
The 25th Digital Avionics Systems Conference
Portland OR, October 15-19, 2006.

MULTIUSER COLLABORATION WITH NETWORKED MOBILE DEVICES

Kam S. Tso, Ann T. Tai, Yong M. Deng, IA Tech, Inc., Los Angeles, CA
Paul G. Backes, Jet Propulsion Laboratory, Pasadena, CA

1 Introduction

In this paper we describe a multiuser
collaboration infrastructure that enables multiple
mission scientists to remotely and collaboratively
interact with visualization and planning software,
using wireless networked personal digital assistants
(PDAs) and other mobile devices.

During ground operations of planetary rover
and lander missions, scientists need to meet daily to
review downlinked data and plan science activities.
For example, scientists use the Science Activity
Planner (SAP) in the Mars Exploration Rover
(MER) mission to visualize downlinked data and
plan rover activities during the science meetings [1].
Computer displays are projected onto large screens
in the meeting room to enable the scientists to view
and discuss downlinked images and data displayed
by SAP and other software applications. However,
only one person can interact with the software
applications because input to the computer is limited
to a single mouse and keyboard. As a result, the
scientists have to verbally express their intentions,
such as selecting a target at a particular location on
the Mars terrain image, to that person in order to
interact with the applications. This constrains
communication and limits the returns of science
planning. Furthermore, ground operations for Mars
missions are fundamentally constrained by the short
turnaround time for science and engineering teams
to process and analyze data, plan the next uplink,
generate command sequences, and transmit the
uplink to the vehicle [2]. Therefore, improving
ground operations is crucial to the success of Mars
missions.

The multiuser collaboration infrastructure
enables users to control software applications
remotely and collaboratively using mobile devices.
The infrastructure includes (1) human-computer
interaction techniques to provide natural, fast, and

accurate inputs, (2) a communications protocol to
ensure reliable and efficient coordination of the
input devices and host computers, (3) an
application-independent middleware that maintains
the states, sessions, and interactions of individual
users of the software applications, (4) an application
programming interface to enable tight integration of
applications and the middleware. The infrastructure
is able to support any software applications running
under the Windows or Unix platforms. The resulting
technologies not only are applicable to NASA
mission operations, but also useful in other
situations such as design reviews, brainstorming
sessions, and business meetings, as they can benefit
from having the participants concurrently interact
with the software applications (e.g., presentation
applications and CAD design tools) to illustrate their
ideas and provide inputs.

2 Related Work

Research efforts on human-computer
interaction have shown that collaborative work can
improve productivity and a number of approaches
have been proposed.

An ideal interface would allow multiple people
to comfortably collaborate directly on the display
surface. SmartBoards [3] and other touch sensitive
surface can allow one or two people to interact
directly with the large presentation screen, but other
meeting participants must resort to manipulation by
proxy — trying to describe which objects to
manipulate and having the user in front of the screen
do it.

A popular approach that allows more people to
point at objects on a large screen is to use a video
projection screen with a camera-tracked laser
pointer [4]. The laser point on the screen is captured
by a video camera, and its location is recognized by

1

image processing techniques. The behavior of the
point is translated into signals sent to the mouse
input of the computer, causing the same reactions as
if they came from the mouse. More complex
interaction paradigms are composed from the
elementary operations “switch on/off” and pointing
of the laser pen. However, interactions using laser
pointers tend to be imprecise, error-prone, and slow.
Although there is effort to correct the imprecise
pointing due to misaligned projector placement by
automatic keystone correction [5], the time delay
seriously affects the interactions.

Early approaches for multiuser inputs use
expensive and special-purpose hardware or use
specially constructed meeting rooms. For example,
MMM [6] (Multi-Device, Multi-User, Multi-Editor)
is one of the first single display groupware
environments to explore multiple mice on a single
display. MMM handled up to three mice. MMM has
a single tool palette and color palette, and a separate
home area to show each user’s name, current color,
and drawing mode. MMM only supports editing of
text and rectangles, and uses color to distinguish
between the users.

