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ABSTRACT

This paper discusses the Spitzer Instrument Pointing Frame (IPF) Kalman Filter algo-
rithm. The IPF Kalman filter is a high-order square-root iterated linearized Kalman filter,
which is parametrized for calibrating the Spitzer Space Telescope focal plane and aligning the
science instrument arrays with respect to the telescope boresight. The most stringent cali-
bration requirement specifies knowledge of certain instrument pointing frames to an accuracy
of 0.1 arcseconds, per-axis, 1-sigma relative to the Telescope Pointing Frame. In order to
achieve this level of accuracy, the filter carries 37 states to estimate desired parameters while
also correcting for expected systematic errors due to: (1) optical distortions, (2) scanning
mirror scale-factor and misalignment, (3) frame alignment variations due to thermomechan-
ical distortion, and (4) gyro bias and bias-drift in all axes. The resulting estimated pointing
frames and calibration parameters are essential for supporting on-board precision pointing
capability, in addition to end-to-end “pixels on the sky” ground pointing reconstruction ef-
forts.

During Spitzer’s 3 month In-Orbit Checkout (IOC) period, the space telescope perform
a series of repeated calibration maneuvers for each science array, taken on a time interval
spanning less than 10 hours, giving rise to a calibration data set for that array. After the
calibration data set is available for a given science array, the IPF filter processes the collected
attitude history data and instrument centroid data, and produces an estimate of the instru-
ment frame along with estimates of other alignment and calibration parameters. For each
array, the calibration will be performed twice. Specifically, a “coarse” calibration will be per-
formed before the optics have fully cooled, and a “fine” calibration will be performed after the
telescope is fully operational. The basic philosophy is to combine a high-order Kalman filter
with carefully designed on-orbit experiment designs to achieve the overall desired calibration
accuracy.

In order to meet requirements, the IPF filter has several novel and important features
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including,

1. a gyro pre-processor which allows gyro sensitivites to be pre-computed and stored
beforehand. This completely eliminates the need for repeated and time-consuming
gyro sensitivity propagation during each iteration of the filter cycle;

2. a parameter “masking” capability which allows one to define the state using any arbi-
trary subset of parameters. This provides a flexible parametrization which can be used
to match different levels of model fidelity to a wide variety of science array types;

3. a formulation based on a square-root iterated linearized Kalman filter for high accuracy
and good numerical conditioning;

4. the flexibility to sequentially update prior estimates based on multiple data sets, where
certain subsets of parameters are expected to change and not to change from one data
set to another;

5. a sandwich-based experiment design concept which starts and ends each calibration
maneuver on the same reference sensor. This provides observability of all desired pa-
rameters, and allows the same calibration filter to be used for a multitude of different
array types (cameras, spectroscopy slits, scanning instruments);

6. the ability to integrate both visible and infra-red sources in the same calibration data
set;

7. the ability to process “partial” centroids which only contain information along one axis
of the array. This occurs, for example, when calibrating the entrance aperture of a
spectroscopy slit by first scanning a source across the narrow slit width, and then along
its length at a later time;

8. operation in one of several possible “lite” modes to allow a trade-off between accuracy
and robustness. For example, a completely gyroless lite mode can be invoked if there
is only minimal or incomplete data.

The Kalman filter performance and all operational modes were benchmarked using sim-
ulated data produced by the IPF Filter Unit Test Environment (FLUTE). FLUTE is a
unit test environment specifically designed for simulating focal plane survey maneuvers and
includes all representative systematic pointing errors, and optical distortions. Based on ex-
tensive FLUTE-based testing, the filter was found to meet all operational and performance
requirements.

This document includes: (i) The IPF filter functional and performance requirements
definitions, (ii) The filter model parameter derivations (i.e. state variables), (iii) The filter
formulation, (iv) An overview of the algorithm implementation and (v) The filter verification
process.
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1 INTRODUCTION

1.1 Overview of the Spitzer Mission

The Spitzer Space Telescope will provide high-resolution views of the universe in the infrared
spectrum, and represents the fourth and final element in NASA’s Great Observatory program.
The new space telescope is presently scheduled for launch on a Delta II in the August 2003
time frame. Spitzer has an 85 cm telescope aperture and uses a combination of passive
cooling and liquid helium to keep its infrared instruments at temperatures of 1.4 degrees
Kelvin. It will be launched into an Earth-trailing heliocentric orbit, slowly moving away
from Earth with a small drift rate of about 0.1 AU per year [14]. Working in the infrared,
Spitzer complements the range of science observations and wavelengths covered by the other
three previous NASA Great Observatories (Chandra for X-ray, Hubble for visual, Compton
GRO for gamma-rays).

Spitzer is designed to carry three science payload instruments: the Infrared Array Camera
(IRAC), the Infrared Spectrograph (IRS) and the Multi-band Imaging Photometer for SIRTF
(MIPS). IRAC is a general-purpose camera operating at near and mid-infrared wavelengths,
which is designed to produce images 5.12 arc-min square in angular size. The images are
taken simultaneously at 3.6, 4.5, 5.8 and 8.0 microns using four detector arrays of 256x256
pixels each. IRS provides high and low-resolution spectra of astrophysical objects over
wavelengths of 5.3 to 40 microns. Separate modules of 128x128 pixels are available to be used
for low-resolution spectroscopy in the 5.3-14 micron wavelength (Short-Low), high-resolution
spectroscopy at 10-19.5 microns (Short-Hi), low-resolution at 14-40 microns (Long-Low), and
high-resolution at 19-37 microns (Long-Hi). The IRS instrument includes peak-up arrays to
provide real-time centroids of targeted IR objects, to facilitate their accurate transfer to
the spectroscopy slits [1]. MIPS provides long wavelength imaging and large area mapping
over wavelengths of 20 to 200 microns, and has certain limited spectroscopy capability. The
MIPS payload has three detector arrays consisting of a 128x128 pixel array for images at 24
microns, a 32x32 array for images at 70 microns and spectra from 50-100 microns, and a 2x20
array for images at 160 microns. A main distinguishing element of MIPS instrument is its
scanning mirror, which moves along a single axis and is coordinated with spacecraft motions
to facilitate efficient science observations.

The most stringent calibration requirements are imposed by the IRS Short-Hi spec-
troscopy slit which is only 4 arcseconds wide. The need to target a celestial source to the
center of the slit for high-resolution science places tight requirements on both spacecraft
attitude control, knowledge and calibration accuracy.

During the In-Orbit Checkout (IOC) period (from launch to the first 3-4 months into the
Spitzer operations), a portion of spacecraft operational time will be dedicated to learning
the instrument frame alignments with respect to the Telescope Pointing Frame (TPF). There
are up to 128 frames to be calibrated (including those that are inferred or derived), and
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the developed Instrument Pointing Frame (IPF) Kalman filter will support these activities
by estimating the Prime frames and calculating Inferred frames. The IPF operation will be
interactively coordinated with the Spitzer spacecraft planned maneuvers and data links as a
combined Focal Plane Survey (FPS) effort.

1.2 Spitzer Focal Plane Survey and IPF Filter Operations

There are 17 detectors of the array or slit type (cf., Figure 3.3) located in the circular focal
plane associated with the IRAC, IRS and MIPS payload instruments. In order to enable
efficient attitude commanding, 128 key frames are defined in the focal plane and stored as
quaternions in an on-board frame table. An example frame table is shown in Table 3.6. The
on-board frame table indexes these quaternions with numbers from 1 to 128, and lies at the
heart of all pointing commands given to the spacecraft. For example, a typical command
might be to point frame number 95 to a specified RA and DEC location on the sky. From
this information and a sun-avoidance constraint, the attitude is determined uniquely.

Of the 128 frames, about 30 frames are estimated directly and are denoted as “Prime”.
Certain other frames are defined in terms of their pixel offset relative to a nearby Prime
frame. These frames are denoted as “Inferred” because their alignment is estimated by the
IPF filter based on their proximity to the associated Prime frame.

In order to estimate the desired IPFs, the spacecraft must go through series of maneuvers
to place a given star at several locations on the instrument array to be calibrated, and also
on two reference PCRS detectors. The measurements collected by the spacecraft through
these maneuvers must be informative enough to extract the desired parameters. Therefore,
prior to any IPF filter execution, the Spitzer mission operations must design a campaign of
maneuvers that meets the estimation performance and observability requirements. The type
and number of maneuvers are carefully selected such that the desired parameters associated
with each frame can be identified and estimated. A typical maneuver consists of placing
a source on the first PCRS, moving it to the second PCRS, moving it to several locations
on the science array, and then moving it back to the first PCRS. After a completion of a
calibration data set, the Spitzer spacecraft downlinks measurements to a designated ground
station where each of the IPF input file providers decodes the telemetry and creates necessary
IPF input files.

When the IPF input files arrive to the IPF team, the team runs the IPF filter and
obtains estimates of the desired Instrument Pointing Frames (IPFs). In addition, the IPF
filter also provides corrections to systematic errors including: (1) optical distortion, (2) scan
mirror misalignments (i.e., for the MIPS instrument), (3) frame alignment variations due to
thermomechanical distortion, and (4) gyro bias and bias-drift. The IPF filter outputs are then
uploaded to the Spitzer spacecraft, as they become available, to update the on-board frame
table. Also the IPF filter outputs are used by the science and engineering teams for planning
and analysis efforts, and for ground-based ”pixel on the sky” pointing reconstruction.
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Users of the IPF filter should have a working understanding of modern estimation theory.
This document lays out the filter derivations, defines necessary terms and variables, and walks
through the algorithm in great detail. In combination with the document “Spitzer Instrument
Pointing Frame (IPF) Filter Software Description Document and User’s Guide”[13], these
documents will provide sufficient background to understand the filter and provide guidelines
for proper filter operation.

1.3 Organization of the Document

This document describes the development of the IPF filter algorithm and is organized as
follows. Section 2 summarizes the IPF design requirements. This section includes a dis-
cussion of the maneuver design, defines the estimation error budgets, and outlines the filter
input-output (data file) requirements. All necessary coordinate frame definitions are given
in Section 3. In this section, the time-line for the filtering process is defined along with the
frames needed to derive the filter equations (such as TPF, IPF etc.). Section 4 describes the
filter state parametrization. This section introduces all models used to derive the filter state
variables. The models include various systematic errors such as optical distortion, mirror ro-
tational misalignment, thermomechanical alignment variations, and gyro drift bias. The filter
state vector is defined. Section 5 derives the IPF Kalman filter. This section includes the
summary of the filter equations, the filter structure and associated sensitivity functions. Spe-
cial features of the filter such as the derivations for the gyro pre-processor are documented in
this section. Section 6 documents the actual implementation of the filter algorithm. The in-
put/output file interface and the MATLAB User Interface (MUI) are discussed. This section
explains how the gyro preprocessing and scalable Kalman Filter architecture is implemented.
This section also discusses how the IPF filter generates output data and performs error anal-
ysis. After filter development was completed, the filter algorithm was tested and verified
using FLUTE generated data. Section 7 describes this software verification process. This
section briefly summarizes the test cases and the results. Appendix A lists the acronyms
used in this document. Appendix B includes the filter interfaces with the input files. This
information can be used to relate the mathematical variables with the input file database.
While deriving the filter equations, numerous mathematical proofs and ancillary results were
necessary. These results are summarized in Appendix C for completeness.
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2 IPF REQUIREMENTS

2.1 IPF Kalman Filter Design Requirements

An overall high-level design requirement is for the IPF filter to automate the focal plane
calibration process and support time-constrained IOC operations. More specific design re-
quirements are itemized in Table 2.1. A MATLAB implementation was selected to keep the
development cycle time short, and to leverage experiences drawn from the Shuttle Radar
Topography Mission (SRTM) where a similar MATLAB-based pipeline was successfully used
to process large attitude and calibration data sets [25].

Given the input files, the IPF filter is required to merge the CA and CB files, and per-
mit the removal of bad data by editing. The filter should operate using only a few simple
commands and minimal required user interactions. The filter architecture should be flexible
enough to support calibration of the entire suite of Spitzer instruments and array types by
manipulating only a few software configuration flags and mask vectors. The code should
handle partial centroids associated with spectroscopy slit type measurements. The same core
filter routines should be callable from the multi-run merge tool which enables estimation of
frames using data sets spanning several days. The filter software should self-generate the
output files and self-archive all filter execution paths and configurations for each run. The
output should include an independent least squares analysis, show plots of the results, and
summarize the calculations of Prime and Inferred frames. In addition, the filter should be
computationally efficient so that an IPF filter run (input data analysis, filter execution, filter
output data analysis and the frame table entry update) can be completed within the IOC
time-line allocation of 4 hours. This 4 hour allocation is measured from the time a complete
data set is received, to the time the IPF filter outputs are logged into the mission archive.

All of the above design requirements and goals were met by the developed IPF architec-
ture. The use of configuration flags and masking vectors solved the automation and archiving
issues, and the gyro-pre-processor was developed to minimize computer memory and CPU
intensive calculations.

2.2 Experiment Design - Sandwich Maneuvers

For each instrument array to be calibrated, the in-flight experiment design consists of com-
manding the Spitzer spacecraft through a series of “sandwich” type maneuvers as shown in
Figure 2.1. Each sandwich maneuver (i.e., maneuver) consists of the following sequence of
steps.

1. Locate a target star on the first PCRS detector, PCRS 1, and take a centroid measure-
ment
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2. Move target star to PCRS 2, and take centroid measurement

3. Move target star to several positions on the desired science instrument array, and take
a centroid measurement at each location (for example: a 5 of diamonds pattern, or a
3x3 grid)

4. Return to PCRS 1 detector, and take centroid measurement

PCRS 1

PCRS 2

S/I
Array

2

3

1

Figure 2.1: Spitzer Sandwich Maneuver for IPF Calibration

The Telescope Pointing Frame (TPF) is defined in terms of the locations of the two
PCRS boresight unit vectors (cf., Section 3.3). These boresight unit vectors are defined by
the null points at the centers of the two PCRS sensors, and are important because they can
be consistently and repeatably established by empirical measurements taken in-flight. By
transitioning between PCRS1 and PCRS2, and the science array, the sandwich maneuver
becomes informative about the location of the IPF with respect to the TPF, and the TPF
with respect to the body frame (defined by the star tracker). Also, by beginning and ending
on the same PCRS, the sandwich maneuver is informative about accumulated attitude error
due to gyro drift, which can be calibrated out accordingly.

For spectroscopy instruments it is desired to calibrate fiducial points in the entrance
aperture rather than in pixel coordinates. In this case the centroid measurements used for
calibration must be replaced by a suitable pseudo-measurement. This is done by scanning a
source across the entrance aperture, and reporting a centroid at the slit center at the time of
peak intensity, and reporting centroids at the slit edges at times when the intensity has fallen
to an agreed upon level relative to the peak. The resulting time-tagged list of aperture-
relative locations is reported to the IPF filter as if it were a list of time-tagged centroids
obtained from an array of real pixels.
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For longer wavelength arrays such as the MIPS 70 um, 160 um, and SED, the sandwich
maneuvers can be designed so that the source used for PCRS centroiding is different from
that used for science centroiding. This may be needed due to the general difficultly in
finding a single target source which centroids consistently at both visible and long-infrared
wavelengths.

Most generally, the science portion of the sandwich maneuver can be designed to include
simultaneous centroids taken from a group of stars (e.g., an astrometric cluster) which are off-
set and/or dithered in any desired pattern to generate a large number of calibration centroids.
This approach is useful for calibrating the plate scales and optical distortions, particularly
when the centroids are large in number and cover the entire array.

Sandwich maneuvers are typically repeated several times to allow statistical averaging of
results, giving a corresponding reduction of errors. The performance and convergence of the
IPF filter depends on both the sandwich maneuver design and the total number of maneuvers.
The collection of all sandwich maneuvers associated with a single science array is called a
“calibration survey”. The IPF filter is run separately on each calibration survey data set.

2.3 Performance Requirement and Error Budget

The absolute end-to-end pointing requirement for Spitzer is 5 arcseconds [9] (1-sigma, radial),
and 1.4 arcseconds absolute for pointing reconstruction. The most stringent requirement is
for relative pointing, where attitude offsets accurate to 0.4 arcseconds are required to place
a target star or Infrared source on an IRS slit to within 0.4 arcseconds of its center (.28
arcseconds in the dispersion direction). This in turn requires knowledge of the slit location to
better than 0.14 arcseconds (1-sigma, radial). Derived calibration requirements for knowledge
of the various instrument frames are tabulated in Table 2.2.

