 

Figure 3c) Nonlinearly mixd signals Eom the linear mixtures 
in Figure 3b by log sigmoid function 

Recover the original signals 
As in the example 1, the independent 

sources were recovered from the mixtures first by 
removing the mean values from the mixtures. The 
zero-mean mixtures then entered into the training 
process where all the coefficients of the polynomials 
and the unmixing matrix adaptively updated in each 
iteration as described in the previous example. It took 
5 iterations for the simulation to converge. As it is 
shown in the Figure 2.d) the recovered signals are 
very close to original signals except that the phases of 
the recovered signals have been reversed and the 
amplitudes have been scaled. 

Figure 3 d) Approximated signals kom the nonlinear mixture 
in Figure 3c 

Figure 3b) Linearly mixed signals from the sources in 
Figure 3a 

A sine wave of lOOHz and a sine wave of 400Hz a 
random Gaussian noise were used as the two 
unknown independent source signals to create the 
mixed signals. The two independent sources are 

Signal to noise ratio experiment 
Ln this section, we study the performance of 

the proposed post-nonlinear ICA algorithm with a 
variety of nonlinearities by the signal to noise ratios 
(SNR) of the recovered signals. It is noted that in the 
ICA problem, signal to noise ratio practically can not 
be determined due to following reasons: Firstly, the 



original source signals are not available, secondly, the 
signs of the recovered signals can not be determined, 
i.e. the signs of the recovered signals may or may not 
changed compare to the original ones due to the 4'" 
order cumulants and lastly, the amplitudes of the 
recovered signals can not be determined also. 
However, in simulation, the zinknown independent 
sources are unknown only to the algorithm but they 
are available for the author and the readers since we 
have used them to create the mixtures. To overcome 
the problem of the signs of a particular recovered 
signal, we calculate the SNRs of both plus and minus 
signs of the recovered signal and chose the biggest 
one. The amplitude problem can be fixed in 
simulation by forcing the amplitudes of the unktzown 
independent sources and the recovered signals are 
one by normalizing them. With these constrains, the 
signal to noise ratio is feasible to measure the 
performance of the proposed algorithm. 

Table 2 shows the SNRs of the recovered signals 
from the mixtures of two original independent 
sources, a sine wave of 100 Hz and a uniformly 
random signal with a variety of nonlinearities. The 
nonlinearities are required to be monotonic and 
smooth so they can be approximated by polynomials. 
In this simulation, we used the 9Ih order polynomials 
to approximate the inverse of nonlinearities in the 
table. In the table, we used both. We used the same 
nonlinearity on both channels to create the mixtures 
and we also use used different nonlinearities on each 
channel to create the mixtures. The simulations 
converged in 5 to 10 iterations. As it can be seen from 
the table, the sine wave was recovered with SNR of 
around 30 db, which is very good and the noise was 
recovered with SNR of around 12 db. The results in 
the table show that the algorithm has performed well 
on the both increasing monotonic nonlinearity and 
decreasing monotonic nonlinearity, symmetric 
nonlinearity and asymmetric nonlinearity. The 
algorithm has also performed well when the same 
nonlinearity applied to both channels and as well as 
the different nonlinearity applied to each channel 
when creating the mixtures. 

Table 3 shows the SNRs of the recovered signals 
from the mixtures of two independent sine waves, 
one is 100 H z  and the other is 400 Hz. The purpose of 
this simulation is to study the performance of the 
algorithm with different source signals while the 
other aspects such as nonlinearity, the order of 
polynomial, are not changed. As they are shown in 
the table 3, both sine waves were recovered with 
SNRs around 33 dB which is better than the 
performance when recovering the source signals from 
the mixtures of a sine wave and a noise. 
The results from both tables 2 and 3 indicate that the 
proposed algorithm is successfd to separate the post- 
nonlinear ICA mixtures with a variety of 
nonhearities. The results also show that the 

algorithm is successful to separate post-nonlinear 
mixtures with different source signals. The 
performance, however, depends more on the source 
signals than on the nonlinearities. 

6.  CONCLUSIONS 
In this paper, we introduced the nonlinear 

ICA problem and one approach fix solving it. 
Through the counter examples, we haw showed that 
the nonlinear ICA problem, in general, does not have 
a unique solution. Blindly reconstructing the 
nonlinear mapping has made the nonlinear 1CA far 
more complicated than the linear ICA. To make the 
problem simpler and more practical, we just focused 
OUT study in the post-nonlinear subclass. This extra 
information has made it possible to express the 
nonlinear mapping in a parametric form and to inherit 
the results from the linear ICA. The main focus of 
this paper is the development of an algorithm for the 
nonlinear 1CA using higher order statistics. The 
advantage of this method is that it does not need to 
approximate the probability density functions of the 
source signals, which are very crucial and sensitive to 
the performance of the algorithm using mutual 
information approach. Since this algorithm was 
developed from the fixed-point algorithm for linear 
ICA, it inherits the free-leaming rate characteristic 
from the fixed-point method. The simulation results 
have shown that the proposed algorithm is successful 
to separate post non-linear mixtures kom a variety of 
nonlinearities. The simulation results also indicate 
that the performance of the algorithm depends more 
on the type of the source signals than on the 
nonlinearity. For example, the sine waves have been 
recovered with the signal to noise ratio around 32 dB 
and the noises have been recovered with the signal to 
noise ratio around 12 dB. 

Acknowledgements 
The research described herein was performed jointly 
by the Dept. of EECS, University of California lrvine 
and the Jet Propulsion Laboratory, California lnstitute 
of Technology under contract with the National 
Aeronautics and Space Administration (NASA). The 
authors would like to thank Drs. Turn A. Duong and 
T. Daud for their insightful discussion and 
suggestions. 



Table 2: Signal to Noise Ratio of the Recovered Signal sl(t) and sz(t) Using Different Nonlinear Functions 
with Sine Wave and Random Noise as Source Signals 

sl(t) = sin(2~100t f A )  

sl(t) = rand(size(t)) - rand(size(t)) 

Nonlinear Functions Recovered Signal sl(t) 
SNR 

Recovered Signal s2 

SNR 

y = logsig(x) for channel 2 1 
Y = e+) I 28.2245 

y = erf(x) - 0.5 28.2245 
Y =erf(x) f 0.5 28.2245 

12.245 1 
12.2451 
12.2451 
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