As the popularity of personal digital assistants
(PDAs) such as the PalmOS and PocketPC
handhelds grows, researchers have investigated their
use as generic input devices to enable collaborative
work on custom applications. For example, the
M-Pad system [7] supports multiple users
collaborating with PalmOS handhelds and a large
whiteboard. Each user carries their own PalmOS
handheld that acts as a holding area for personal
options and new content as it is created. Users can
then copy this new content to the whiteboard when it
is complete and ready for public viewing. The
Remote Commander and PebblesDraw [8] also use
handhelds to enable multiple users to collaborate
simultaneously. The Remote Commander allows
strokes on the main display area of the PalmOS
handheld to control the PCs mouse cursor, and for
Graffiti input to emulate the PC’s keyboard input.
This allows multiple users to input to existing PC
applications. However, since the window has only
one cursor (the input focus), the users have to take
turn to input to the application and social protocols
are relied upon to control whose turn it is. The

PebblesDraw is a custom application which allows
all users to have their own cursors so that they can
input simultaneously.

The major limitation of the existing approaches
to collaborative interactions in a meeting room is
that their capability is restricted to customized
applications which are specially developed for
collaboration. In contrast, our research aims for
developing basic collaborative capabilities that can
work for all existing software applications, without
the need of modifying the applications. Our
multiuser collaborative infrastructure works on any
computer platforms that support Java, thus covering
most software applications being used. Another
limitation of the existing approaches is that they
only allow multiple users to take turn to interact
with the applications. Since our middleware
maintains the states and sessions of individual users
to enable multiple simultaneous inputs to different
windows of the same application or different
applications, we allow generic sharing of
applications by multiple users. The third limitation
of existing approaches is the inaccuracy and latency
associated with the inputs. This research addresses
the human-computer interaction issues to ensure that
user inputs will be accurate and natural.

3 Multiuser Collaboration
Infrastructure

The multiuser collaboration infrastructure,
illustrated in Figure 1, consists of the Multiuser
Collaboration Controller (MCC) software which
runs on the mobile devices, and the Multiuser
Collaboration Middleware (MCM) which runs on
the desktop computers. Together, they form the
Multiuser Collaboration Suite (MCS) which enables
multiple users to remotely control and collaborate on
desktop software applications using their personal
digital assistants (PDAs) and other mobile devices.

The users interact with MCC running on their
devices to move the cursor, press mouse buttons, and
input keyboard strokes to the desktop computer. The
MCM running on the desktop computer receives and
realizes these remote control actions. In addition,

2

Windowing System

Mouse, Keyboard, Network Drivers

User
State

 Floor
Control

Mouse
 Event

Focus
Event

Screen
Capture

Delivery
 Service

Application 1 Application 2

Window 1 Window 2 Window

Wi-Fi /
Bluetooth /

3G
Network

Multiuser
Collaboration
Middleware

 Sync
Service

Windows /
Unix

Desktop
Computer

Wireless
Mobile
Devices

Multiuser
Collaboration

Controller

Figure 1: Multiuser Collaboration Infrastructure

MCM provides an application programming
interface (API) which can be used by application
developers to provide tightly integration of the
mobile devices and the applications. MCC is
developed in the Java Platform, Micro Edition (Java
ME) which allows it to be run on a wide variety of
mobile devices such as PalmOS and PocketPC
PDAs, Java-enabled cellphones, and Windows or
Unix laptop computers. Connectivity between the
mobile devices and the desktop computers is
supported by Wi-Fi, Bluetooth, and 3G Mobile
Phone wireless network technologies.

4 Interaction and Collaboration
Techniques

A number of human-computer interaction
techniques have been developed to enable natural,
fast, and accurate interactions with host applications
using mobile devices to accommodate the
limitations on screen size and input capabilities.
Other features such as floor control and user
authentication have also been implemented to
support collaboration on interacting with the host
applications among the users.

4.1 Direct Mapping and Relative Mapping

The most basic interaction with a software
application is moving the cursor to a desired
location. It needs to be done quickly and accurately.