The on-orbit calibration experiment must be designed (centroid location sequence, number
of maneuvers, etc.) to meet calibration error budget requirements. There are two sets of error
budgets corresponding to Coarse and Fine surveys. Coarse surveys occur earlier in the IOC
period, where requirements are more relaxed and the telescope is still cooling. Fine surveys
occur later in the IOC period after the telescope has cooled sufficiently and the optics and
science arrays become fully operational. A representative error budget for the Fine survey
is shown in Figure 2.2. The goal of the IPF filter development is to achieve the required
calibration accuracies using the defined experiment designs.
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No. Design Features and Requirements
1 Automated input file extraction capability (Specify names in RN file)
2 Automated data merging capability for CA and CB files
3 Data editing capability for centroid and attitude data files
4 MATLAB based software with minimal required user interactions
5 Single code to operate in multiple modes (different instruments, multi-MIPS)
6 Simple mode configuration via configuration flags and masking vectors
7 Allow specialization to SLIT type of measurements
8 Estimate Inferred frames
9 Comply with performance requirements (see Table 2.2)
10 Computationally efficient code (handle 10 hour data within 1 hour run)
11 Automated output file generation
12 Automated error analysis( based on least squares) and output plotting
13 Automated archiving of run configurations and estimation results

Table 2.1: IPF Filter Design Requirements

Array/Slit Desired IPF Required TPF to IPF
Reconstruction Accuracy Alignment [arc-second]

[arc-second] Coarse Fine

IRS PeakUp Red 1.346 1 0.25

IRS PeakUp Blue 1.346 1 0.25

IRS PeakUp Red Sweetspot 1.346 1 0.14

IRS PeakUp Blue Sweetspot 1.346 1 0.14

IRS Short-Lo 1.317 1 0.14

IRS Long-Lo 1.338 1 0.28

IRS Short-Hi 1.315 1 0.14

IRS Long-Hi 1.315 1 0.28

IRAC 3.6 μm 1.346 1 0.14

IRAC 4.5 μm 1.346 1 0.14

IRAC 5.8 μm 1.346 1 0.14

IRAC 8.0 μm 1.346 1 0.14

MIPS 24 μm 1.402 1 0.14

MIPS 70 μm small 1.702 1.12 1.1

MIPS 70 μm large 2.9 2.65 2.6

MIPS 160 μm 3.9 3.75 3.7

MIPS SED 1.702 1.15 1.1

Table 2.2: Derived Requirements for Focal Plane Survey [9]
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Error Budget
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(minimum of 15 maneuvers)

Figure 2.2: Spitzer IPF Estimation Error Budget for Fine Focal Plane Surveys

2.4 Input-Output Data Interface Requirements

The overall input and output data interfaces for a standard IPF filter run are summarized in
Table 2.3 and are depicted pictorially in Figure 2.3. As shown, the user specifies the six input
files (AA, AS, CA, CB, CS and FF Files with their unique 6 digit extensions) and the filter
execution configuration choices in the user run file (RN File) prior to each filter execution.
The IPF filter is then run with these input files and autonomously produces two output files,
namely the IF and LG Files. The 6 digit extension yyyzzz is unique to each filter run and
identical for RN, IF and LG files. The extension zzz signifies the instrument NF number
(e.g., 095 for the MIPS 24 micron array) and yyy is the file version number that should be
incremented each time a new file version of the same type is created.

A special IPF Multi-Run Tool (see Section 6.8), provides the capability to estimate pa-
rameters using data sets taken over disparate (i.e., non-contiguous) time intervals. This
capability is needed primarily by the MIPS instrument, for which calibration surveys are
long and might not be completed in a single observing session. The overall input/output
data interfaces for an IPF Multi-Run are shown in Table 2.4. Here, MR is the main run file
(rather than RN). As input, the Multi-Run uses the MT and LG files generated from running
the IPF filter on each data set individually. The resulting MT files are listed at the beginning
of the MR file to direct the automated multi-run processing. The output file is denoted as
MF (rather than IF), and is stored into the mission archive.
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Name Description Type Format Source Destination

RN Run Configuration Run MATLAB (.m) USER IPF

AA Attitude History Input Binary (.bin) FTP IPF

AS Attitude Supplemental Input MATLAB (.m) FTP IPF

CA Centroid Instrument Input MATLAB (.m) DOM IPF

CB Centroid PCRS Input MATLAB (.m) DOM IPF

CS Centroid Supplemental Input MATLAB (.m) DOM IPF

FF Offset Data Input MATLAB (.m) FTP IPF

AC Compact Attitude Intermediary MATLAB (.m) IPF IPF

AG Gyro Sensitivity Intermediary MATLAB (.m) IPF IPF

MT Workspace Intermediary MATLAB (.mat) IPF IPF

IF IPF Output Output ASCII (.dat) IPF DOM

LG IPF LOG Output ASCII (.dat) IPF DOM

TR Archival Output TAR (.tar) LOCAL DOM

Table 2.3: IPF Filter Input-Output Data Files

Name Description Type Format Source Destination

MR Mult-Run Configuration Run MATLAB (.m) USER IPF

MT Workspace Input MATLAB (.mat) IPF IPF

FF Offset Data Input MATLAB (.m) FTP IPF

LG IPF LOG Input ASCII (.dat) IPF IPF& DOM

LG IPF LOG (multi-run) Output ASCII (.dat) IPF DOM

MF IPF Output (multi-run) Output ASCII (.dat) IPF DOM

TR Archival Output TAR (.tar) LOCAL DOM

Table 2.4: Multi-Run Input-Output Data Files

IPF
FILTER

ONBOARD
KNOWLEDGE OF

BODY-TPF
ALIGNMENT

OUTPUT FILES
Ifxxxyyy

MFxxxyyy
LGxxxyyy

GYRO & STA
MEASUREMENT

DATA

FOCAL PLANE
DATA SET

OFFSET DATA FILE

CA FILE
CB FILE
CS FILE

FF FILE

AA FILE

AS FILE USER FILE
RNxxxyyy

Figure 2.3: Input/Output Description of IPF Filter
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3 PRELIMINARY DEFINITIONS

3.1 Overview of Pointing-Relevant Frames

The main frames relevant to Spitzer pointing are shown in Figure 3.1. Here the focal plane
is shown projected on the sky, as viewed by an observer who is located inside the celestial
sphere. The key transformations between these frames are summarized in Table 3.5. For
simplicity in presentation, the transformations A,R, T, C will denote 3 × 3 direction cosine
matrices. (This is in contrast to the software implementation which uses quaternions for all
numerical computations, but involves less recognizable expressions).

Transformation Description From To

A Attitude ICRS Body
R Alignment Body TPF
T Instrument TPF IPF0

C Scan Mirror Offset IPF0 IPFΓ

Table 3.5: IPF Filter Transformations

Figure 3.1: Spitzer Frames and Transformations

19



The International Celestial Reference System (ICRS) frame serves as Spitzer’s principle
inertial reference frame. With a suitable relabelling, the star-tracker instrument frame serves
as the Spitzer Body frame (i.e., when spelled with its boresight as the x axis). The mapping
from ICRS to the Body Frame is denoted as the spacecraft attitude A. During each sandwich
maneuver, only gyro propagated attitude solutions are used by the IPF filter to reconstruct
attitude. The current attitude A is attained from a gyro propagated offset G relative to a
starting attitude A0, i.e.,

A = GA0 (3.1)

where A0 is available from the on-board attitude estimate. The Telescope Pointing Frame
(TPF) has the telescope boresight as its x axis, and is defined rigorously in terms of the null
points of the two PCRS sensors in [3]. Specifically, the TPF is defined by a fixed (3,2,1)
Euler rotation from the line-of-centers frame (constructed by bisecting and crossing the two
PCRS boresight vectors). The mapping from the Body Frame to the TPF is denoted as the
alignment matrix R.

An Instrument Pointing Frame (IPF) is defined by a specific pixel location within a specific
science array, such that its coordinate axes adopt the orientation of the corresponding pixel
rows and columns of that array. The mapping from the TPF to any specified IPF is denoted
generically as T .

Best estimates of the IPF frames are stored in an on-board “Frame Table” as 128 values
for T (stored as quaternions). The Frame Table is used extensively for commanding purposes.
Certain important IPF frames are denoted as Prime Frames (typically defined at the center
pixel location of each instrument array). Other frames are called Inferred Frames and are
defined by a pixel offset relative to a nearby Prime frame. The nominal orientations of the
science instruments and their associated Prime frames in the telescope focal plane are shown
in Figure 3.3.

The C matrix represents a scan mirror offset from a nominal starting position Γ = 0 to
its current local offset position Γ �= 0. For non-MIPS instruments, the C matrix is set to
identity. For MIPS, the frame defined when the scan mirror is offset by angle Γ is denoted as
IPFΓ. Note that as the scan mirror moves there is an entire family of IPFΓ frames generated
as a continuous function of the variable Γ.

The attitudeA is time-varying due to intentional telescope repositioning and unintentional
control errors. The alignment matrix R is time-varying due to thermo-mechanically induced
alignment drift. The mapping T from TPF to IPF is assumed constant due to the fact
that the telescope focal plane is actively cooled. The mapping C is time-varying due to a
constantly changing (but nominally known) scan-mirror offset angle Γ.
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3.2 Body Frame Definition

The Spitzer Body Frame corresponds physically to the star-tracker instrument frame, but
labelled such that the star-tracker boresight is the x axis (in contrast to the star-tracker
instrument which labels its own boresight as the z axis). To distinguish between these two
cases, the star tracker instrument frame will be denoted as the STA frame (labelling z as its
boresight), and the star-tracker-defined body frame will be denoted as the STA-defined Body
frame, or simply Body frame (labelling the x axis as its boresight).

Mathematically, the full direction cosine matrix transforming from the Body frame (as
used here), to the STA frame (as given in the on-board frame table) is given by,

[v]STA =

⎡⎣ 0 1 0
0 0 1
1 0 0

⎤⎦ [v]Body (3.2)

where v is any physical vector of interest, and [v]Body and [v]STA denote the resolution of v
in the Body and STA frames, respectively. For example, let v be the star tracker boresight
direction. Then it is seen that the x-axis boresight label associated with the Body frame (i.e.,
[v]Body = [1, 0, 0]T ) maps into the z-axis boresight label associated with the STA frame (i.e.,
[v]STA = [0, 0, 1]T ). Similarly, the y and z axes of the Body frame are relabelled to become
the x and y axes, respectively, of the STA frame.
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3.3 Telescope Point Frame (TPF) Definition

The TPF is defined by the null-points of two Pointing Control Reference Sensors (PCRS),
which are located in the telescope focal plane to serve as fiducial points for calibration. As
shown in Figure 3.2, the null points of these two PCRS detectors (1-A and 2-A) provide two
unit vectors. By bisecting these two unit vectors, a Line-Of-Centers (LOC) frame can be
defined as shown in this figure. The TPF is defined relative to the LOC frame in terms of
the three Euler angles (see (3.7)),

β1 = −.2086390720014826 (deg) (3.3)

β2 = +2.609509909926385 (arcmin) (3.4)

β3 = −10.96500433037898 (arcsec) (3.5)

Figure 3.2: Definition of TPF frame in terms of β angles, shown projected onto sky, and
looking from inside the celestial sphere.
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A more detailed mathematical definition of the TPF is given in the two steps below:

Step 1: Let p1 and p2 be the Line-of-Sight vectors of PCRS1 and PCRS2, respectively.
Define the Line-of-Centers (LOC) Frame Fc = {xc, yc, zc} according to,

xc = (p1 + p2)/||p1 + p2||
zc = (p1 × p2)/||p1 × p2||
yc = zc × xc

Step 2: Define the TPF frame Ft = {xt, yt, zt} relative to Fc such that a 3,2,1 Euler
rotation sequence acting on frame Ft gives frame Fc.

Specifically, if [u]t denotes an arbitrary vector resolved in Fc, then its resolution [u]c in
Fc is given by,

[u]c = L[u]t (3.6)

L = Q1(β1)Q2(β2)Q3(β3) (3.7)

where β1, β2, β3 are Euler angles specified in (3.3)(3.4)(3.5), and L is the direction cosine
matrix for the mapping from TPF to the LOC frame.

3.4 Instrument Pointing Frame (IPF) Definition

An Instrument Pointing Frame (IPF) is defined by a specific pixel location in the science
array which is projected instantaneously onto the sky, and which adopts the orientation of
the pixel row and column directions of the array. Spitzer will have up to 128 such IPF frames
stored in an on-board frame table. The IPF frames will be stored as quaternion values for T
which define each IPF frame relative to the TPF.

Certain IPF frames which are important enough to be calibrated directly are called Prime
Frames. Prime frames are typically located at the center of instrument arrays or entrance
apertures, and are desired to be known accurately. Other important frames are inferred by
their proximity to the Prime frames. Such frames are called Inferred Frames and their
estimation is discussed in detail in Section 6.6. Best estimates of the IPF frames are stored
in an on-board “Frame Table” as 128 values for T (stored as quaternions). The Frame Table
is used extensively for commanding purposes.

The nominal orientation of the science instruments and their associated Prime frames in
the telescope focal plane are shown in Figure 3.3. Also shown are the associated w and v
directions associated with each frame. Angular offsets in the (w, v) directions define an Ori-
ented Angular Pixel (OAP) coordinate system which is used for calibration (see Section 3.9).
It can be seen that many of the arrays are tilted with respect to TPF frame, and that in all
cases the (w, v) directions have been defined such that the +w axis is within ±90 degrees of
the TPF zt axis.
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Also shown are the mission-accepted conventions for the w and v directions, defined for
each frame. Specifically, each IPF frame is defined by the u, v, w coordinate axes, where
v, w are shown and u = v ×w points outward to the sky. The main goal of the IPF Kalman
filter (as relevant to supporting on-board pointing capability) is to accurately estimate the IPF
frame T for each of the 128 Prime and Inferred frames listed in the on-board Frame Table.

Currently, there are 19 Prime frames defined on the focal plane. Generally these Prime
frames are fixed on the science array (for example, IRAC, IRS Peak-Up Array etc.). The MIPS
instrument is slightly more complicated since a Prime frame can only be uniquely defined
when its scan mirror is held at some agreed upon angular position. Some instruments (IRS
Slits, MIPS SED) have spectroscopy slits whose Prime frames are actually defined by their
entrance apertures and not in pixel coordinates. The Prime frames for these instruments are
fixed to a point (generally at the center) in the entrance aperture, and are determined by
scanning a source across the entrance aperture and recording the time of peak intensity. The
objective of the IPF filter is to estimate all Prime frames and inferred frames, or equivalently,
to estimate the mappings T from TPF to each IPF.
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Figure 3.3: Spitzer Instrument Prime Frames Definition
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3.5 Spitzer Focal Plane Survey Frame Table Definition

A example frame table is shown in Table 3.6.
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3.6 Scan-Offset IPF Γ Frame Definition

Some instruments (for example, MIPS) employ a single-axis scan mirror that can be freely
commanded and rotated relative to a nominal reference position. For notational purposes,
the amount of scan mirror rotation beyond its nominal reference position is denoted by Γ.
The value Γ = 0 corresponds to the case where the scan mirror is at its nominal reference
position, for which the IPF frame is denoted as IPF0.

The value Γ �= 0 corresponds to a non-zero angular offset of the instrument frame relative
to its nominal reference position achieved by rotating the scan mirror a fixed amount. For
calibration purposes, the quantity Γ is measured in units of radians on the sky. The trans-
formation involved in obtaining Γ from actual encoder units is given in Section B.3. The IPF
frame corresponding to a non-zero value of Γ is denoted as IPFΓ.

As shown in Figure 3.1, the direction cosine matrix T represents the mapping from TPF
to IPF 0. The direction cosine matrix C represents the mapping from IPF 0 to IPFΓ. It
is convenient to represent C using an angle/axis representation. Specifically, given a vector
u ∈ R3 resolved in IPF 0, the same vector v ∈ R3 resolved in IPFΓ can be written as:

v = C (am,Γ)u (3.8)

C (am,Γ) = cos (βΓ) · I + (1 − cos (βΓ)) ama
T
m − sin (βΓ) a×m (3.9)

where am =
[
am1 am2 am3

]T
is the scan mirror spin axis, Γ is the measured scan mirror

angle in units of radians, and β is the scale factor parameter associated with Γ (nominally
unity).

3.7 Brown Angle Definition

Brown angles are used consistently throughout the Spitzer program due to their convenience
in converting the CCD Focal Surface to the Telescope Objective Space Field of View (cf.,
[6],[19] and [20]). Brown angles are simply the (3, 2, 1) Euler angles associated with the
transformation from TPF coordinates to IPF coordinates, except for an important difference
regarding their signs and units. Due to the large amount of analysis already performed using
these conventions, the angle definition was retained and named after the author who first
used them (cf., [6]). The relationship of Brown angles to Euler angles will be given in this
section.

Consider the direction cosine matrix T that transforms from TPF to IPF (IPF0 for frames
associated with instruments having scan mirrors). The matrix T is parameterized using Euler
angles (θ3, θ2, θ1) in a 3-2-1 sequence, i.e.,

T (θ)
Δ
= T1(θ1)T2(θ2)T3(θ3) (3.10)

where
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T1(θ1) =

⎡⎣ 1 0 0
0 cos θ1 sin θ1
0 − sin θ1 cos θ1

⎤⎦ (3.11)

T2(θ2) =

⎡⎣ cos θ2 0 − sin θ2
0 1 0

sin θ2 0 cos θ2

⎤⎦ (3.12)

T3(θ3) =

⎡⎣ cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

⎤⎦ . (3.13)

Given the Euler angles (θ1, θ2, θ3) in units of rad, the Brown angles (θ1brown, θ2brown, θ3brown)
[6] are defined by, ⎡⎣ θ1brown

θ2brown
θ3brown

⎤⎦ =
180

π

⎡⎣ 0 −60 0
0 0 −60
1 0 0

⎤⎦⎡⎣ θ1
θ2
θ3

⎤⎦ (3.14)

It is noted that the Brown angles have units of [ arcmin arcmin deg ]T , respectively, and
that they are obtained by reversing signs on the θ2 and θ3 Euler angles.

3.8 Standard Coordinates

Let u ∈ R3 be a unit vector associated with a star location in the ICRS frame, i.e.,

u =

⎡⎣ cos (DEC) ∗cos (RA)
cos (DEC) ∗sin (RA)

sin (DEC)

⎤⎦ (3.15)

where RA, DEC denotes the Right Ascension and Declination of the source (in radians).

Let � ∈ R3 denote the unit vector after a velocity aberration correction has been applied
(consistent with Spitzer’s velocity at the time of the observation - see Section B.1). Then
(cf., [21]),

� =
u+ VSC

c

||u+ VSC

c
|| (3.16)

where c denotes the speed of light, and VSC denotes the spacecraft velocity vector in ICRS.

Define the vector s as the resolution of � in the IPFΓ frame to give,

s = CTRA� (3.17)
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When the current attitude is the result of a gyro offset G from an initial attitude A0 one can
decompose A as,

A = GA0 (3.18)

Substituting (3.18) into (3.17) gives,

s = CTRGA0� (3.19)

Let the components of s be given as,

s =

⎡⎣ sx
sy
sz

⎤⎦ (3.20)

Since s is a unit vector in the IPFΓ frame, it can be projected into focal plane coordinates
to give,

z =

[
zw
zv

]
=

[
sz/sx
sy/sx

]
(3.21)

The elements of z ∈ R2 will be said to be in Standard Coordinates.

Let the matrices C, T,R,G be parameterized in terms of the elements of the parameter
vector p2f (to be defined in detail in Section 4), and let A0 be related to an available initial

attitude estimate Â0 as follows,
A0 = (I − ψ×)Â0 (3.22)

where ψ ∈ R3 denotes the initial attitude error. Then one can write (3.21) in the functional
form,

z = hz(p2f , ψ) (3.23)

This representation of the target source location in Standard Coordinates will be the starting
point for the calibration process.

3.9 Oriented Angular Pixel (OAP) Coordinates

Typically, science centroids are obtained in units of pixels. However, calibration is more easily
performed if pixel measurements are converted to units of angle (radians), and expressed with
respect to an agreed upon origin and orientation. Oriented Angular Pixel (OAP) coordinates
serve this purpose.

A pixel coordinate (CX,CY) (in the instrument (x, y) coordinate system) is converted
to OAP coordinates using the following transformation (see Appendix B, Section B.2 for
details),

y =

[
yw
yv

]
=

[
D11 D12

D21 D22

] [
PIX2RADX 0

0 PIX2RADY

] [
CX-CX0

CY-CY0

]
(3.24)
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Here, PIX2RADX,PIX2RADY are nominal plate scales, and the pixel coordinate (CX0,CY0)

specifies the desired location where the Prime frame is to be embedded. The quantities
D11, D12, D21, D22 are flip parameters (having values 0,−1,+1), which specify how to map
the instrument (x, y) coordinate directions into the focal plane (w, v) coordinate directions
defined in Figure 3.3.

In summary, it is seen from (3.24) that Oriented Angular Pixel Coordinates are defined by
taking the pixel measurements, shifting them to express their location relative to the desired
Prime frame, scaling them to get units of angles (radians), and orienting them to coincide
with the w, v directions in the focal plane.

3.10 Mapping OAP to Standard Coordinates

Let ytrue ∈ R2 be a target source as observed in Oriented Angular Pixel Coordinates assuming
that there is no centroiding error,

ytrue =

[
yw true

yv true

]
(3.25)

Generally, ytrue will not coincide exactly with z in (3.23) due to imperfections in the optical
system. To accommodate such imperfections, a model which maps ytrue in OAP coordinates
to z in Standard coordinates is taken to be of the form,

z =

[
zw
zv

]
= (I +M (p1,Γ, ytrue))

[
yw true

yv true

]
(3.26)

Here M ∈ R2×2 is a perturbation matrix which captures the imperfections such as optical
distortions, plate scale errors, etc. The exact form of M will be discussed in Section 4.2
as a function of the distortion parameters p1, the scan mirror offset Γ, and the centroid
measurement ytrue. The scan mirror offset angle Γ is defined in the Appendix, Section B.3.

The relation (3.26) assumes noiseless centroids. To generalize the model, a noisy centroid
measurement y is introduced,

y =

[
yw
yv

]
(3.27)

The noisy centroid y is used to replace ytrue in (3.26) according to the following relation,

z =

[
zw
zv

]
= (I +M (p1,Γ, y))

[
yw
yv

]
− ν (3.28)

where ν denotes the centroiding error in y. The motivation for choosing this model is that if
M is small (which should always be the case), equation (3.28) is first-order equivalent to the
additive noise model,

y � ytrue + ν (3.29)
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3.11 Calibration Equation

By equating (3.23) and (3.28) the following Calibration Equation is obtained,

(I +M (p1,Γ, y)) y = hz (p2f , ψ) + ν (3.30)

This is the main equation to be used for all Spitzer focal plane calibration. It is an end-to-end
relation that maps the source location (known from a star catalog with velocity correction)
to the pixel location where the source is observed on the science instrument array. Accord-
ingly, it contains both optical distortions parameterized by p1 and systematic pointing errors
parameterized by p2f .

The end-to-end pointing transformations associated with the Calibration Equation (3.30)
are summarized in Figure 3.4. The top path maps a star position vector in ICRS coordinates
to IPF coordinates through the sequence ofA, R, T and C matrices. The geometric projection
of the resulting vector (in IPF coordinates) into an ideal 2-dimensional image plane defines
two angles associated with Standard Coordinates. Moreover, the centroid measurement of
this same star on the detector can be brought into Standard Coordinates using the lower path
of Figure 3.4. By mapping the centroid measurement to OAP coordinates, and then through
the distortion transformation (the M matrix) one arrives again in Standard Coordinates.
Hence, by equating these two paths, one obtains the Calibration Equation (3.30).
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pix2radx pix2rady )(( )

(I+M)
zv

zw

yv

yw

( yw , yv )( zw , zv )

Note: A = G * Ao
Geometric
Projection

Figure 3.4: End-to-End Pointing Transformations

35



3.12 Pixels to Sky Reconstruction

Instead of equating the upper and lower paths, the transformations shown in Figure 3.4 can
be applied in a single direction. This gives an end-to-end parametrization for mapping pixels
onto the sky which is useful for addressing the Spitzer reconstruction problem.

Reconstruction can be achieved by the following sequence of calculations. First, a pixel
location (CX,CY) is transformed to y in Oriented Angular Pixel Coordinates according to
(cf., Appendix, Section B.2),

y =

[
yw
yv

]
=

[
D11 ∗ (CX− CX0) ∗ PIX2RADX + D12 ∗ (CY− CY0) ∗ PIX2RADY
D21 ∗ (CX− CX0) ∗ PIX2RADX + D22 ∗ (CY− CY0) ∗ PIX2RADY

]
(3.31)

Second, the mirror encoder data is converted to a mirror offset angle Γ according to (see
Appendix, Section B.3),

Γ = DG ∗ BETA0 ∗ (GAMMA E− GAMMA E0) (3.32)

Using y and Γ, the pixel coordinate position is expressed in Standard Coordinates by:

z =

[
zw
zv

]
= (I +M (p1,Γ, y))

[
yv
yw

]
(3.33)

This value of z is transformed into a unit vector s in the IPFΓ frame as follows,

s =
1√

1 + z2
w + z2

v

·
⎡⎣ 1
zv
zw

⎤⎦ (3.34)

The unit vector v in ICRS associated with s can be expressed as,

v = ATGTRTT TCT (p1,Γ) s (3.35)

Applying the speed-of-light velocity aberration correction yields,

ṽ =
v − VSC

c

||v − VSC

c
|| (3.36)

Then RA/DEC angles associated with ṽ can be calculated as,

RA = atan2(ṽ(2), ṽ(1)) (3.37)

DEC = asin(ṽ(3)) (3.38)

where the components of ṽ have been defined as,

ṽ =

⎡⎣ ṽ(1)
ṽ(2)
ṽ(3)

⎤⎦ (3.39)

This result captures the complete end-to-end pointing reconstruction transformation from a
specified pixel coordinate (CX,CY) to its RA and DEC location on the sky (as seen by an
observer moving with the solar system barycenter).
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3.13 Time Axis Definition

The IPF reference epoch is marked as t = 0 and is taken at the beginning of each calibration
survey data set. As shown in Figure 3.5, there are three different time scales associated with
any given calibration data set. The attitude files are time-tagged synchronously at the regular
gyro rate of 10Hz, while the centroid data is time-tagged asynchronously at the time instants
when the centroids are taken. Specifically, centroid times are marked as T1, T2, ..., Tk, .. where
k increases consecutively from the beginning to the end of the data set. A third time scale
is created by marking the start time of each sandwhich maneuver (occuring approximately
every 700 seconds). The start of the j’th maneuver is marked by the time tag tj .

Time-alignment errors of up to 60 milliseconds are expected between the attitude and
centroid data sets.

CENTROID - - - -
t =T 1 T2 T3 - - - - Tk

TIME
t = t 1 = 0 t = t 2 Tk

SURVEY
Survey #1

MANEUVER
- - - -

Maneuver #1 Maneuver #2 Maneuver # j

t = t 1 t = t 2 t = t j

GYRO

Figure 3.5: Spitzer IPF Time Axis Definition
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4 IPF FILTER PARAMETERS

4.1 Overview

The starting point for the Kalman filter design is the Calibration Equation (3.30) (derived
in Section 3.11). A full state vector xf is defined as,

xf =

[
p1

p2f

]
(4.1)

where p1 are the optical distortion parameters and p2f are the systematic pointing errors in
the Calibration Equation (3.30).

The parameters in p1 and p2f are defined such that they are constant with time. A
summary of the states p1 and p2f is given in Table 4.10 and Table 4.11. The subsets of these
parameters that are used for each of the instrument calibrations are indicated in Table 4.12
and Table 4.13.

The next few subsections will be devoted to giving a detailed description of each of these
parameters.

p1 Math Description δp1 Mask
p1(1) a00 δp1(1) mask1(1)
p1(2) b00 Constant Plate Scales δp1(2) mask1(2)
p1(3) c00 δp1(3) mask1(3)
p1(4) a10 δp1(4) mask1(4)
p1(5) b10 Γ Dependent Plate Scales δp1(5) mask1(5)
p1(6) c10 δp1(6) mask1(6)
p1(7) d10 δp1(7) mask1(7)
p1(8) a20 δp1(8) mask1(8)
p1(9) b20 Γ2 Dependent Plate Scales δp1(9) mask1(9)
p1(10) c20 δp1(10) mask1(10)
p1(11) d20 δp1(11) mask1(11)
p1(12) a01 δp1(12) mask1(12)
p1(13) b01 δp1(13) mask1(13)
p1(14) c01 Linear Plate Scales δp1(14) mask1(14)
p1(15) d01 δp1(15) mask1(15)
p1(16) e01 δp1(16) mask1(16)
p1(17) f01 δp1(17) mask1(17)

Table 4.10: p1 State Variables, Perturbations and Mask Vector
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p2f Math Description δp2 Mask
p2f (1) am1 mirror rotation axis unit vector in IPF (x)
p2f (2) am2 mirror rotation axis unit vector in IPF (y) δα mask2(1)
p2f (3) am3 mirror rotation axis unit vector in IPF (z)
p2f (4) β scan mirror rotation angle scale factor δβ mask2(2)
p2f (5) qT1 T (TPF to IPF) frame quaternion, qT (1) δθ1 mask2(3)
p2f (6) qT2 T (TPF to IPF) frame quaternion, qT (2) δθ1 mask2(4)
p2f (7) qT3 T (TPF to IPF) frame quaternion, qT (3) δθ1 mask2(5)
p2f (8) qT4 T (TPF to IPF) frame quaternion, qT (4)
p2f (9) qR1 R Alignment quaternion , qR(1) δarx mask2(6)
p2f (10) qR2 R Alignment quaternion , qR(2) δary mask2(7)
p2f (11) qR3 R Alignment quaternion , qR(3) δarz mask2(8)
p2f (12) qR4 R Alignment quaternion , qR(4)
p2f (13) brx Linear time varying contribution on alignment x-axis δbrx mask2(9)
p2f (14) bry Linear time varying contribution on alignment y-axis δbry mask2(10)
p2f (15) brz Linear time varying contribution on alignment z-axis δbrz mask2(11)
p2f (16) crx Quadratic time varying contribution on alignment x-axis δcrx mask2(12)
p2f (17) cry Quadratic time varying contribution on alignment y-axis δcry mask2(13)
p2f (18) crz Quadratic time varying contribution on alignment z-axis δcrz mask2(14)
p2f (19) bgx Delta Gyro Bias from Nominal, x-axis δbgx mask2(15)
p2f (20) bgy Delta Gyro Bias from Nominal, y-axis δbgy mask2(16)
p2f (21) bgz Delta Gyro Bias from Nominal, z-axis δbgz mask2(17)
p2f (22) cgx Gyro Bias Drift Rate, x-axis δcgx mask2(18)
p2f (23) cgy Gyro Bias Drift Rate, x-axis δcgy mask2(19)
p2f (24) cgz Gyro Bias Drift Rate, x-axis δcgz mask2(20)

Table 4.11: p2 State Variables, Perturbations and Mask Vector
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4.2 Optical Distortion Parameters

Optical distortion parameters capture imperfections and variations in the telescope and in-
strument which cause a star image to deviate from its idealized geometric projection. The
optical distortions in the calibration equation (3.30) are parameterized in terms of the matrix
M ∈ R2×2 of the form,

M (p1,Γ, y) = M00 + ΓM10 + Γ2M20 +M01 (y) (4.2)

where,

M00 =

[
a00 c00
c00 b00

]
; M10 =

[
a10 c10
d10 b10

]
; M20 =

[
a20 c20
d20 b20

]
; (4.3)

M01 (y) =

[
a01yw + c01yv b01yv

d01yw f01yw + e01yv

]
. (4.4)

The parameter c00 is repeated symmetrically in M00 to disallow a redundant rotation with
θ1 of T (cf., [23]).

4.3 Scan Mirror Rotation Parameters

For science arrays having a scan mirror (i.e., MIPS arrays), the scan mirror rotation trans-
formation can be defined by a direction cosine matrix C which maps the nominal IPF frame
(denoted as IPF0) to the IPF frame with a scan mirror offset (denoted as IPFΓ). Mathe-
matically, C is parametrized as an Euler axis rotation of the form,

C (p2f ,Γ) = cos (βΓ) · I + (1 − cos (βΓ)) ama
T
m − sin (βΓ) a×m (4.5)

Here am =
[
am1 am2 am3

]T
is the scan mirror spin axis, Γ is the measured scan mirror

angle (see Appendix, Section B.3), and β is the scale factor associated with measured mirror
angle. The cross product matrix operation a×m is defined as,

a×m =

⎡⎣ 0 −am3 am2

am3 0 −am1

−am2 am1 0

⎤⎦ (4.6)

The vector am is constrained to have unit norm, i.e.,

a2
m1 + a2

m2 + a2
m3 = 1 (4.7)

and the mirror transformation becomes the identity when the mirror is located in it’s nominal
reference position (Γ = 0), i.e.,

C (p2f , 0) = I. (4.8)

For non-MIPS instruments (without a scan mirror), the condition C = I is enforced.
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4.4 Telescope Pointing Frame Parameters

The direction cosine matrix T transforms from TPF to IPF0 (i.e., the IPF frame associated
with Γ = 0, and can be parameterized with a quaternion qT as shown below.

T (qT ) =

⎡⎣ q2
T1 − q2

T2 − q2
T3 + q2

T4 2(qT1qT2 + qT3qT4) 2(qT1qT3 − qT2qT4)
2(qT1qT2 − qT3qT4) q2

T2 − q2
T3 + q2

T4 − q2
T1 2(qT2qT3 + qT1qT4)

2(qT1qT3 + qT2qT4) 2(qT2qT3 − qT1qT4) q2
T3 + q2

T4 − q2
T1 − q2

T2

⎤⎦ (4.9)

If the T is described in terms of 3-2-1 Euler sequence, it can be written as:

T (p2f)
Δ
= T1(θ1)T2(θ2)T3(θ3) (4.10)

where

T1(θ1) =

⎡⎣ 1 0 0
0 cos θ1 sin θ1
0 − sin θ1 cos θ1

⎤⎦ (4.11)

T2(θ2) =

⎡⎣ cos θ2 0 − sin θ2
0 1 0

sin θ2 0 cos θ2

⎤⎦ (4.12)

T3(θ3) =

⎡⎣ cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

⎤⎦ . (4.13)

4.5 Thermomechanical Drift Parameters

The directional cosine matrix R represents the mapping from the STA-defined Body frame to
the TPF frame. Since the STA is mounted remotely from the focal plane, a relatively large
and time-varying uncertainty can exist between these two frames. The IPF filter estimates
this relative misalignment by parameterizing each of the three rotation angles as a quadratic
function of time. The resulting model is,

R
Δ
=

(
I3×3 −

(
brt+ cr

t2

2

)×
)
R0(qR) (4.14)

where,

br =

⎡⎣ brx
bry
brz

⎤⎦ ; cr =

⎡⎣ crx
cry
crz

⎤⎦ (4.15)

43



The beginning time t = 0 corresponds to the time tag of the first centroid of the very
first maneuver (typically a PCRS centroid). By definition, the quantity R0 is the static
alignment at time t = 0. The parameters br and cr capture the linear and quadratic variations,
respectively, in the thermomechanical drift between the Body and TPF frames subsequent
to t = 0.

For notational simplicity, the quaternion equivalent of the initial alignment R0 is denoted
as qR (rather than qR0).

Since R0 itself is unknown, it is described in terms of small angular perturbation (δarx, δary, δarz)
about a prior estimate of the alignment which is updated as follows,

R0 ←
⎛⎝I −

⎡⎣ δarx
δary
δarz

⎤⎦×⎞⎠R0 (4.16)

It is seen that the parameters δarx, δary, δarz only exist incrementally, since they are absorbed
onto R0 in each iteration.

4.6 Attitude and Gyro Parameters

The attitude directional cosine matrix A maps from ICRS to the STA-defined Body frame.
This transformation can be divided into two components as:

A
Δ
= G A0 (4.17)

where A0 is the initial attitude at the beginning of a specified maneuver, and G is the gyro-
propagated offset attitude which parameterizes the spacecraft body motion at all times from
t = 0 to the time of the beginning of the next maneuver.

The true gyro offset G is defined by integrating the true rate ω according to the differential
equation, (

Ġ = −ω×G
)∣∣∣Tk(j)

tj
(4.18)

starting with the initial condition G (tj) = I.