3

(a) Logon Panel (b) Main Panel (c) User Panel

Figure 2: MCC Panels on Different Mobile Device Platforms

Cursor movement can be accomplished by sending
cursor motion commands to the host based on the
tapping or dragging of the stylus on the device
screen. There are two basic approaches to map the
stylus tapping or dragging on the device to the
cursor movement on the screen of the host computer
running the software application: Direct Mapping
and Relative Mapping.

In the Direct Mapping approach, each pixel on
the device screen is mapped to the absolute
coordinate of the computer screen. This approach
allows the user to move the cursor from one location
to another with a tap on the device screen. For
example, tapping in the upper left corner of the
device screen would move the cursor to the upper
left corner of the PC screen. This approach is the
fastest way to move the cursor and can be
accomplished with the fewest commands between
the device and the host computer.

In our initial development we implemented this
Direct Mapping approach. However, our experience
shows that it does not work well. The device screen
(160x160 for PalmOS PDAs and 240x320 for
PocketPC PDAs) is much smaller than the computer
screen (usually with a resolution of 1024x768 or
1280x1024). Thus each pixel on the device

represented 6 or more pixels on the computer,
making cursor positioning inaccurate. Moreover,
since characters are often less than 10 pixels wide,
this also makes it hard to select individual
characters. Furthermore, the positions reported by
the devices are jittery, varying by 1 or 2 pixels in all
directions when the stylus is kept still, so the cursor
jumps around the computer screen.

The other approach is Relative Mapping in that
stylus movement across the device screen is mapped
to an incremental movement across the computer
screen, so the actual position where the user puts
down the stylus is not important; just how far it is
moved from the initial position. This is analogous to
the small touchpad on some laptops. We implement
Relative Mapping in MCC and find it provides
accurate and smooth cursor movement. But there is
also problem associated with using relative
coordinates. It would take many strokes of the
device if one needs to move the cursor from one side
of the screen to the other. To mitigate this problem,
we provide several buttons to control the speed of
cursor movement. The 1x button maps each device
pixel increment to each computer screen cursor
increment, while the 4x button maps each device
pixel increment to four pixel increments on

4

computer screen. In 4x speed, moving the stylus
across the device screen can almost move the cursor
across the computer screen. We found that the
combination of 1x and 4x cursor speeds enables the
device users to achieve fast and accurate cursor
movement and positioning. Figure 2(b) shows the
MCC Main Panel. The grid area in the panel is used
by users to stroke the stylus for cursor movement.

4.2 Mouse Buttons Simulation

Besides positioning the cursor, the mouse is
also used to select and activate objects, drag and
drop objects, activate and select popup menus, etc.,
in software applications that have a graphical user
interface. The functionalities require the device be
able to send press, release, click, and double-click of
the left and right mouse buttons. Some Windows
and Unix applications also use inputs from the
middle mouse button and mouse wheel.

Most PDAs has four built-in hardware buttons
to launch commonly used applications and a
directional pad for cursor movement and object
selection. We make use of the hardware buttons for
generating mouse button events and the directional
pad for mouse motion. Using this method, MCC
programs hardware button #1 as the left mouse
button. Mouse button events such as press, release,
click, and double-click are generated when the
hardware button is pressed, released, clicked, and
double clicked. Mouse dragging is achieved by
stroking the stylus while the button is pressed.
Hardware button #2 is programmed as the right
mouse button and similarly generates the right
button press, release, click, and double-click. The
remaining buttons are programmed for generating
middle button events.

The directional pad is used to generate mouse
motion events. When it is pressed on the left, a
mouse motion event is generated for cursor
movement in the negative x direction. The number
of pixels to move depends on how long the pad is
pressed. The longer it is pressed, the faster the
cursor will be moved. If the directional pad is
clicked, only one pixel will be moved. This enables
very accurate movement of the cursor. Similarly,

when the directional pad is pressed toward the right,
up, and down, it generates positive x, negative y, and
positive y motion, respectively. We also
programmed the press of the pad at its center as a
left mouse click. This can be conveniently used for
object selection.

4.3 Online and Offline Text Input

We developed two methods for the user to input
text to the host applications: Online-Text and
Offline-Text Input.