Since the true rate ω ∈ R3 is not known exactly, an estimate must be generated. For
computational convenience, this is done in two stages. First, the gyro pre-processor produces
a nominal rate vector estimate ω◦

m ∈ R3 according a certain construction (to be discussed
later). Second, a correction is applied to the nominal rate vector ω◦

m to get the true rate as,

ω = ω◦
m + bg + cgt (4.19)

Here it is seen that the parameters bg, cg ∈ R3 denote a bias and a bias drift correction to
the nominal rate estimate.
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5 FORMULATIONS

5.1 IPF Kalman Filter Formulation

The Spitzer IPF Kalman Filter algorithm is architectured as a square-root iterated linearized
Kalman filter. The filter operates in block sequential form as shown in Figure 5.1. First, the
nominal state estimate to be used for linearization purposes is prescribed at the beginning
of the data set (corresponding to t = 0). For notation purposes, the start time of the jth
sandwich maneuver is denoted as tj , and the individual centroid times are denoted as Tk.
Centroid data from each individual maneuver is then “stacked” into a single tall measurement
vector which is used to update the Kalman filter. Accordingly, for a calibration data set
havingN sandwich maneuvers, there will beN vector measurement updates. After processing
the entire data set, the estimated state correction is applied and the filter is re-linearized
about the updated state estimate. This procedure of processing the entire data set and then
re-linearizing is repeated until convergence is obtained.
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- - - -

t =T1 T2 T3 - - - - Tk

Propagate
Gyro

Propagate
Gyro

Propagate
Gyro La
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Figure 5.1: Square-Root, Iterated and Linearized Kalman Filtering Process

5.1.1 Time Update

Corresponding to the full state vector xf defined in (4.1), a state vector perturbation is given
as,

δx =

[
δp1

δp2

]
∈ R37 (5.1)

where the quantities p1, δp1, p2f , δp2 have been defined in Table 4.10 and Table 4.10. It is
noted that δp2 ∈ R20 is of smaller dimension than p2f ∈ R24 due to constraints on the
parameters.
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Since the IPF Kalman filter is parameterized by constant coefficients, the state perturba-
tion propagation equation can be written as,

δẋ =

[
˙δp1

˙δp2

]
= 0. (5.2)

Accordingly, the discrete form of the state perturbation propagation equation for the mean
and the square-root covariance can be written as,

δx̂j+1|j = δx̂j|j (5.3)

P
1

2

j+1|j = P
1

2

j|j. (5.4)

where j + 1|j signifies the predicted value at the start of the j + 1’th maneuver, given mea-
surements from the past j maneuvers.

5.1.2 Measurement Update

Measurement Perturbation

The Calibration Equation (3.30) will serve as a measurement equation for the Kalman
filter. This is done by first rearranging it into the form,

y = h(p1, p2f , ψ, y) + v (5.5)

where,
h(p1, p2f , ψ, y) = −M(p1, y)y + hz(p2f , ψ) (5.6)

Note that the measurement y is used on both sides of (5.5), which requires a slight deviation
from Kalman filter conventions (motivated by the implicit form of y in (3.30)). Note also that
the dependence of M on Γ has been dropped purely for notational convenience. Interestingly,
in the case of slits, the complete y is not available in any single measurement to evaluate the
right-hand side of (5.6). In this case, the linearization is handled differently, as described in
Section 6.7.1.

Equation (5.5) can be linearized to obtain the desired Kalman filter update equation. To

this effect, a prediction ĥ of h is constructed using the nominal state estimates p̂1 and p̂2f as
follows,

ĥ = h(p̂1, p̂2f , 0, y) (5.7)

Subtracting (5.7) from (5.5) gives the desired measurement perturbation equation as,

δy
Δ
= y − h (p̂1, p̂2f , 0, y) (5.8)

= K1δp1 + K2δp2 +Hψψ + ν (5.9)

=
[ K1 K2

] [ δp1

δp2

]
+Hψψ + ν (5.10)

= Hδx+ n (5.11)
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where use has been made above of the following definitions,

H
Δ
=

[ K1 K2

]
(5.12)

K1
Δ
=

∂h

∂p1

∣∣∣∣
p̂1,p̂2f

=
∂

∂p1
(−M (p1, y) y)

∣∣∣∣
p̂1,p̂2f

(5.13)

K2
Δ
=

∂hz
∂(δp2)

∣∣∣∣
p̂1,p̂2f

(5.14)

Hψ
Δ
=

∂hz
∂ψ

∣∣∣∣
p̂1,p̂2f

(5.15)

δx
Δ
=

[
δp1

δp2

]
(5.16)

n
Δ
= Hψψ + ν (5.17)

Equation (5.11) is the desired measurement perturbation relation. It is seen from (5.17) that
the measurement noise n is actually composed of two noises - the centroiding error ν, and
the initial attitude error ψ. One must be careful to recognize that the initial attitude error
ψ is not independent from centroid to centroid, but rather is a single error which is common
to all centroids taken during a single sandwich maneuver.

The perturbation parameter vector δp1 ∈ R17 is defined in Table 4.10, and δp2 ∈ R20 is
defined in Table 4.11.

As mentioned earlier, the perturbation δp2 ∈ R20 has a smaller dimension than the vector
it perturbs p2f ∈ R24. This is due to the many constraints that exist in the problem. For
example, quaternions in p2f have 4 elements, but only 3 of them are independent and have
been carried in the perturbation δp2.

In general, the derivative of a function f(ξf) with respect to a constrained parameter
vector ξf , will be defined in terms of only the independent parameters δξ (where δξ can be
of lower dimension than ξf) by the matrix K that satisfies,

f(ξf) = f(ξ̂f) + Kδξ + O(||δξ||2) (5.18)

Because in this general case the variable ξ may only exist in its perturbation form δξ, the
following notation will be used throughout the remainder of the report,

K Δ
=

∂f

∂(δξ)

∣∣∣∣
ξ̂f

(5.19)

For example, this notation has been used in (5.14) for describing K2 which involves a deriva-
tive with respect to δp2.
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Stacked Measurements

Equation (5.11) provides the measurement perturbation δy associated with a single cen-
troid measurement. For filtering purposes, all of the centroids associated with the j’th ma-
neuver are stacked into a single measurement vector as follows,

δỹj = H̃jδx+ ñj (5.20)

where,

δỹj
Δ
=

⎡⎢⎣ δy1
...

δymj

⎤⎥⎦ ; ñj
Δ
=

⎡⎢⎣ n1
...

nmj

⎤⎥⎦ ; H̃j
Δ
=

⎡⎢⎣ H1
...

Hmj

⎤⎥⎦ (5.21)

and where mj is the number of centroids in the j’th maneuver.

Because of the special structure of the noise n in (5.17), the stacked noise term ñj in
(5.20) can be broken down into two separate terms as,

ñj = ν̃j + H̃ψ,jψj (5.22)

where,

ν̃j
Δ
=

⎡⎢⎣ ν1
...
νmj

⎤⎥⎦ ; H̃ψ,j
Δ
=

⎡⎢⎣ Hψ,1
...

Hψ,mj

⎤⎥⎦ (5.23)

Here, we have used the fact that the initial attitude error ψj ∈ R3 associated with the j’th
maneuver contributes to all of the measurements ṽj ∈ R2mj taken during that maneuver.

Assuming independence of centroiding and attitude errors, the covariance of ñj in (5.22)
can be computed as,

R̃j
Δ
= Cov[ñj] = Ṽj + H̃ψ,jPψ,jH̃

T
ψ,j (5.24)

where,

Ṽj
Δ
= Cov[ν̃j] =

⎡⎢⎣ V1 . . . 0
...

. . .
...

0 . . . Vmj

⎤⎥⎦ (5.25)

Vi
Δ
= Cov[νi]; Pψ,j = Cov[ψj ] (5.26)

It will be convenient to work with square-root covariances. Let the following factorized
matrices be defined,

R̃j
Δ
= R̃

1

2

j R̃
T
2

j (5.27)

Pψ,j
Δ
= P

1

2

ψ,jP
T
2

ψ,j (5.28)

Ṽj
Δ
= Ṽ

1

2

j Ṽ
T
2

j (5.29)
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Using these factorized matrix definitions, equation (5.24) can be equivalently written as,

R̃
1

2

j R̃
T
2

j = H̃ψ,jP
1

2

ψ,jP
T
2

ψ,jH̃
T
ψ,j + Ṽ

1

2

j Ṽ
T
2

j (5.30)

Recognizing that this has the general form CCT = AAT + BBT , the square-root factor R̃
1

2

j

can be determined by using the results of Lemma D.17 and the QR factorization approach
discussed in Section D.18.

Measurement Update

Using the stacked measurement equation (5.20), the Kalman Filter gain and the square-

root covariance update can be obtained. Specifically, given H̃j, P
1

2

j|j−1 and R̃
1

2

j consider the
unitary triangularization of the following matrix,⎡⎣ R̃

1

2

j H̃jP
1

2

j|j−1

0 P
1

2

j|j−1

⎤⎦ =

[
X 0
Y Z

]
Θ (5.31)

where ΘT is an orthogonal matrix (i.e., ΘTΘ = I). The factorization in (5.31) can be
performed using a QR factorization. Extracting X, Y and Z, one can compute the Kalman
Filter Gain K and square-root covariance update equation as (cf., Corollary D.1 and [12]),

Kj = Y X−1 (5.32)

P
1

2

j|j = Z (5.33)

Given the Kalman gain in (5.32) the state perturbation update equation is,

δx̂j|j = δx̂j|j−1 +Kj

(
δỹj − H̃jδx̂j|j−1

)
(5.34)

This completes the discussion of the time and measurement updates of the Kalman filter. The
next two subsections will briefly outline the required sensitivity calculations. More details
are provided in the Appendix.
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5.2 Sensitivity Equations for p1 Parameters

The sensitivity K1 is defined from (5.13) as,

K1 =
∂

∂p1

(−M (p1, y) y)

∣∣∣∣
p̂1,p̂2f

(5.35)

Using the result of Lemma D.21 and the Kronecker product identity of Lemma D.22 gives,

−M (p1, y) y = −(M00 + ΓM10 + Γ2M20 +M01 (y))y (5.36)

= − (
yT ⊗ I

)
V ec (M) (5.37)

= − (
yT ⊗ I

) [
S00 ΓS10 Γ2S20 fu (y)

]
p1 (5.38)

where,

S00 =

⎡⎢⎢⎣
1 0 0
0 0 1
0 0 1
0 1 0

⎤⎥⎥⎦ , S10 =

⎡⎢⎢⎣
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤⎥⎥⎦ , S20 =

⎡⎢⎢⎣
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤⎥⎥⎦ (5.39)

fu (y) =

⎡⎢⎢⎣
yw 0 yv 0 0 0
0 0 0 yw 0 0
0 yv 0 0 0 0
0 0 0 0 yv yw

⎤⎥⎥⎦ (5.40)

yT ⊗ I =

[
yw 0 yv 0
0 yw 0 yv

]
(5.41)

Substituting (5.38) into (5.35) gives the desired expression,

K1 = − (
yT ⊗ I

) [
S00 ΓS10 Γ2S20 fu (y)

]
(5.42)
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5.3 Sensitivity Equations for p2 and ψ Parameters

This section will discuss how to compute sensitivities taken with respect to p2 and ψ as used
to define K2 and Hψ in (5.14) and (5.15), respectively. The main idea is to make use of
equations (3.19)-(3.21) derived earlier.

Assume that current estimates Ĉ, T̂ , R̂, Ĝ, Â0 are sufficiently close to C, T,R,G,A0 so that
one can define the perturbations ck, θk, φk, gk, ψk according to the following relationships,

C = (I − c×k )Ĉ (5.43)

T = (I − θ×k )T̂ (5.44)

R = (I − φ×
k )R̂ (5.45)

G = (I − g×k )Ĝ (5.46)

A0 = (I − ψ×
k )Â0 (5.47)

Substituting (5.43)-(5.47) into (3.19) and rearranging gives,

s
Δ
= CTRGA0� (5.48)

� (
I − c×k

)
Ĉ
(
I − θ×k

)
T̂
(
I − φ×

k

)
R̂
(
I − g×k

)
Ĝ
(
I − ψ×

k

)
Â0� (5.49)

�
[
I −

(
ck + Ĉθk + ĈT̂ φk + ĈT̂ R̂gk + ĈT̂ R̂Ĝψk

)×
]
ĈT̂ R̂ĜÂ0� (5.50)

=
(
I − η×

)
N̂�. (5.51)

where η denotes the total pointing perturbation given by the expression,

η = ck + Ĉθk + ĈT̂ φk + ĈT̂ R̂gk + ĈT̂ R̂Ĝψk (5.52)

N̂ = ĈT̂ R̂ĜÂ0 (5.53)

It is seen from (5.52) that η can be written as a linear function of the individual perturbations
as follows,

η =
[
I Ĉ ĈT̂ ĈT̂ R̂

] ⎡⎢⎢⎣
ck
θk
φk
gk

⎤⎥⎥⎦+ ĈT̂ R̂Ĝψk (5.54)

= Hηλk + Lψψk. (5.55)
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where,

λ
Δ
=

[
cTk θk

T φk
T gk

T
]T ∈ R12 (5.56)

Hη
Δ
=

[
I Ĉ ĈT̂ ĈT̂ R̂

]
(5.57)

Lψ
Δ
= ĈT̂ R̂Ĝ (5.58)

Given the above construction, the desired sensitivities can be written in the form,

K2 =
∂hz
∂(δp2)

=
[
∂z
∂s

] [
∂s
∂η

] [
∂η
∂λ

] [
∂λ

∂(δp2)

]
= HzHsHηHλ (5.59)

Hψ =
∂hz
∂ψ

=
[
∂z
∂s

] [
∂s
∂η

] [
∂η
∂ψ

]
= HzHsLψ (5.60)

where evaluation on p̂1, p̂2f and ψ = 0 is implied. The various terms in these expressions for
K2 and Hψ will be derived in the remainder of the section.

5.3.1 ∂z
∂s

Derivation

Starting with equation (3.21), the partial derivative of z with respect to s can be calculated
as,

Hz =
∂z

∂s
=

[
− ŝz

ŝ2x
0 1

ŝx

− ŝy

ŝ2x

1
ŝx

0

]
(5.61)

where,
ŝ = N̂� = ĈT̂ R̂ĜÂ0� (5.62)

5.3.2 ∂s
∂η

Derivation

Equation (5.51) can be rearranged to give,

s =
(
I − η×

)
N̂� = N̂�− η×N̂� (5.63)

= N̂�+
(
N̂�

)×

η (5.64)

where the vector cross product property has been used (−a× b = b× a). Taking the partial
derivative of (5.64) with respect to η gives,

Hs =
∂s

∂η
=
(
N̂�

)×

=
(
ĈT̂ R̂ĜÂ0�

)×

(5.65)
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5.3.3 ∂η
∂λ

Derivation

Starting with equation (5.55), the partial derivative of η with respect to λ can be calculated
as,

Hη =
∂η

∂λ
=
[
I Ĉ ĈT̂ ĈT̂ R̂

]
. (5.66)

Equation (5.66) is the most general expression. However, since sensitivities with respect to ck
are only needed for the MIPS instruments (which have scan mirrors), and since sensitivities
with respect to θk are not needed for the PCRS sensors (which define the TPF frame),
the actual value of Hη will be calculated differently depending on which array the specified
centroid was taken on, i.e.,

Hη =

⎧⎨⎩
[
I, Ĉ, ĈT̂ , ĈT̂ R̂

]
for MIPS[

0, I, ĈT̂ , ĈT̂ R̂
]

for non-MIPS[
0, 0, ĈT̂ , ĈT̂ R̂

]
for PCRS

(5.67)

5.3.4 ∂λ
∂(δp2)

Derivation

Given λ =
[
ck θk φk gk

]T
, it is convenient to decompose the sensitivity of λ with respect

to δp2 into the following matrix,

Hλ =
∂λ

∂(δp2)
=

⎡⎢⎢⎣
Hc 0 0 0
0 Hθ 0 0
0 0 Hφ 0
0 0 0 Hg

⎤⎥⎥⎦ (5.68)

where,

Hc =

[
∂ck
∂(δα)

...
∂ck
∂(δβ)

]
(5.69)

Hθ =
∂θk
∂(δθ)

(5.70)

Hφ =

[
∂φk
∂(δar)

...
∂φk
∂(δbr)

...
∂φk
∂(δcr)

]
(5.71)

Hg =

[
∂gk
∂(δbg)

...
∂gk
∂(δcg)

]
(5.72)

The quantites Hc, Hθ, Hφ, Hg will be calculated next.

Scan Mirror Axis Sensitivity Hc

53



Consider the perturbation on the scan mirror rotation given in (5.43) as,

C =
(
I − c×k

)
Ĉ (5.73)

Based on Lemma D.5 (Angle-Axis Perturbation), the perturbation ck in (5.73) can be written
as,

ck =
[
sin β̂Γ · I −

(
1 − cos β̂Γ

)
â×
]
δa+ âΓδβ (5.74)

where β̂ is the nominal scale factor and â is the nominal mirror axis. The misalignment on
the scan mirror axis δa has two degrees of freedom corresponding to in-plane and out-of-plane
errors. However, the out-of-plane error can be ignored because it manifests itself as a frame
misalignment, and is estimated as part of T . The remaining degree of freedom is the in-plane
misalignment which can be parametrized as,

δa = ha (â) δα (5.75)

where,

ha (â) =

⎡⎣ 0
â3

−â2

⎤⎦ (5.76)

Substituting (5.75) into (5.74) gives,

ck =
[ (

sin β̂Γ · I −
(
1 − cos β̂Γ

)
â×
)
ha (â)

... âΓ
] [

δα
δβ

]
(5.77)

Consequently, the desired partial derivative of ck with respect to δα, δβ is,

Hc =
[ (

sin β̂Γ · I −
(
1 − cos β̂Γ

)
â×
)
ha (â)

... âΓ
]

(5.78)

IPF0 Alignment Sensitivity Hθ

It is seen from (5.44) that the variables θk and δθ represent the same physical perturbation
of T . Consequently, the partial ∂θk

∂(δθ)
is a 3 × 3 identity matrix, i.e.,

Hθ = I3×3 (5.79)

TPF Alignment Sensitivity Hφ

The direction cosine matrix R is the mapping from the STA-defined Body frame to the
TPF frame. It is parametrized in (4.14) as the following quadratic function of time,

R(qR, br, cr)
Δ
=

(
I3×3 −

(
brt+

crt
2

2

)×
)
R0(qR) (5.80)
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where R0 (and its equivalent quaternion qR) corresponds to the initial alignment at time
t = 0, and br, cr are parameters associated with the time-varying alignment drift.

Let R0, br, cr be perturbed about their current nominal estimates R̂0, b̂r, ĉr by the pertur-
bations δar, δbr, δcr ∈ R3 according to,

R0(qR) = (I − δa×r )R̂0 (5.81)

br = b̂r + δbr (5.82)

cr = ĉr + δcr (5.83)

Substituting the perturbations (5.81)-(5.83) into (5.80) and rearranging gives (to first order),

R (qR, br, cr) =

(
I −

((
b̂rt+

ĉrt
2

2

)
+

(
δbrt+

δcrt
2

2

))×
)(

I − δa×r
)
R̂0 (5.84)

=

[
I −

(
δar + δbrt+

δcrt
2

2

)×
][

I −
(
b̂rt+

ĉrt
2

2

)×
]
R̂0 (5.85)

Δ
=

[
I − φ(t)×

]
R(q̂R, b̂r, ĉr) (5.86)

where,

R(q̂R, b̂r, ĉr) =

[
I −

(
b̂rt+

ĉrt
2

2

)×
]
R̂0 (5.87)

φ(t)=
[
I t · I t2

2
· I ] ⎡⎣ δar

δbr
δcr

⎤⎦ (5.88)

The variable φk is defined by evaluating φ(t) at the k centroid time Tk to give,

φk=
[
I Tk · I T 2

k

2
· I

]⎡⎣ δar
δbr
δcr

⎤⎦ (5.89)

Hence, the desired sensitivity Hφ is,

Hφ =
[
I Tk · I T 2

k

2
· I

]
(5.90)

It is noted that after the perturbations δar, δbr, δcr are estimated, they are applied to update
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the nominal parameters as follows,

R̂0 ← (I − δâ×r )R̂0 (5.91)

b̂r ← b̂r + δb̂r (5.92)

ĉr ← ĉr + δĉr (5.93)

In this manner the estimate of the initial alignment R̂0 (and its equivalent quaternion q̂R) is
kept as a large angle, while the time-varying drift is kept as a small angle. This formulation
is used because R̂0 is expected to be on the order of degrees, while the time-variations are
expected to be only a few arcseconds.

Gyro Attitude Offset Sensitivity Hg

The true gyro offset G can be written as,

G (Tk) =
(
I − γ (Tk)

×)G◦ (Tk) (5.94)

where G◦ is a nominal gyro offset provided by the gyro pre-processor. The quantity G◦ is
computed by the gyro pre-processor by using a certain nominal rate estimate ω◦

m. (The actual
choice of ω◦

m by the pre-processor will be discussed in Section 5.4).

Clearly the quantity γ is not known. However, given that the true rate ω is related to the
approximate rate ω◦

m according to,

ω = ω◦
m + bg + cg (5.95)

(by definition of bg and cg in (4.19)) then as shown in the Appendix, Lemma D.2, the quantity
γ can be parametrized linearly in bg, cb as,

γ (Tk) = Hg (Tk)

[
bg
cg

]
(5.96)

Hg (Tk) =
[

Λb (Tk) Λc (Tk)
]

(5.97)

where the quantities Λb and Λc are obtained by integrating the matrix differential equations,(
Λ̇b = − (ω◦

m)× Λb + I
)∣∣∣Tk(j)

tj
with I.C. Λb (tj) = 0 (5.98)

(
Λ̇c = − (ω◦

m)× Λc + t · I
)∣∣∣Tk(j)

tj
with I.C. Λc (tj) = 0 (5.99)

Here, the notation (·)|ba denotes integration over the time interval t ∈ [a, b], and tj denotes
the starting time of the j’th maneuver.
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Since the bg, cg parameters are not known, perturbations δbg, δcg are defined such that,

bg = b̂g + δbg (5.100)

cg = ĉg + δcg (5.101)

Using the current nominal estimates b̂g, ĉg, an estimate γ̂ of γ at the centroid time Tk is
defined by,

γ̂ (Tk)
Δ
= Hg (Tk)

[
b̂g
ĉg

]
(5.102)

A corresponding estimate of G is defined by,

Ĝ (Tk)
Δ
=
(
I − γ̂ (Tk)

×)G◦ (Tk) (5.103)

This estimate is used in the measurement equation to form the prediction. Combining (5.94)
and (5.103) yields (to first order),

G(Tk) =

(
I −

(
γ(Tk) − γ̂(Tk)

)×
)
Ĝ (5.104)

By comparing (5.104) with the definition of gk in (5.46) it is clear that the relation between
gk and γ is given by (to first order),

gk
Δ
= γ(Tk) − γ̂(Tk) (5.105)

Accordingly, gk can be found by subtracting (5.96) from (5.102) to give,

gk (Tk) = Hg (Tk)

[
δbg
δcg

]
(5.106)

It is seen from (5.106) that Hg is the desired sensitivity function and its formula is given by
(5.97).

For computational savings, the gyro pre-processor computes the quantities {G◦(Tk), Hg(Tk)}
once and stores them. These quantities are then used in the prediction equation (5.103) and
the sensitivity equation (5.106) at each centroid time Tk and during each filter cycle.
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5.4 IPF Gyro Pre-Processor

In order to reduce computation, the gyro pre-processor computes the quantities {G◦(Tk), Hg(Tk)}
once and stores them. This (with the attitude quaternion associated with the start of each
sandwich maneuver), summarizes the attitude information needed by the Kalman filter. With
this approach, the large attitude file (AFILE) is reduced by several hundred to the size of
the centroid file (CFILE), and no further processing of attitude data is required to generate
the sensitivity equations used by the Kalman filter.

5.5 Calculation of G◦

The gyro pre-processor computes the nominal gyro offset G◦(Tk) by integrating the equation,(
Ġ◦ = − (ω◦

m)×G◦
)∣∣∣Tk(j)

tj
(5.107)

(conceptual only - the actual computation is performed using quaternions). Here, the nominal
rate ω◦

m is assumed to have the form,

ω◦
m = wm + b◦g + c◦gt (5.108)

where wm is the gyro rate measurement that has an on-board scale factor and misalignment
correction but does not have an on-board bias correction. The quantities b◦g, c

◦
g ∈ R3 are

nominal estimates of the 3-axis gyro bias and bias rate parameters, respectively. Depending
on the user’s response to a query during operation, the values of b◦g, c

◦
g can be chosen one of

three possible ways:

1. The earliest on-board GCF gyro bias correction stored in the attitude history file (most
common choice)

2. Default values provided in the RN file

3. Previous IPF filter run estimate of bias correction

5.6 Calculation of Hg

The gyro sensitivity matrix Hg(Tk) is computed by integrating the matrix differential equa-
tions (5.98)(5.99) (see also, Appendix, Lemma D.2).

The integration of the sensitivities (5.98)(5.99) is aided by an analytical result proved in
Section D.16, and briefly summarized here. Specifically, the integral of (5.98) over ΔT (the
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fast gyro sampling period) can be written as,

Λb (k + 1) = e−(ω◦

m)×ΔTΛb (k) +

∫ ΔT

0

e−(ω◦

m)×(ΔT−τ)Idτ (5.109)

= e−(ω◦

m)×ΔT

(
Λb (k) +

∫ ΔT

0

e(ω
◦

m)×τdτ

)
(5.110)

= M1

(
Λb (k) +M2

)
(5.111)

where from Lemma D.15 it follows that M1 is a direction cosine matrix of the form,

M1 = M1

(
ω◦
m

‖ω◦
m‖
, ‖ω◦

m‖ΔT
)

Δ
= e−(ω◦

m)×ΔT (5.112)

= cos (‖ω◦
m‖ΔT ) · I +

(
1 − cos (‖ω◦

m‖ΔT )

)
ω◦
m

‖ω◦
m‖

(ω◦
m)T

‖ω◦
m‖

− sin (‖ω◦
m‖ΔT )

(ω◦
m)×

‖ω◦
m‖

(5.113)

and by Lemma D.16, M2 is given by the expression,

M2 = M2

(
ω◦
m

‖ω◦
m‖
, ‖ω◦

m‖ΔT
)

Δ
=

∫ ΔT

0

e(ω
◦

m)×τdτ (5.114)

=
sin (‖ω◦

m‖ΔT )

‖ω◦
m‖

· I +

(
ΔT − sin (‖ω◦

m‖ΔT )

‖ω◦
m‖

)(−ω◦
m

‖ω◦
m‖

)(−ω◦
m

‖ω◦
m‖

)T

−
(

cos (‖ω◦
m‖ΔT ) − 1

‖ω◦
m‖

)(−ω◦
m

‖ω◦
m‖

)×

(5.115)

Analogous to (5.111), the integration of (5.99) is performed (approximately) as,

Λc (k + 1) = M1

(
Λc (k) + tkM2

)
(5.116)

where tk is the time of the k’th sample (taken at the fast gyro sampling rate).
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6 ALGORITHMS

6.1 IPF Filter Algorithm Overview

A functional block diagram of the IPF filter algorithm is shown in Figure 6.1. The IPF filter
algorithm is divided into five major components,

• Filter Initialization and Input data preparation

• Gyro Preprocessor

• Kalman Filter Execution and Iterations

• Least Squares Filter Execution and Data Analysis

• Output Data Processing, Write Output Files, Display Output Figures.

Initialization: Upon running the IPF filter, the program queries the user for the six-digit
extension of the RN file to be processed. For tracability, this same six-digit extension is
used in the name of all output files generated by the run. The program reads the specified
RN file from the current directory, and loads all necessary database parameters. The IPF
filter loads all input files specified within the RN file (i.e., AA, AS, CA, CB, CS, FF, TT
and frame-table files) into the MATLAB workspace. Other filter control variables (e.g., the
number of initial filter iterations etc.) are also loaded from the RN file. The software is then
initialized based on this information, and the CA and CB files are merged chronologically,
and edited to produce a cleaned CC File.

Gyro Preprocessing: Once the initialization step is completed, the IPF software enters the
gyro preprocessing functional block as shown in Figure 6.1. The IPF filter queries the user for
the desired method of gyro linearization. The gyro pre-processor compresses the data from
a large AA file into two significantly smaller AG and AC files. The AG and AC files contain
attitude data and sensitivity function evaluations at each of the centroid times. Hence, the
dimension of the AG and AC files are compressed, being on the order of the number of
centroids in the merged CC centroid file. With this approach, the computationally intensive
gyro propagation and sensitivity calculations are computed only once per run.

Kalman Filter Execution: Once the gyro pre-processor step is completed, the IPF filter
program executes the IPF Kalman filter subroutine (cf., Figure 6.1). This filter subroutine
first initializes the mean and covariance estimates of the filter. The filter subroutine then
sweeps through the entire centroid data set, and accumulates a filter correction. At the end
of the file, the accumulated filter correction is applied, and the system is relinearized about
the new nominal to prepare for the next iteration of the filter cycle. After the filter iterates
for a specified number of iterations (as defined in RN file), a convergence plot is provided so
that the user can choose to either proceed or stop the iteration process.
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Least Squares Filtering and Analysis: Upon completion of the main Kalman filter
execution, the program starts an independent Iterated Linearized Least Squares Filter
subroutine. This calculation is optional and can be disabled by setting a flag in the RN file.
However, this calculation is very useful for diagnostic purposes,

i) It provides an independent state estimate to compare to the Kalman filter estimate

ii) It provides an independently calculated covariance estimate

iii) It provides a residual-based scale factor which scales the least-squares covariance and
makes it more representative of the effective noise in the given data set.

The least squares filter iteration does not have to be monitored by the user since, for sim-
plicity, it is taken to be the same the total Kalman filter iterations used in the earlier step.

Output Processing and Plotting: After the Kalman filter and least-squares processing
is completed, the program executes the output data processing subroutine. This routine
calculates all the necessary variables for output file generation and output diagnostic plots.
The program then writes the output files, plots the filter results, and saves all workspace
variables without requiring any additional user inputs.

6.2 Input Database and User Interface

6.2.1 User Configuration Parameters

The IPF filter has several configuration parameters that can be set by the user to control
filter execution behavior. These configuration parameters are listed in Table 6.14 (see also,
IPF Filter User’s Guide D-Document [13] for more details).

As shown in Table 6.14, the user can

i) choose the initial gyro bias for linearization

ii) select which state parameters should be estimated through masking vectors

iii) define the PCRS locations,

iv) enable or disable two possible filtering approaches (i.e., Kalman filtering and Least
Squares)

v) force the filter to operate in “Slit” mode

vi) select a LITE mode of operation

vii) use previously generated gyro pre-processor data
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COM>> runipfUSER

IPF FILTER

START

EDIT RNFILE
CAfilename
CBfilename
CSfilename
AAfilename
ASfilename
FFfilename
FTBL_VER

Other USER INPUT

START
IPF

ENTER OUTPUT
 FILE NO  (xxxyyy)

REVIEW
CONVERGENCE

PLOT

SELECT INIT
GYRO BIAS

MUI END

IPF
START

IPF DATABASE
INITIALIZATION

GYRO
PREPROCESSOR

IPF FILTER
INITIALIZATION

IPF KF
EXECUTION

KF ITERATION
CONTINUE?

INTERM.
FILES

AC & AG

OUTPUT
FIGURES

LEAST SQ
ERR ANALYSIS

IPF OUTPUT
PREPARATION

END

OUTPUT FILES
IFxxxyyy

LGxxxyyy

Figure 6.1: IPF Functional Block Diagram
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viii) use FLUTE test data

ix) initialize mean and covariance from user supplied data

x) define customized centroid data editing

Note that if the user hasn’t specified the mask vectors and the “Slit” mode operations, the
IPF filter loads the default database.

Name Description Source Method

bg0user User defined gyro bias for linearization RN file Use Option 2 in MUI
cg0user User defined gyro bias rate for linearization RN file Use Option 2 in MUI
mask1 User defined mask vector for p1 RN file specify and uncomment
mask2 User defined mask vector for p2 RN file specify and uncomment
FT user4-9 User defined PCRS quaternion bypass

frametable
RN file set USR PCRS flg = 1

kf enable Kalman filter enable RN file 1 for enable, 0 for disable
lsqrf enable Least Squares filter enable RN file 1 for enable, 0 for disable
Slit Flag Slit Mode Manual Selection RN file 1:Process as a Slit, 0:Not a Slit
IPF LITE MODE LITE Mode Selection RN file 0: Normal Mode, 1-3 LITE Mode
USE PREV AGAC Bypass Gyro Preprocess and use old data RN file Set to 1 and specify AC & AG file name
IPF TEST MODE Use FLUTE data to extract true error

(testing only)
RN file Set to 1 and specify TT file name

Use RNinit flg Use user supplied mean and covariance to
initialize filter

RN file Set to 1 and specify mean and covariance

CEdit FLG User Specified Centroid Data Editing In-
struction

RN file Set to 1 and specify edit data

Table 6.14: Special Operational Features of IPF Filter

6.2.2 Merging and Editing Centroid Files

There are three different approaches to edit out bad centroids within the IPF filter. These
three approaches are summarized in Table 6.15. The purpose of these editing approaches is
to i) to detect any bad data glitches autonomously, and ii) allow the user to manually edit
out any unwanted centroid data (or complete maneuvers) if necessary.

Instructions for using the RN file approach are described within the RN file. In the CC file
approach, the user manually puts 99999’s into columns 8 and 9 of the CA and/or CB files to
indicate bad centroids. The IPF filter then looks for the 99999’s and removes these centroids
from consideration. In the AA file approach, the user puts a “1“ into column 21 (i.e., the
IBAD flag) of the AA file to indicate bad attitude data. When the IPF filter encounters the
IBAD indication, it removes the entire maneuver from consideration.

The block diagram associated with the merging and editing subroutine is shown in Fig-
ure 6.2. This subroutine loads the supplied CA and CB input files, and then produces a
cleaned and chronologically merged CC file. The combined CC file contains both the instru-
ment and PCRS centroid data in chronological order. The CC file is indexed in two different
ways: one from ordering the merged raw data set, and the second from ordering the merged
cleaned-up data set (i.e., after editing out the indicated bad data).
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Method Trigger Impacted Data Comment

CEdit CX Remove Cx component of a
centroid data

Specified by raw CCFILE row number

RN FILE CEdit CY Remove Cy component of a
centroid data

Specified by raw CCFILE row number

CEdit MN Remove specified Maneuver Specified by Maneuver number

CC FILE
Col(8) Remove Cx with detection of

99999’s
User can manually edit out unwanted
data by placing 99999’s (in CA, CB)

Col(9) Remove Cy with detection of
99999’s

AA FILE Col(21) Removes entire maneuver
when IBAD detected

Compares time tags between AA File
and CC File

Table 6.15: Three Different Centroid Data Editing Methods

As shown in Figure 6.2, the merging process first loads the CA and CB files into the
MATLAB environment as two matrices. These two matrices are then stacked and sorted
into chronological order. This produces a stack of time-ordered raw centroid data. Four
additional columns are added to this stack as indicated in Table 6.16. The Centroid and
Maneuver numbers are added to the file. At this point, the merging tool detects any 99999’s
in the centroid data field. Once detected, Cx valid and Cy vaild flags are set to zero, otherwise
they are set to 1. Next, the Cx valid and Cy vaild flags are set based on the user-supplied
editing instructions (as specified in RN file, see Table 6.15). With the given Cx valid and
Cy vaild flags, the raw file is trimmed down by eliminating the indicated rows.

The next step is to clean out any unwanted maneuvers. Here, the merging routine applies
the user-supplied maneuver editing instructions given in the RN file. Then the attitude
data AA file is searched for any IBAD flags, and entire maneuvers are removed which are
associated with any bad data. The raw centroid file is screened and trimmed down with these
set flags, which provides a cleaned centroid file for use with the IPF filter.