In Online-Text Input, the user either uses the
built-in keyboard or the PDA virtual keyboard to
enter text directly to the host application. Every key
the user inputs to the device is sent to the host
application as a single character. Editing keys, such
as Backspace, are also sent out as they are entered.
But some key sequences, such as Shift A, are
processed locally. They are sent as a single
character, ‘A’ in our example, instead of two keys.
The Online-Text Input method is good for sending
editing keys. But it is not good for long text input
when multiple users are interacting with the host
application. Every time a key is entered, MCM
needs to change the input focus of the host
application to that of the text-input user. If another
user is also working on the application, the input
focus, and even the active window if they are not
working on the same window, will keep changing.

The contention problem created by
simultaneously inputs can be alleviated by the
Offline-Text Input method. In Offline-Text Input, the
user opens a TextBox in MCC to compose text
input. During text composition, the user can use
keys such as Backspace, Delete, Arrows to edit the
text. After the user finishes composing the text, the
complete text string is sent to MCM by pressing the
OK button. The Offline-Text Input method allows
users to compose text input on their own devices
locally without interfering with the host application.
Therefore, it is a fast and efficient way to input a
long text. However, since the editing keys are used
to edit text locally, there is no way to send editing
keys to the host application for changing the text that
has already been input. Thus a combination of

5

Online-Text and Offline-Text Input methods can best
serve text inputs.

4.4 Commands Lookahead and Collapsing

Messages carrying the Mouse Motion events are
sent from the MCC to MCM at a very high rate
continuously as the user strokes the stylus on the
device screen. The high message rate ensures
smooth cursor movement. However, when MCM is
run on a relatively slow computer, Mouse Motion
messages will not be processed fast enough and
results in having the messages accumulated in the
buffer. When this happens, the cursor movement on
the host computer will lag behind the stylus
movement.

We use the commands lookahead and
collapsing technique to mitigate the cursor lagging
problem. When MCM processes a Mouse Motion
message, it looks ahead of any pending messages
queued in the buffer. It reads all pending Mouse
Motion messages sent by the same device and
combines the move increments in the messages
together to perform a single cursor move. This
technique solves the cursor lagging problem,
although the cursor will be seen to be a little jittery.

4.5 Floor Control for Multiuser
Collaboration

Without floor control, all connected users can
move the cursor, send mouse button events, and
enter texts at their own will. A rogue user can
dominate the control by moving the mouse
continuously, or more seriously, sending inputs that
could cause the application to act incorrectly. Even
in a cooperative environment, it is desirable to be
able to allow or disallow certain users for remotely
controlling the applications when collaboration of a
specific group of users is needed, or when the work
load of the host computer becomes too heavy.

We developed floor control for coordinating
multiuser collaboration. We first classify the users
into two types: managers and participants.
Participants can interact with the host application
only when they are enabled by the manager. The

Manager has the power to enable and disable
application interactions of selected participants by
using the MCC User Panel, as shown in Figure 2(c).

When the User Panel opens, MCC gets the list
of users who are currently participating in the
remote control from MCM. The User Panel displays
the names of users and their user types. The
checkbox next to each of the user names shows
whether the user is enabled for control or not.
Although all users can open the User Panel to view
the list of users and their status, only the managers
can click the checkbox to enable or disable the
participant users for control. When the checkbox of
a user is clicked, a message is sent to MCM to
enable or disable the control of that user. If a user is
disabled, the requests from that user for cursor
movement, mouse click, and key input will be
ignored. The User Panel also provides a “Disable
All” checkbox so that the manager can use it to
enable or disable all the participant users.

4.6 User Authentication and User Type

Authentication is used to provide security and
identify the MCM users. Before a user can
participate in multiuser collaboration, the user needs
to log onto MCM using the MCC Logon Dialog, as
shown in Figure 2(a). The username and password
are sent to MCM which authenticates the identity of
the user against the password file. This avoids
unauthorized users to participate in multiuser
collaboration. The password file also contains the
user type of the user. MCM can then use the user
type information to support floor control.