Column 16 17 18 19

Cx valid Cy valid Raw Row number Final Row number

Table 6.16: Augmented Centroid File Columns

6.2.3 Gyro Preprocessing

A standard implementation of an iterated and linearized Kalman filter for this problem
requires that the gyro attitude be propagated and gyro sensitivities be calculated at every
centroid time and for each iteration. This approach is very time-consuming, considering that

64



Centroid Editing Flags
CA, CB and AA Files

CC RAW

Stack CA & CB Files
Sort in Chronological Order

ADD 4 Additional Columns
CX, CY, Raw, Final Order

CC RAW
EXPAND

Set CX, CY valid flags
When 99999's detected

Set CX, CY valid flags
With User Supplied

Centroid Data Editing Flags

Set CX, CY valid flags
With User Supplied

Centroid Data Editing Flags

TRIM CC RAW (EXP) File
Both CX, CY Flags

Disabled

Screen through AA File for
IBAD Flag.  Eliminate Entire

Maneuver If Detected.

CC TRIM#1

Eliminate Maneuvers If
Centroid Editing Flags Set

Renumber Maneuver
Numbers and Prepare

Output

CC TRIM#2

CC FILE

Figure 6.2: Merging and Editing Centroid Files

the attitude history is at 10 Hz and the attitude data file is typically tens of megabytes in
size.

The gyro attitude linearization within the iteration loop is avoided by linearizing twice:
once globally as a small perturbation about a nominal gyro bias estimate, and a second time
locally as a small perturbation to the perturbation. This approach is aided by the fact that
the initial on-board estimate of the gyro drift bias from the onboard filter is quite good and
serves as a valid initializer from linearizing the entire time history. The first linearization is
performed by a gyro pre-processor which propagates the gyro sensitivities about the global
linearization point just once-per-run before the Kalman filter iteration starts. The results
of these attitude propagation and sensitivity calculations are stored in memory at only the
centroid times (of smaller dimension that the attitude history), and are used in all further
iterations (i.e., local relinearizations) of the filter.

An overview of the gyro pre-processor is given in Figure 6.3. Functionally, the main
objective of the gyro pre-processor is to input the centroid and attitude files and to produce
the much more compact AG and AC files 1 for the main filter routines. The AG file contains
propagated gyro attitude histories and sensitivities (cf., Section 5.4) and the AC file is the
trimmed AA file where each row is time aligned to the corresponding row of the centroid
data file.

The gyro pre-processor allows four specialized types of preprocessing modes. These modes
are summarized in Table 6.17, and consist of one normal mode and three LITE modes.

1The dimension of the compressed file is on the order of the number of centroids in the merged (CA plus
CB) centroid files
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The normal mode linearizes and propagates attitude using the gyro data corrected by the
bias estimates bg0 and cg0. Sensitivities are also calculated by linearizing about these same
nominal values.

In contrast, when any one of the LITE modes is invoked, the gyro bias parameters are
not estimated and their sensitivities are not computed 2. Instead, LITE mode #1 uses the
on-board GCF corrected gyro rates to propagate the gyro attitude. LITE mode #2 uses
the raw Star Tracker (STA) quaternion to provide the attitude history at each centroid
time. Note that the raw tracker data requires a transformation from AST to STA frame (cf.,
Section 3.3). The last LITE mode #3 uses the attitude history from the onboard attitude
observer (smoothed STA solution).

Mode Type Linearization Gyro Attitude Sensitivities

0 Normal bg0, cg0 Propagate Gyro YES

1 GCF Corrected b̂g Propagate GCF Corrected Gyro NO

2 Raw STA NONE Use Raw STA quaternion NO

3 Filtered STA NONE Use Onboard Filter Attitude NO

Table 6.17: LITE Mode Description

As shown in Figure 6.3, the pre-processor starts with the nominal gyro bias to be linearized
about, the LITE mode flag and input files (CC and AA). The IPF filter queries the user for the
desired method of gyro linearization (selecting appropriate bg0 and cg0). The MUI gives the
IPF filter user three different choices to select the linearizing gyro drift bias. Option 1 allows
the user to specify that the nominal drift biases be taken from the on-board gyro-calibration
filter (GCF) (recommended); Option 2 allows one to invoke a user-defined database; and
Option 3 allows to the user to choose the best estimated value of gyro drift bias based on the
previous IPF filter run. Given these initial conditions, the pre-processor subdivides into two
major functional branches, gyro based processing (Mode 0 and 1) and STA based processing
(Mode 2 and 3).

For the gyro based modes, initially the attitude data are scrolled down until the attitude
data time aligns with the first centroid data. While looping for each centroid data, gyro
rates are propagated (GCF corrected gyro data for Mode #1) and the gyro sensitivities are
integrated. When the propagated data are available at each centroid time, the data are
written in the AG file. Compressed attitude AC file is also obtained. When end of maneuver
is detected, the gyro quaternion and sensitivities are reset.

For the two STA based modes, the propagated gyro quaternion is replaced with appro-
priate attitude quaternion, raw STA quaternion for the mode #2 and the onboard attitude
quaternion for the mode #3. No gyro propagation is performed in this path. Similar to the
gyro based case, the AG and AC files are created.

This computationally intensive gyro propagation and sensitivity calculations are com-

2Gyro parameters are masked out by using the mask vector
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puted only once per run and the intermediary files (AG and AC) are stored as MATLAB
ASCII files and can be reused in future runs on the same data set, without executing the
pre-processor if the user specifies such an option in the RN file (it is recommended to do so).

Nominal gyro bias bg0
LITE Mode Flag
CC and AA Files

YES

NORMAL MODE
OR LITE MODE 1

Scroll down AA File until
timeline matches first

centroid

Loop over
entire CC data

RESET Gyro
quaternion

Sensitivities

LITE MODE 2 OR 3
(GYROLESS)

CHECK LITE MODE FLAG

END OF
MANEUVER

?

Write Propagated
Quaternion & Sensitivities
to AG File, Create AC File

Propagate Quaternion
Propagate Sensitivities
(LITE Mode 1 Use GCF
Corrected Gyro Rate)

NO

STOP IF END of
FILE Detected in

CC FILE

Scroll down AA File until
timeline matches first

centroid

2

Loop over
entire CC data

Use raw STA
quaternion

LITE MODE
?

Write Quaternion & Set
Sensitivities to Zero
Write AC, AG Files

3

STOP IF END of
FILE Detected in

CC FILE

Use Attitude
Filter

Solution

INPUT:

Figure 6.3: Gyro Preprocessor functional block diagram
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6.3 Scalable Kalman Filter

The core functional block of the IPF filter is the iterated linearized Kalman filter routine
which will be discussed in this subsection. The estimates and output data of this routine is
used to produce the corresponding IPF filter run output files. Even though the least squares
filter that follows the Kalman filter execution also provide the estimates, the least square
estimates are only used to provide the independent data quality analysis and bounding the
Kalman filter results 3. As discussed previously, the Kalman filter provides state estimate
corrections from maneuver to maneuver and updates the state estimates only once at the end
of the survey.

The functional block diagram of the Kalman filter is shown in Figure 6.4 and Figure 6.5.
The main Kalman filter routine starts immediately when all input data files and database are
obtained and gyro pre-processor completes (or AG and AC files loaded into the MATLAB
workspace). As shown in Figure 6.4, the Kalman filter has outer iteration loop that iterates
and stops at a given database value as specified in the RN file (N KF Iteration). Once
the iteration reaches N KF Iteration and the MUI flag ask4more iteration flg is set to
1, then the MUI displays the filter convergence diagnostics plots and waits for the user to
proceed with additional iterations or to terminate. If the user decided with additional runs,
the filter iterates N KF Addrun times as specified in the RN file. Once terminated, the IPF
filter software proceeds to the Least Squares data analysis routine.

Within the iteration loop, the detailed Kalman filter operations are described in the func-
tional block diagram of Figure 6.5. As shown in this figure, the data collection occurs at each
centroid data points (inner loop), and the correction to the states estimates are calculated
every time end of the maneuver reaches. The data collection processes following calcula-
tions: i) Obtain a centroid measurement y and its predict ŷ to form a measurement residual
yres = y−ŷ, ii) Calculate sensitivities K1 and K2 and apply mask to form the linearized obser-
vation matrix Hmask. This masking scalability 4 allows the use of same algorithm for various
instrument type, iii) Calculate effective noise sigma Rtmp from the centroid measurement
noise sigma Rc and the initial attitude uncertainties Λψ (cf., Sum Factorization Lemma D.17
for detailed calculations), and iv) Stack the measurement residual, the masked sensitivities
and the effective noise sigma until the process reaches end of the maneuver.

Whenever end of the maneuver is reached, the stacked vector and matrices of step iv) are
used to calculate the Kalman filter gain and a posteriori square-root covariance by using a
QR factorization method (cf., Section 5.1 of the formulation and the Lemma D.1 for detailed
calculations). The corrections to the state estimates are accumulated as indicated in the last
functional block of Figure 6.5.

3The Least Squares filter also provides an estimate of the prediction residual noise and provides a scaling
of the Kalman filter sigma estimates

4The IPF algorithm allows estimation of any sub-vector in any combinations (from R37 by applying and
removing mask vector to the state vector and the square-root covariances.
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6.4 Least Squares Data Analysis

The IPF software utilizes an independent Iterated Linearized Least-Squares Filter for the
purpose of post Kalman filter data analysis. The Least-Squares filter execution follows the
Kalman filter processing 5 and it provides independent state estimate such that the Kalman
filter results can be checked against. Since the Kalman filter incorporates a prior state infor-
mation (initial estimate of covariance), the Kalman filter should theoretically perform better
than the least squares solution. Since the least squares filter algorithm is completely inde-
pendent from the Kalman filter, it provides a good sanity check and a reasonable covariance
bound. In addition, the least squares solution generates an estimate of measurement residual
sigma such that the resulting sigma scale factor can be used to scale the estimates with the
effective noise of the given data set.

The overall functional block diagram of the least squares data analysis is shown in Fig-
ure 6.6. As shown in this figure, the least squares filter starts with initializing variables.
Similar to the Kalman filter case, the filter starts with initial estimates of the p1 and p2f

vectors; however, an initial square-root covariance matrix is not needed or used. The least
squares filter has two loops: a re-linearizing outer loop, and centroid data processing inner
loop.

The inner centroid data processing loop starts by stacking measurement and sensitivity
matrices for the duration of one maneuver. The starting point is equation (5.20) where all
the centroids from the j’th maneuver are stacked into a single measurement perturbation
vector,

δỹj = H̃jδx+ ñj (6.1)

The measurement noise covariance is given by,

Cov[ñj]
Δ
= R̃j = R̃

1

2

j R̃
T
2

j (6.2)

where the calculation of R̃
1

2

j has been described earlier based on factorizing (5.30). The

observations are unit-normalized by premultiplying both sides of (6.1) by R̃
− 1

2

j , and then
stacked for all M maneuvers to give the regression equation,

Ỹ = H̃δx+ η (6.3)

where,

Ỹ
Δ
=

⎡⎢⎢⎣ R̃
− 1

2

1 δỹ1
...

R̃
− 1

2

M δỹM

⎤⎥⎥⎦ ; H̃
Δ
=

⎡⎢⎢⎣ R
− 1

2

1 H̃1
...

R
− 1

2

M H̃M

⎤⎥⎥⎦ ; η
Δ
=

⎡⎢⎢⎣ R̃
− 1

2

1 ñ1
...

R̃
− 1

2

M ñM

⎤⎥⎥⎦ (6.4)

5Processing of only one type of filter is also possible via proper RN file specifications; however, an execution
of least squares filter does not produce any IPF filter output files.
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After the regression equation (6.3) is formed, some columns of H̃ are scaled for better
numerical accuracy (i.e. to provide a better conditioning for matrix inversion). This is done
by defining a diagonal scaling matrix S, and using S to form the scaled regression matrix
H̃T = H̃S, and scaled parameter vector δxT = S−1δx. The parameters that are scaled by S
relate to the mirror rotation angle Γ and powers of time. A QR factorization method is used
to provide the least squares solution δx̂∗T to the scaled regression equation:

Ỹ = H̃TδxT + η. (6.5)

The resulting estimate δx̂∗T is scaled back to the original physical units to obtain δx̂, and the
state estimate is updated using this perturbation. The problem is relinearized about the new
state estimate, and the overall process is repeated in an iterative fashion until convergence.

72



YES

Initialized Variables
for Least Squares Filter

Mask sensitivity H and
measurement noise

intensity sigma

Loop over
entire CC data

BEGINNING OF
A MANEUVER?

Incorporate Att. Noise
and Calculate Aug. Sigma

Unit Normalize        and 
and stack them for each

Maneuver  j

NO

STOP
Least Squares

Filter

Start
LSQ
Filter

LSQ Filter
Iteration

Loop

Loop each row of
Centroid data file

Stack variables
(residual, masked H,

noise Sigma etc.)

Scale total accumulated
sensitivity matrix  with

tmax And Γmax

Least Squares Filter
Solve for  using  (QR) from

where  η is unit intensity noise

Scale  back to     and 
relinearize

Calculate LSQF
Residual Sigma Scale

Calculate Prediction Error

Calculate Residual &
Sensitivities:

[ ]1 2

ˆy y y
H K K
d = -

=

δ δy H x nj j j= +
δy j H j

y H x= +δ η

H

y H xT T= +δ η

δxT

δxT δx

x f x xf f← ,δ

Figure 6.6: Least Squares Filter and Analysis Diagram
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6.5 Output Preparation

Once the IPF filter is executed, the IPF filter autonomously processes data for output prepa-
ration and generates output figures and three output files, namely the IF, LG, and TR Files
(cf., Figure 6.7). (In the special case that multiple MIPS data sets are being processed, the
IPF filter produces an MF file instead of an IF file). These files are described below,

1. IF file - Output file which summarizes all products (i.e., estimated parameters and
covariances) of the IPF filter run. This is the main product used by all IPF filter
customers.

2. LG file - A log file containing a record of all aspects of the specified IPF filter execution
sequence. This file would allow, for example, the IPF filter to be re-run at a future
time and give identical results.

3. TR file - A tar file containing a copy of all input and output files associated with the
IPF filter run, and all run products. This is the main product stored on DOM for
archival purposes.

4. MF file - Similar to the IF file, but only used when processing multiple MIPS data sets
(i.e., the MIPS multi-run tool).

Once the output figures and files are generated, the IPF software saves all workspace variables
(as a MT file) and terminates the IPF filter operation.

Entire Workspace
Variables

Execute outproc.m to
prepare data for output

files and plotting

Write Output Files
(IF & LG Files)

Save Run Variables

Execute Plotting Routine
Save Entire Workspace

END OF IPF RUN

Figure 6.7: IPF Output Data Processing And Plotting Routine
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6.5.1 Initial Attitude Uncertainty Estimation

Physically, the initial attitude error incurred at the start of each maneuver persists as an
additive constant seen in every centroid taken during the same maneuver (cf., (5.11)). Because
of this additive and persistent noise structure, initial attitude errors can be estimated in a
separate calculation which is made after the filter has converged. This section will outline
the details of this separate attitude calculation. The resulting attitude corrections have been
found to be very useful for visualization purposes where they allow one to study science
centroiding errors in isolation, i.e., without the derogatory contribution of the star tracker
errors.

Estimation of the initial attitude correction ψj for the j’th maneuver is motivated by
substituting (5.22) into (5.20) to give the relation,

δỹj = H̃jδx+ ñj ν̃j + H̃ψ,jψj (6.6)

where νj is the centroid noise having covariance,

Cov[ν̃j]
Δ
= Ṽj (6.7)

As desired, the attitude correction ψj appears explicitly on the right hand side of (6.6).
Assuming the quantity δx is driven to zero by the iterative estimation procedure (this will
typically occur to within machine precision), equation (6.6) becomes,

δỹj � H̃ψ,jψj + ñj (6.8)

This equation can be unit normalized with respect to the measurement noise as,

V
− 1

2

j δỹj � V
− 1

2

j H̃ψ,jψj + η (6.9)

where the transformed noise η now has unit covariance. Given values for δỹj and H̃ψ,j

obtained after filter convergence, equation (6.9) is solved for ψj using least squares (via a QR

factorization). This results in a minimum-variance estimate ψ̂j which serves as the desired
attitude correction for the j’th maneuver. This calculation is then repeated for each maneuver
j = 1, ..., mj.
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6.6 Inferred Frames

A subset of important frames are denoted as “Inferred Frames” because their location is
inferred by their proximity to a nearby Prime frame. These frames are estimated in a post-
processing step, only after the IPF filter has been run, and all essential parameter estimates
and covariances are available.

Inferred Frames are defined in terms of their angular offsets Δw and Δv (in oriented
angular pixel coordinates) relative to the current Prime frame. In order to facilitate this
calculation, the user specifies a list of pixel offsets DELTA CW, DELTA CV in the O-file, which
are mapped to the quantities Δw and Δv using a formula given in Section B.4 of Appendix
B.

Let a desired Inferred Frame be denoted as ĨPF . It is convenient to define the following
direction cosine matrices,

T = R1(θ1)R2(θ2)R3(θ3) = TPF to IPF (6.10)

T̃ = R1(θ̃1)R2(θ̃2)R3(θ̃3) = TPF to ĨPF (6.11)

L = T̃ T T = IPF to ĨPF (6.12)

These three mappings are shown pictorially in Figure 6.8 with respect to the frames that

they relate. The mapping T̃ defines the desired Inferred Frame ĨPF relative to the TPF
frame. Its specification T̃ as a function of Δw and Δv is given in the next two subsections.

Figure 6.8: Telescope Pointing Frame (TPF), Instrument Pointing Frame (IPF), Inferred

Frame ĨPF , and the mappings that relate them
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6.6.1 Inferred Frame Definition

Let the boresight axis of the Inferred Frame be defined by the vector ρ (coordinate-free). The
resolution of ρ in IPF is defined by the following construction,

s
Δ
= ρ

∣∣∣∣
IPF

=

⎡⎣ 1
zv
zw

⎤⎦
1 + z2

v + z2
w

(6.13)

where,

z
Δ
=

[
zw
zv

]
= (I +M(y, p1))y (6.14)

y =

[
Δw
Δv

]
(6.15)

The boresight vector s given by (6.13) uniquely determines the Euler angles θ̃2 and θ̃3 of T̃
in (6.11) (this will be shown explicitly below). The Inferred Frame definition is completed
by specifying the last Euler angle as,

θ̃1 = θ1 (6.16)

i.e., it is inherited from the nearby Prime frame.