5 Multiuser Collaboration
Middleware

The Multiuser Collaboration Middleware
(MCM) is the layer of software that runs on a
desktop computer to enable multiple users to
collaborate on applications running on the computer
remotely using their mobile devices. MCM accepts
connections from the mobile devices, maintains the
states, sessions, and interactions of the individual

6

users to support multiuser collaboration.

MCM is developed in Java and as a result it can
be run on any host computers that support the Java
Platform, Standard Edition (Java SE), which include
PCs, workstations, and servers running operating
systems such as Windows, Mac OS X, Linux, and
Solaris. MCM has also been developed to be
application-independent in that it can support any
software applications running on the host computers.

Figure 1 shows the services provided by MCM
to the mobile devices and the host applications.
Service requests from the mobile devices include
cursor movement, mouse button events, input focus,
user state, data delivery, and data synchronization.
The service requests from the mobile devices are
contained in messages with a specific format
designed to be efficient in transmission and
processing. After the request is received, MCM
interacts with the operating system, windowing
system, and applications on the host computer to
realize the service requests.

5.1 Connection Service

When MCM starts, it spawns a thread listening
to a stream socket port for connection from the
mobile devices. The multi-threaded design allows
MCM to service requests from other mobile devices
while accepting new connections.

Once a connection is accepted, a device thread
will be spawned and dedicated to handling the
communications and serving the requests of that
connected device. The device thread is responsible
to send and receive messages with the device. It also
closes the socket and clean up its state when device
disconnection is detected. Commands lookahead for
speed up the handling of multiple pending requests
and byte-order conversion for handing devices of
different processor architectures are also handled by
the device thread.

As MCM uses the stream socket TCP/IP
protocol, it can accommodate different network
protocols at the link and physical layers. Therefore,
the devices can communicate with the host computer
with wired Ethernet connection, Wi-Fi wireless

connection, or Bluetooth point-to-point network
connection.

5.2 User Management

MCM maintains and manages the states of the
users connected for multiuser collaboration. It
supports the user logon process by authenticating the
user and password against the stored password file.
It also retrieves from the password file the user type
of the user. MCM can also be run with the option
not to authenticate users. In this case, MCM just
uses the password file to retrieve the user type. In
public meetings with a large number of participants
and security is not a concern, MCM can also be run
without a password file. In this case, anyone can log
on and each is assigned as the Manager user type.

After a user is logged on, MCM assigns the
connected user a unique UserId. This UserId is used
to identify the user in future interactions. MCM
maintains a list of UserState objects for all the
connected users. When the user logged on, MCM
creates a UserState object for the user. The
UserState object contains the user’s name, UserId,
connection, and current cursor location, active
window, and input focus, and a timestamp of the last
message the user sent. Since each MCC/MCM
message includes the UserId in its header, MCM
uses it to locate the user’s UserState and uses the
state information to support multiuser collaboration.

5.3 Mouse/Keyboard Control

MCM services requests of mouse and keyboard
actions from the connected users. The mouse events
include 1) cursor movement, 2) button press, release,
drag, double-click events of the left, right, and
middle mouse buttons, 3) single character of
keyboard input, and 4) multiple character string of
keyboard input.

MCM makes use of the Java Robot API to
realize the requests. The Robot API is a standard
feature of the Java Platform. It provides a
programmatic interface to generate native system
input events. Using the API to generate input events
differs from posting events to the AWT event queue

7

or AWT components in that the events are generated
in the platform’s native input queue. For example,
Robot.mouseMove() will actually move the
mouse cursor instead of just generating mouse move
events. MCM realize the user’s mouse and keyboard
requests by invoking the appropriate methods of the
Robot API.

5.4 Window/Focus Management

MCM manages the active window and input
focus associated with each connected user to support
multiuser collaboration such that inputs from one
user will not be entered into another user’s working
window. This feature only supports Java
applications. The Java platform provides APIs for
listening to window and focus events fired during
execution. To make use of this feature, the
application needs to instantiate the
MCMiddleware object which will register itself to
listen to all window and focus events. When the
application changes its active window or input
focus, an event will be generated and sent to
MCMiddleware object. MCM will then be able to
identify the nature of the event and save the active
window or focused widget to the state of the user
who initiated the event. Future requests from the
same user will then be forwarded to the active
window and input focus associated with the user.

5.5 Screen Capture

Another feature that is important to mission
scientists is the ability to capture a portion or the
whole screen of the desktop and display it on the
device. To capture the screen, the user first moves
the host computer cursor to the location where the
screen is to be captured. The user can then select
one of the Screen Capture menu items to make the
request. There are five menu items, each for a
different scaling factor. The “1x Image” menu item
requests MCM to capture the screen in the full
fidelity without scaling. The same desktop screen
pixels will be displayed on the device, as shown in
Figure 3(a). The images can be clearly viewed on
the device without any degradation. However, since

the PDA has a small screen, only a small area of the
desktop can be displayed.

Other menu items are provided to capture the
screen with different scaling factors. They capture a
larger desktop screen area and shrink it to fit into the
device screen. For example, the “2x Image” captures
an area of 480×640 on the desktop screen and is
shrunk by a factor of 2 to display on the device
240×320 screen.

The “Whole Screen” menu item captures the
whole desktop screen and the image will be scaled
to fit into the device screen. Figure 3(b) is a
snapshot of MCC which is displaying the whole
desktop screen. The whole SAP Downlink Browser
can be seen on the device, even though without the
details. The “Whole Screen” capture is useful to the
user for an overview of what the desktop computer
is running. The user can use it to quickly move the
desktop cursor to a location at which the user taps
the stylus under cursor direct mapping. As discussed
in Section 4.1, Relative Mapping is usually used for
cursor movement. When the desktop screen is
displaying the captured desktop screen, the mode for
cursor movement is changed to Absolute Mapping.
This allows the user to tap on the object seen on the
mobile device to move the cursor on the desktop
directly to that object.

6 Integration of Mobile Devices to
Host Applications

MCM provides an application programming
interface to support the use of MCM services by the
applications. Using the API, we integrated MCM
with a development version of the Science Activity
Planner (SAP) and demonstrated multiuser
collaboration. SAP is the primary science operations
tool in the Mars Exploration Rover (MER) mission
for scientists to visualize downlink data and specify
desired uplink activities [1]. The integration of
MCM to SAP enables the MER scientists to use
their PDAs or laptops to interact with SAP during
science planning.

The MCM API includes the constructors and
several service methods. Before an application can

8

(a) Full Fidelity (b) Whole Screen

Figure 3: Screen Capture

make use of the MCM services, it needs to
instantiate a MCMiddleware object. Several
constructors available to instantiate the
MCMiddleware object for specifying a different
socket port and a different debug level. The MCM
methods are used to start and stop of MCM services,
listen to MCM events, get a list of currently
connected users, and identify the user who sends the
last message for remote control, etc.

6.1 Navigation in the 3D View

The 3D View of the SAP Downlink Browser
displays the 3D terrain and rover, as shown in Figure
4. Targets, features, and clicked points are also
displayed. MCM enables the scientists to use their
devices to navigate within the 3D View, such as
fly-over or walk-through the 3D terrain. Navigation
is achieved by pressing the device hardware buttons
and at the same time dragging the device screen with
the stylus.

6.2 Designation of Targets

MCM enables the scientists to designate targets
in SAP with their names attached to the targets. This
feature allows the scientists to point out objects in
the panorama for discussion. Figure 4 shows two
targets selected by the users and a feature.

6.3 Remote Plan Generation

The SAP Uplink Browser is used to create and
edit activity plans. The left side of the Uplink
Browser is an uplink selection tree that allows the
user to load a previously saved plan. A plan is
opened from the selection tree by double-clicking on
it. The right side of the Uplink Browser displays the
activities specified in the plan, and additional views
such as resource consumption plots. The MCM
enables the scientists to interact with the Uplink
Browser remotely using their devices to select plans,
enter activities, and specify arguments.

9

Figure 4: Navigation in the 3D View

6.4 Multiple Cursors

Moving the cursor in the desktop computer
remotely is the most used MCM service. However,
the window system, whether it is WindowManager
under Microsoft Windows or X Window under
Unix, only displays a single cursor on the computer
screen. As a result, after a user places a cursor on an
object, the cursor will be moved away when another
user sends a mouse move message. This is
undesirable because the users cannot see their
current cursor locations and they could lose track of
what they were doing.