6.6.2 Explicit Expression for T̃

An explicit formula for the Euler angles θ̃2, θ̃3 will now be derived based on the ĨPF boresight
vector s defined in (6.13).

Let the vector s be resolved in the TPF frame to give the vector r where,

r =

⎡⎣ rx
ry
rz

⎤⎦ = T Ts (6.17)

The vector r can alternatively be calculated by mapping the ĨPF boresight from ĨPF to
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TPF as follows,

r
Δ
= ρ

∣∣∣∣
TPF

= T̃ T

⎡⎣ 1
0
0

⎤⎦ (6.18)

= RT
3 (θ̃3)R

T
2 (θ̃2)R

T
1 (θ̃1)

⎡⎣ 1
0
0

⎤⎦ (6.19)

= R3(−θ̃3)R2(−θ̃2)
⎡⎣ 1 0 0

0 c1 −s1

0 s1 c1

⎤⎦⎡⎣ 1
0
0

⎤⎦ (6.20)

= R3(−θ̃3)R2(−θ̃2)
⎡⎣ 1

0
0

⎤⎦ (6.21)

=

⎡⎣ c3 −s3 0
s3 c3 0
0 0 1

⎤⎦⎡⎣ c2 0 s2

0 1 0
−s2 0 c2

⎤⎦⎡⎣ 1
0
0

⎤⎦ (6.22)

=

⎡⎢⎣ cos(θ̃3) cos(θ̃2)

sin(θ̃3) cos(θ̃2)

− sin(θ̃2)

⎤⎥⎦ (6.23)

It is noted that equation (6.23) is not a function of θ̃1. Equating (6.17) and (6.23) gives
the relation, ⎡⎣ rx

ry
rz

⎤⎦ =

⎡⎢⎣ cos(θ̃3) cos(θ̃2)

sin(θ̃3) cos(θ̃2)

− sin(θ̃2)

⎤⎥⎦ (6.24)

One can uniquely solve for θ̃2, θ̃3 from the bottom two equalities of (6.24) to give,

θ̃2 = sin−1(−rz) (6.25)

θ̃3 = sin−1

(
ry

cos(θ̃2)

)
(6.26)

The top equality of (6.24) provides no new information since it is always satisfied when the
bottom two equalities are satisfied (i.e., it enforces the unit vector constraint on both sides).

In summary, the Inferred Frame T̃ is specified by its three Euler angles (6.16)(6.25)(6.26),
which in turn can be calculated directly from the angular offsets Δw,Δv (i.e., via the inter-
mediary vector quantities r in (6.17) and s in (6.13)). The angular offsets Δw,Δv, in turn,
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are determined from the user-specified quantities DELTA CW,DELTA CV in the O-file, using a
formula given in Section B.4 of Appendix B.
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6.6.3 Inferred Frame Estimate
ˆ̃
T

Because the true value for the Inferred Frame T̃ is not known, an estimate
ˆ̃
T will be con-

structed in this section.

It is convenient to define the following direction cosine matrix estimates,

T̂ = R1(θ̂1)R2(θ̂2)R3(θ̂3) = Estimate of T (6.27)

ˆ̃
T = R1(

ˆ̃
θ1)R2(

ˆ̃
θ2)R3(

ˆ̃
θ3) = Estimate of T̃ (6.28)

L̂ =
ˆ̃
T T̂ T = Estimate of L (6.29)

The quantity T̂ is the Prime Frame estimate which is available from the current IPF Filter

run. The quantity
ˆ̃
T will be constructed in this section by specifying its corresponding Euler

angle estimates
ˆ̃
θ1,

ˆ̃
θ2,

ˆ̃
θ3 in (6.28).

Let an estimate of the boresight axis of the Inferred Frame be defined by the vector ρ̂
(coordinate-free). The resolution of ρ̂ in IPF is defined by the following construction,

ŝ
Δ
= ρ̂

∣∣∣∣
IPF

=

⎡⎣ 1
ẑv
ẑw

⎤⎦
1 + ẑ2

v + ẑ2
w

(6.30)

where,

ẑ
Δ
=

[
ẑw
ẑv

]
= (I +M(y, p̂1))y (6.31)

y =

[
Δw
Δv

]
(6.32)

Note that the estimate ŝ is obtained from its true value s in (6.13) by simply replacing the
optical distortion parameters p1 by their estimate p̂1. The quantity y remains known exactly
since the values for Δw,Δv in (6.32) are specified as part of the Inferred Frame definition.

The boresight estimate ŝ given by (6.30) uniquely determines the Euler angle estimates
ˆ̃
θ2 and

ˆ̃
θ3 of T̃ (using a similar construction to (6.17)-(6.26) with s replaced by ŝ). This will

be shown in more detail next.

Resolve the vector ŝ in the TPF frame to give the estimate r̂ where,

r̂ =

⎡⎣ r̂x
r̂y
r̂z

⎤⎦ = T̂ T ŝ (6.33)
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Note that r̂ can be calculated since all quantities on the right-hand-side are known or specified.

The vector r̂ can alternatively be calculated by mapping the ĨPF boresight from ĨPF
to TPF (using all estimated quantities) as follows,

r̂
Δ
= ρ

∣∣∣∣
TPF

=
ˆ̃
T
T

⎡⎣ 1
0
0

⎤⎦ =

⎡⎢⎢⎣ cos(
ˆ̃
θ3) cos(

ˆ̃
θ2)

sin(
ˆ̃
θ3) cos(

ˆ̃
θ2)

− sin(
ˆ̃
θ2)

⎤⎥⎥⎦ (6.34)

Equating (6.33) and (6.34) gives the relation

⎡⎣ r̂x
r̂y
r̂z

⎤⎦ =

⎡⎢⎢⎣ cos(
ˆ̃
θ3) cos(

ˆ̃
θ2)

sin(
ˆ̃
θ3) cos(

ˆ̃
θ2)

− sin(
ˆ̃
θ2)

⎤⎥⎥⎦ (6.35)

One can uniquely solve the bottom two equalities of (6.35) simultaneously to give,

ˆ̃
θ2 = sin−1(−r̂z) (6.36)

ˆ̃
θ3 = sin−1

(
r̂y

cos(
ˆ̃
θ2)

)
(6.37)

The Inferred Frame estimate is completed by specifying the last Euler angle estimate as,

ˆ̃
θ1 = θ̂1 (6.38)

i.e., it is inherited from the estimate of the nearby Prime frame.

In summary, the Inferred Frame estimate
ˆ̃
T is specified by its three Euler angle estimates

(6.36)(6.37)(6.38).

It is worth noting that because
ˆ̃
T is derived by equating (6.33) and (6.34), its defining

property is,

T̂ T ŝ =
ˆ̃
T
T

⎡⎣ 1
0
0

⎤⎦ (6.39)

or equivalently in terms of L̂ (using (6.29)),

L̂ŝ =

⎡⎣ 1
0
0

⎤⎦ (6.40)
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6.6.4 Inferred Frame Covariance

In this section, an expression is derived for the covariance of the Inferred Frame estimate
ˆ̃
T .

It is noted that the following relation exists between the direction cosine matrices in
(6.10)(6.11)(6.12),

T̃ = LT (6.41)

It is desired to analyze the relationship between knowledge errors in these quantities. As-
suming that the estimates are sufficiently close to their true values, the following small-angle
errors δθ̃, δθ, � ∈ R3 can be defined,

T̃ = (I − δθ̃×)
ˆ̃
T (6.42)

T = (I − δθ×)T̂ (6.43)

L = (I − �×)L̂ (6.44)

Substituting (6.42)(6.43)(6.44) into (6.41) and rearranging yields,

(I − δθ̃×)
ˆ̃
T = (I − �×)L̂(I − δθ×)T̂ (6.45)

= (I − �×)(I − (L̂δθ)×)L̂T̂ (6.46)

� (I − (�+ L̂δθ)×)L̂T̂ (6.47)

= (I − (�+ L̂δθ)×)
ˆ̃
T (6.48)

Here, equation (6.46) follows by the Push-Through Lemma D.14; equation (6.47) follows by
dropping the second-order term and rearranging; and (6.48) follows by the definition of L̂ in
(6.29).

Multiplying both sides of (6.48) on the right by
ˆ̃
T
T

gives the desired relationship between
errors,

δθ̃ = �+ L̂δθ (6.49)

Assume that the errors � and δθ are sufficiently small so that there exists a Jacobian matrix
J such that,

�+ L̂δθ = Jδx (6.50)

where,

δx =

[
δp1

δp2

]
(6.51)

82



It will be shown in the next section that the Jacobian matrix is given by,

J =

⎡⎢⎢⎢⎢⎣
0, ..., 0

S2×3L̂

⎡⎣ 0, ..., 0

−F K̃1

⎤⎦ L̂Sθ

⎤⎥⎥⎥⎥⎦ (6.52)

where,

L̂ =
ˆ̃
T T̂ T (6.53)

Sθ = [0|I3×3|0] (6.54)

K̃1 =
∂

∂p1
[−M(y, p1)y] (6.55)

S2×3 =

[
0 0 −1
0 1 0

]
(6.56)

F =

[
0 1
1 0

]
(6.57)

y =

[
Δw
Δv

]
(6.58)

Briefly, the quantity Sθ is a zero-one selection matrix constructed to pick out the entries δθ
from the parameter vector δp1, i.e.,

δθ = Sθ δp1 (6.59)

The quantity K̃1 is the same sensitivity expression as K1 used in the IPF filter derivation,
but evaluated on the y vector defined from the desired offsets (6.58) (here the tilde notation

(̃·) is used indicate that it is associated with the ĨPF rather than the IPF frame). It is also

worth noting that since M is linear in the p1 parameters, the sensitivity matrix K̃1 as defined
in (6.55) is not a function of p1.

Using (6.49) and (6.50), the covariance of the error in the Inferred Frame can be calculated
as,

Cov[δθ̃] = JCov[δx]JT (6.60)

In summary, the covariance for the Inferred Frame can be calculated using (6.60), which is
expressed in terms of the standard Kalman filter covariance P = Cov[δx] and the Jacobian
matrix J . The expression (6.52) for the Jacobian matrix J will be derived next.
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6.6.5 Jacobian Expression

The Jacobian expression (6.52) will be derived in this section. The boresight vector ρ of the

ĨPF frame resolved in (its own) ĨPF frame is simply,

ρ

∣∣∣∣
˜IPF

=

⎡⎣ 1
0
0

⎤⎦ (6.61)

The boresight of the ĨPF frame resolved in the IPF frame is defined by the vector s as given
earlier in (6.13),

ρ

∣∣∣∣
IPF

= s (6.62)

Since the L matrix maps from the IPF frame to the ĨPF frame, one can write,

ρ

∣∣∣∣
˜IPF

= Lρ

∣∣∣∣
IPF

(6.63)

Substituting (6.61) and (6.62) into (6.63) gives upon rearranging,⎡⎣ 1
0
0

⎤⎦ = Ls (6.64)

= (I − �×)L̂(ŝ+ δs) (6.65)

= L̂ŝ+ L̂δs− �×L̂ŝ− �×L̂δs (6.66)

� L̂ŝ+ L̂δs− �×L̂ŝ (6.67)

Here, equation (6.65) follows by substituting (6.44) and using the relation s = ŝ+δs; equation
(6.66) follows by expanding; and the last relation (6.67) follows by dropping a second-order
term.

Substituting the defining equation (6.40) into (6.67) gives upon rearranging,

L̂δs = �×L̂ŝ (6.68)

= −(L̂ŝ)×� (6.69)

= −
⎡⎣ 1

0
0

⎤⎦×

� (6.70)

= −
⎡⎣ 0 0 0

0 0 −1
0 1 0

⎤⎦ � (6.71)
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Let the components of vector � be denoted as,

� =

⎡⎣ �1
�2
�3

⎤⎦ (6.72)

The first component �1 is not constrained by (6.71) and will be arbitrarily set to zero, i.e.,

�1 = 0 (6.73)

The lower two equations of (6.71) can be solved simultaneously to give,[
�2
�3

]
= S2×3L̂δs (6.74)

where,

S2×3 =

[
0 0 −1
0 1 0

]
(6.75)

Consider an approximation to s in (6.13) given by,

s �
⎡⎣ 1
zv
zw

⎤⎦ (6.76)

where, [
zv
zw

]
= F

[
zw
zv

]
= F (y − K̃1p1) (6.77)

Moreover, consider an approximation to ŝ in (6.30) given by,

ŝ �
⎡⎣ 1
ẑv
ẑw

⎤⎦ (6.78)

where, [
ẑv
ẑw

]
= F

[
ẑw
ẑv

]
= F (y − K̃1p̂1) (6.79)

Then the error in δs = s− ŝ can be approximated by subtracting (6.78) from (6.76) to give,

δs = s− ŝ �
⎡⎣ 1 − 1
zv − ẑv
zw − ẑw

⎤⎦ =

[
0

−F K̃1δp1

]
(6.80)

Substituting (6.80) into (6.74) gives,[
�2
�3

]
= S2×3L̂

[
0

−F K̃1δp1

]
(6.81)
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Combining (6.81)(6.73) with (6.59) gives upon rearranging,

� + L̂δθ = J

[
δp1

δp2

]
(6.82)

where the Jacobian J has the form (6.52) as desired.
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6.7 Special Cases: Partial Centroid Measurements

6.7.1 Overview of Slit Mode

The two-component centroid measurement y = [yw, yv]
T is the primary observable used by

the IPF filter for calibration purposes. Until now, it has been assumed that the yw value
is provided simultaneously with the yv value to make a complete centroid value y. The full
centroid is then used to linearize the measurement equations.

Unfortunately, slit type instruments often cannot provide a full centroid. This is because
centroids must be manufactured artificially by scanning a source across the entrance aperture,
and then reporting the centroid to be at the center of the slit at the time instant of the peak
response. This defines a useful centroid value in the v (dispersion) direction, but there may
be little or no information in the w direction. Conversely, when scanning across the length of
the slit, one may get a useful centroid value in the w direction, but little or no information
in the v direction. In this way, a slit type instrument may only provide “partial” centroids
y, where y contains either a yv component or yw component, but not both.

Fortunately, sandwich maneuvers for slits are typically designed to involve slit crossings in
the dispersion direction at two or three separate locations, and then a crossing along the slit
length as shown in Figure 6.9. Clearly, the full calibration information is available over the
coarse of the such an experiment. However, the IPF sensitivity equations must be linearized
slightly differently than done previously due to the fact that the information in the w and v
directions comes in at different times.

A special slit mode was developed for the IPF filter to allow proper linearization of the
measurement equation using only partial centroids. It will be shown that the slit mode must
linearize about the inverse map of the optical distortions to avoid requiring a full centroid.
Other than the calculation of the sensitivities and predicts, the filter operation is very similar
to the standard IPF mode. In order to simplify the filter operations, an autonomous slit
mode detection is built into the IPF code. If the calibrating instrument is of the slit type,
the IPF filter autonomously detects this situation from the NF number, and enables slit mode
operations. The sensitivities are then calculated in this special way, even if the user provides
full centroids.

o oo

v

w

m1

m3

m2

Figure 6.9: Survey Maneuver Through Slit Instrument - Partial Centroid
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6.7.2 Sensitivities for Slit Mode

Standard Mode: Recall from the filter formulation section that the observation equation
was defined as,

(I +M (p1, y)) y = z (p2) (6.83)

The measurement equation for the standard approach was defined by rearranging this equa-
tion into the following form,

y = −M (p1, y) y + z (p2) (6.84)

Note that the full centroid value y is required to evaluate the right-hand side of this equation.
Furthermore, taking the sensitivities with respect to p1 and p2 gives,

∂

∂p1
(−M (p1, y) y + z (p2)) =

∂

∂p1
(−M (p1, y) y)

Δ
= K1 (6.85)

∂

∂(δp2)
(−M (p1, y) y + z (p2)) =

∂

∂(δp2)
(z (p2))

Δ
= K2. (6.86)

Here again, the full centroid y is required to evaluate the p1 sensitivity.

Slit Mode: For slit-type instruments, it is assumed that the linear plate scale parameters are
not estimated. With this simplification, the observation equation (6.83) can be rearranged
as,

y = (I +M (p1))
−1 z (p2) . (6.87)

This form has the advantage that the right-hand side does not involve the centroid y (either
full or partial). Furthermore, the top part of this equation serves as a separate measure-
ment equation when yw is observed, and the bottom part serves as a measurement equation
when yv is observed. By using either the top or bottom (for partial centroids) or both (for
full centroids) a very general formulation of the measurement update can be made which
accomodates either partial or full centroids.

The calculation of the p2 sensitivity is straightforward,

∂

∂(δp2)

(
(I +M (p1))

−1 z (p2)
)

= (I +M (p1))
−1 ∂

∂(δp2)
(z (p2))

= (I +M (p1))
−1 K2

The calculation of the p1 sensitivity is more complicated because of the matrix inverse. For
this purpose, consider the result from Lemma D.19,

∂

∂p

(
A−1

)
= −A−1∂A

∂p
A−1 (6.88)
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Then,

∂

∂p1

(
(I +M (p1))

−1 z (p2)
)

= − (I +M (p1))
−1

[
∂

∂p1

(I +M (p1))

]
(I +M (p1))

−1 z (p2)

= (I +M (p1))
−1

[
∂

∂p1
(−M (p1))

]
(I +M (p1))

−1 z (p2)

= (I +M (p1))
−1 K1

{
(I +M (p1))

−1 z (p2)

}
(6.89)

where we have generalized the definition of K1 slightly to be a function of an arbitrary vector
�, i.e.,

K1

{
�
}

Δ
=

∂

∂p1
(−M (p1, y) �) (6.90)

89



6.8 Special Cases: IPF Multi-Run Tool

In some cases, the number of sandwich maneuvers required for fine calibration of a particular
instrument was sufficiently large that it had to be spread across more than one in-flight
observing session. In such cases, a capability was needed to combine IPF estimates produced
on data sets taken from non-contiguous portions of the mission time-line (typically different
days of the mission). The IPF Multi-Run tool was developed to address this need.