MCM enables multiple cursors to be displayed
by maintaining the state of the individual users after
they have connected to the middleware. The user
state contains the user’s name, UserId, connection,
last cursor location, active window, input focus, and

a timestamp of the last message the user sent. Since
each MCC message includes the UserId in its
header, MCM can use it to locate the user’s state and
use the state information to support the display of
multiple cursors. When a user sends a mouse move
message, MCM records the new cursor location and
the user state and displays a cursor, labeled with the
name of the user, on that location.

7 Conclusions

This paper describes the development of a
multiuser collaboration infrastructure which enables
the scientists to remotely interact and collaborate on
the software applications using personal digital
assistants and other mobile devices during mission
planning.

10

With the availability of low cost, light weight,
and small size mobile devices and wireless
networks, meeting rooms have become technology
rich. And very often, meetings are conducted with a
software application as the focus of discussion. It
could be the Microsoft PowerPoint in presentation, a
software whiteboard in brainstorming, or a CAD
tool in design review. The multiuser collaboration
infrastructure enables multiple users to share,
interact, and collaborate on one or more software
applications in these technology-rich spaces.

MCC benefits from being developed in Java ME
because Java is widely supported by the wireless
service providers and cellular handset
manufacturers. The strong Java support enables
MCC to run on the next generations of cellphones.
As the wireless service providers support
over-the-air provisioning, a service that allows the
end users to add functionality, like games, utilities,
and business applications, directly “over-the-air” to
the cellphones, MCC can be distributed by these
providers as a service. We have also implemented an
MCM Java applet which allows it to be download
and run on any web browser.

8 Acknowledgements

The research described in this paper was carried
out at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the
National Aeronautics and Space Administration as
part of the Mars Technology Program and Mars
Exploration Rover mission, and by IA Tech, Inc. as
part of NASA Small Business Innovative Research
(SBIR) Program Contract NAS3-02184.

References

[1] J. S. Norris, M. W. Powell, M. A. Vona, P. G.
Backes, and J. V. Wick, “Mars Exploration
Rover operations with the Science Activity
Planner,” in Proceedings of IEEE Aerospace
Conference, (Big Sky, MT), Mar. 2005.

[2] F. P. Seelos et al., “FIDO prototype Mars rover
field trials, May 2000, Black Rock Summit,
Nevada,” in Proceedings of the 32nd Lunar and
Planetary Science Conference, (Houston, TX),
Mar. 2001.

[3] SMART Technologies, SMART Board 580.
http://www.smarttech.com/.

[4] C. Kirstein and H. Mueller, “Interaction with a
projection screen using a camera-tracked laser
pointer,” in Proceedings of the International
Conference on Multimedia Modeling (MMM
98), (Lausanne, Switzerland), pp. 191–192, Oct.
1998.

[5] R. Sukthankar, R. Stockton, and M. Mullin,
“Automatic keystone correction for
camera-assisted presentation interfaces,” in
Proceedings of the Third International
Conference on Advances in Multimodal
Interfaces (ICMI 2000), (Beijing, China), Oct.
2000.

[6] E. A. Bier and S. Freeman, “MMM: A user
interface architecture for shared editors on a
single screen,” in Proceedings of the ACM
Symposium on User Interface Software and
Technology, pp. 79–86, 1991.

[7] J. Rekimoto, “A multiple device approach for
supporting whiteboard-based interactions,” in
Proceedings of CHI 98: Conference on Human
Factors in Computing Systems, (Los Angeles,
CA), pp. 344–351, Apr. 1998.

[8] B. A. Myers, R. C. Miller, B. Bostwick, and
C. Evankovich, “Extending the windows
desktop interface with connected handheld
computers,” in Proceedings of the 4th USENIX
Windows Systems Symposium, (Seattle, WA),
pp. 79–88, Aug. 2000.

25th Digital Avionics Systems Conference
October 15, 2006

11

End of File