The basic idea behind the IPF Multi-Run tool is to combine the results from different IPF
runs to form an overall minimum-variance estimate. If the problem were linear, this would
involve a straightforward weighted average of the individual estimates. However, because the
problem is nonlinear, the problem must be carefully linearized first and the weighted aver-
age taken with respect to perturbations expressed relative to a common nominal parameter
estimate. Details are given below.

The i’th IPF run will produce a state estimate of the form,

xf (i)
Δ
=

[
p1(i)
p2f (i)

]
∈ 
37 (6.91)

Define a subset of parameters ξf(i) ⊂ xf (i) which do not vary from day to day (or observing
session to observing session). For example, any or all of the parameters in vector p1 can be
included in ξf(i) since the plate scales and optical distortion parameters are not expected
to change with time because the focal plane is actively cooled. Likewise, the IPF frame
alignment and scan mirror alignment and scale factor parameters contained in p2f are not
expected to change with time, and their estimates from different days can be combined to
advantage. Note that the rest of the p2f parameters corresponding to thermal distortion
parameters and gyro drift biases are not good candidates for including in ξf(i) because of
their expected day to day variations.

The main idea for data fusion is to expand all variables ξf(i) about a common nominal ξ◦f
to give the perturbation vector δξ(i), and then take a weighted average of the perturbations
δξ(i). For simplicity, the common nominal will be chosen as the parameter estimate from the
very first observing session (i.e., ξ◦f = ξf(1)).

If the variables are unconstrained, the perturbation δξ(i) is defined simply from,

ξf(i) = ξ◦f + δξ(i) (6.92)

If the variables are constrained, the perturbation δξ(i) consists of only the independent
parameters (generally of lower dimension), defined by the expansion,

ξf(i) = ξ◦f + Kδξ(i) + O(||δξ(i)||2) (6.93)

K Δ
=

∂ξf
∂(δξ)

∣∣∣∣
ξ◦
f

(6.94)
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By defining the perturbations in this way, the estimates of the mean and square-root covari-
ance from n different IPF runs can be summarized as,

δξ(i), Pξξ(i)
1

2 i = 1, ..., n (6.95)

As an example, the scan mirror alignment estimate a(i) for the i’th observing session can be
written in the form (6.93) as follows,

a(i) = a◦ + ha(a
◦)δα(i) (6.96)

where,

ha(a
◦) =

⎡⎣ 0
a◦z
−a◦y

⎤⎦ ; a◦ =

⎡⎣ a◦x
a◦y
a◦z

⎤⎦ ; a(i) =

⎡⎣ ax(i)
ay(i)
az(i)

⎤⎦ (6.97)

The perturbation δα(i) can then be extracted from (6.96) to give,

δα(i) =
ay(i) − a◦y

a◦z
(6.98)

For the IPF frame quaternion estimate qT (i) from the i’th observing session, the quater-
nion difference is formed with respect to the nominal quaternion q◦T to obtain the small angle
quaternion dqT (i) as,

dqT (i) = qT (i) ⊗ (q◦T )∗ (6.99)

The perturbation δθ(i) can then be extracted from (6.99) to give,

δθ(i) =

⎡⎣ δθ1(i)
δθ2(i)
δθ3(i)

⎤⎦ = 2

⎡⎣ dqT1(i)
dqT2(i)
dqT3(i)

⎤⎦ (6.100)

With these difference operations, the multiple day estimates can be written in terms of the
observation model,

δξ(i) = δξ + η(i) (6.101)

where δξ is the truth perturbation parameter vector and the noise η(i) is defined as,

η(i) ∼ N (0, Pξξ(i)) (6.102)

The equation (6.101) can be stacked to form an observation equation of the form:⎡⎢⎣ δξ(1)
...

δξ(n)

⎤⎥⎦ =

⎡⎢⎣ I
...
I

⎤⎥⎦ δξ +

⎡⎢⎣ η(1)
...

η(n)

⎤⎥⎦ (6.103)
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Assuming independence of the noise from day to day, equation (6.103) is left-mulitplied by
the inverse square-root noise covariance (scaling with their respective square-root covariance)
to obtain a linearized observation equation with unit noise intensity,⎡⎢⎣ Pξξ(1)−1/2 0 0

0
. . . 0

0 0 Pξξ(n)−1/2

⎤⎥⎦
⎡⎢⎣ δξ(1)

...
δξ(n)

⎤⎥⎦ =

⎡⎢⎣ Pξξ(1)−1/2

...
Pξξ(n)−1/2

⎤⎥⎦ δξ +

⎡⎢⎣ η̃(1)
...

η̃(n)

⎤⎥⎦ (6.104)

where,
η̃(i) = N (0, I) (6.105)

The resulting observation equation (6.104) is in the general regression form,

y = Hδξ + η̃ (6.106)

This equation can be solved for δξ using a QR factorization method which is equivalent to
the least squares estimate from solving the standard formula,

δξ̂ =
(
HTH

)−1
HTy (6.107)

The smoothed perturbation δξ̂ is then used to compute the full Multi-Run parameter estimate
ξ̂f as,

ξ̂f = ξ◦f + Kδξ(i) (6.108)

where K has been defined earlier in (6.93).
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7 IPF SOFTWARE VERIFICATION

The IPF Kalman filter has been tested in the IPF Filter Unit Test Environment (FLUTE)
for verification of its functionality and performance. FLUTE was developed to create sim-
ulated input data files for unit-testing the IPF filter. FLUTE was developed in MATLAB
environment with complete command capability to simulate realistic attitude and centroid
data. The FLUTE test environment captures all realistic uncertainties, noise sources and
parameter errors. With the FLUTE tool, the IPF Kalman filter has been systematically
tested for the product verification.

7.1 Software Verification Procedure

The FLUTE - IPF interfaces are shown in Figure 7.1. Given a desired survey maneuver,
FLUTE produces the appropriate command history. With this command history, the true
spacecraft attitude motions are produced. Appropriate truth alignments, thermal drift, dis-
turbances and sensor noises are added to the attitude data. The produced attitude sensor
data and instrument centroid data are formatted to produce a mock data set which is repre-
sentative of an actual Spitzer flight data set.

For each of these FLUTE unit test data sets, the IPF filter was executed under simulated
flight data conditions. The corresponding analysis charts were obtained as well as the LG
log and IF output files. In addition to the nominal filter execution, the truth data from
the FLUTE environment were used to obtain the absolute error of the filter in order to
troubleshoot and measure filter performance. Given these results, post execution analysis
were performed to identify any unexpected results and obtain physical interpretation of the
results.

7.2 Description of Test Cases

The IPF Kalman filter has been completed and tested successfully using the FLUTE test
data. The tests consisted of four benchmark examples:

1. The IRAC 3.6 μm array for which the experiment design consists of five-of diamonds
pattern with dithering

2. The IRS Red Peakup Array for which the experiment design consists of a 3 by 3 grid
pattern with dithering

3. The IRS Short-Lo slit for which a horizontal and vertical slit crossing pattern is used

4. The MIPS 24 μm Array using a compound 7x3 grid with gyro offsets and mirror motion.
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For all four test cases, the resulting IPF Frame estimates look reasonable, and are accurate
to a fraction of an arcsec. For all cases, the actual truth error on state estimates were within
reasonable bounds of the final square root covariances.

The detailed test results can be found in D-document SIRTF Instrument Pointing Frame
(IPF) Kalman Filter Unit Test Report [2].

CASE INSTRUMENT DESCRIPTION

CASE 1 IRAC 3.6 μ m array Five-of diamonds pattern, includes dithering
CASE 2 IRS Red Peakup Array 3x3 grid pattern
CASE 3 IRS Short-Lo slit Horizontal and vertical slit crossing pattern
CASE 4 MIPS 24 μ m Compound 7x3 grid with gyro offsets and mirror motion

Table 7.18: FLUTE TEST CASES

Desired 
Maneuvers

p_est

error

p_true

Commanded 
Body Attitude

AA-File

CA-File
CS-File
CB-File

IPF Filter and Test Environment

IPF Filter

Mock Attitude 
Commander

Thermomechanical
Drift Model

SIRTF 
Geometry

Simulated Focal Plane 
• Scanning mirror 
• Optical distortion
• Centroiding errors

Gyro and Star Tracker 
Measurement Model

AS-File

True Frame 
Table

Mock Flight 
Control System

PCS errors:
- Observer attitude
- GCF Bias cal

True
Body
Attitude

ft_cmd

ft_true

On-Board Knowledge of
Body-TPF Alignment

True W,V 
locations

Add
Error

Key:
FLUTE             -
IPF Filter     -

Key:
FLUTE             -
IPF Filter     -

• FUNCTIONAL DESCRIPTION

FF-File

IFxxxyyy
LGxxxyyy

RNxxxyyy

Figure 7.1: IPF Filter and Test Environment

94



8 EXAMPLE FILTER RUN: MIPS

The Focal Play Survey of the instrument: MIPS 24um center (95), is selected as an example
of the IPF Kalman filter exectution using the FLUTE generated data.

8.1 Summary of Results

FOCAL PLANE SURVEY ANALYSIS: Covariance Analysis.
INSTRUMENT NAME: MIPS 24um center NF: 95
PIX2RADW: 1.20874169E-005[rad/pixel] = 2.4932E+000[arcsec/pixel]

PIX2RADV: 1.20874169E-005[rad/pixel] = 2.4932E+000[arcsec/pixel]

FRAME DESCRIPTION IPF6 SF7 ARW8 TOTAL REQ

095(P) MIPS 24um center 0.0548 0.0855 0.0703 0.1235 0.14

096(I) MIPS 24um plusY edge 0.0973 0.0855 0.0703 0.1473 N/A

099(I) MIPS 24um small FOV1 0.0547 0.0855 0.0703 0.1234 N/A

100(I) MIPS 24um small FOV2 0.0525 0.0855 0.0703 0.1225 N/A

103(I) MIPS 24um large FOV1 0.0549 0.0855 0.0703 0.1235 N/A

104(I) MIPS 24um large FOV2 0.0547 0.0855 0.0703 0.1234 N/A

TR (C) CORNERS OF INSTRUMENT 0.1210 0.0855 0.0703 0.1640 N/A

BR (C) CORNERS OF INSTRUMENT 0.1166 0.0855 0.0703 0.1608 N/A

TL (C) CORNERS OF INSTRUMENT 0.1127 0.0855 0.0703 0.1579 N/A

BL (C) CORNERS OF INSTRUMENT 0.1193 0.0855 0.0703 0.1627 N/A

Table 8.19: IPF calibration error summary ([arcsec], 1-sigma, radial)

RMS METRIC A PRIORI9 A POSTERIORI4 ATT. CORRECTED10 UNITS

Radial 13.7662 1.2918 0.3992 arcsec

Radial 5.5215 0.5181 0.1601 pixels

W-Axis 3.9682 0.3399 0.1131 pixels

V-Axis 3.8393 0.3911 0.1133 pixels

Table 8.20: Measurement prediction error summary (1-sigma)

6IPF filter removes systematic pointing errors due to: thermomechanical alignment drift (Body to TPF),
gyro bias and bias drift, centroiding error, attitude error, and optical distortion. IPF SIGMA presented here
is “NOT Scaled” by the Least Squares Scale factor. The Least Squares Scale Factor was: 1.125028.

7Error due to gyro Scale Factor: assumes 95 ppm error over 0.250 degree maneuver.
8Error due to gyro Angle Random Walk: assumes ARW = 100 μdeg/

√
hr, with 960 second Maneuver

time (max), and 14 independent Maneuvers.
9This can be interpreted as estimate of ”pixel to sky” pointing reconstruction error if no science data is

used.
10This can be interpreted as estimate of achieved S/I centroiding error
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IPF BROWN ANGLE SUMMARY

WAS IS

Frame theta Y theta Z angle theta Y theta Z angle
Number (arcmin) (arcmin) (deg) (arcmin) (arcmin) (deg)

095 +6.641000 +3.931000 +0.000000 +6.641111 +3.932233 +0.016691

096 +6.595000 +6.712000 -0.000000 +6.618045 +6.975361 +0.016691

099 +7.687000 +3.943000 -0.000000 +7.784631 +3.921390 +0.016691

100 +5.574000 +3.918000 +0.000000 +5.475980 +3.941639 +0.016691

103 +6.746000 +3.932000 +0.000000 +6.755408 +3.931220 +0.016691

104 +6.558000 +3.930000 +0.000000 +6.549682 +3.933031 +0.016691

001 +0.000000 +0.000000 +0.000000 +9.608774 +0.843807 +0.016691

001 +0.000000 +0.000000 +0.000000 +9.544149 +6.948933 +0.016691

001 +0.000000 +0.000000 +0.000000 +3.749581 +0.904283 +0.016691

001 +0.000000 +0.000000 +0.000000 +3.699961 +6.991274 +0.016691

Table 8.21: IPF Brown angle summary
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Figure 8.1: A-priori and a-posteriori IPF frames (ZOOMED)
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8.2 Output Figures
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Figure 8.2: TPF coords of measurements and a-priori predicts
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Figure 8.3: Oriented Pixel Coords of measurements and a-priori predicts
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Figure 8.4: A-priori prediction error
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Figure 8.5: Oriented Pixel Coords of measurements and a-priori predicts (PCRS only)
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Figure 8.7: IPF execution convergence, chart 2
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Figure 8.10: KF parameter error sigma plots
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Figure 8.11: LS parameter error sigma plot
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Figure 8.12: KF and LS parameter error sigma plot
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Figure 8.13: Oriented Pixel Coords of meas. and a-posteriori predicts
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Figure 8.14: Oriented Pixel Coords of meas. and a-posteriori predicts (attitude corrected)
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Figure 8.15: Array plot with (solid) and w/o (dashed) optical distortion corrections
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Figure 8.16: KF innovations with (o) and w/o (+) attitude corrections
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Figure 8.17: W-axis KF innovations and 1-sigma bound
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Figure 8.18: V-axis KF innovations and 1-sigma bound
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Figure 8.19: Estimated attitude corrections (Body frame)
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Figure 8.20: Estimated attitude error sigma plot (Body frame)
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Figure 8.21: Thermo-mechanical boresight drift (equiv. angle in (W,V) coords)
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Figure 8.22: Thermo-mechanical boresight drift (equiv. angle in Body frame)
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Figure 8.23: Gyro drift bias contribution (equiv. rate in (W,V) coords)
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Figure 8.24: Gyro drift bias contribution (equiv. angle in (W,V) coords)
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Figure 8.25: Gyro drift bias contribution (equiv. angle in Body frame)
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8.3 IPF OUTPUT DATA (IF MINI FILE)

OUTPUT FILE NAME: IFmini991095.dat DATE: 05-Aug-2003 TIME: 21:42

INSTRUMENT NAME: MIPS_24um_center NF: 95

IPF FILTER VERSION: IPF.V2.0.1Beta SW RELEASE DATE: August 5, 2003

---------------------------------------------------------------------------------

---------------------------- IPF BROWN ANGLE SUMMARY ----------------------------

---------------------------------------------------------------------------------

------------ WAS ------------ ------------ IS -------------

Frame theta_Y theta_Z angle theta_Y theta_Z angle

Number (arcmin) (arcmin) (deg) (arcmin) (arcmin) (deg)

------ --------------------------------- ---------------------------------

095 +6.641000 +3.931000 +0.000000 +6.641111 +3.932233 +0.016691

096 +6.595000 +6.712000 -0.000000 +6.618045 +6.975361 +0.016691

099 +7.687000 +3.943000 -0.000000 +7.784631 +3.921390 +0.016691

100 +5.574000 +3.918000 +0.000000 +5.475980 +3.941639 +0.016691

103 +6.746000 +3.932000 +0.000000 +6.755408 +3.931220 +0.016691

104 +6.558000 +3.930000 +0.000000 +6.549682 +3.933031 +0.016691

001 +0.000000 +0.000000 +0.000000 +9.608774 +0.843807 +0.016691

001 +0.000000 +0.000000 +0.000000 +9.544149 +6.948933 +0.016691

001 +0.000000 +0.000000 +0.000000 +3.749581 +0.904283 +0.016691

001 +0.000000 +0.000000 +0.000000 +3.699961 +6.991274 +0.016691

---------------------------------------------------------------------------------

OFFSET NF Delta_CW Delta_CV

0 95 +0.000 +0.000 pixels

OFFSET FRAME NAME: MIPS_24um_center

Brown Angle theta_Y(arcmin) theta_Z(arcmin) angle(deg)

WAS(FTB) +6.641000 +3.931000 +0.000000

IS (EST) +6.641111 +3.932233 +0.016691

dT_EST +0.000111 +0.001233 +0.016691

T_sSIGMA +0.000653 +0.000793 +0.009652

dT_EST/T_sSIGMA +0.169368 +1.554636 +1.729313

-------------------------------------------------------------------

OFFSET NF Delta_CW Delta_CV

1 96 +0.000 -64.000 pixels

OFFSET FRAME NAME: MIPS_24um_plusY_edge

Brown Angle theta_Y(arcmin) theta_Z(arcmin) angle(deg)

WAS(FTB) +6.595000 +6.712000 -0.000000

IS (EST) +6.618045 +6.975361 +0.016691

dT_EST +0.023045 +0.263361 +0.016691

T_sSIGMA +0.001229 +0.001348 +0.009652

dT_EST/T_sSIGMA +18.757968 +195.324120 +1.729314

-------------------------------------------------------------------

OFFSET NF Delta_CW Delta_CV

2 99 +25.000 +0.000 pixels

OFFSET FRAME NAME: MIPS_24um_small_FOV1

Brown Angle theta_Y(arcmin) theta_Z(arcmin) angle(deg)

WAS(FTB) +7.687000 +3.943000 -0.000000

IS (EST) +7.784631 +3.921390 +0.016691

dT_EST +0.097631 -0.021610 +0.016691

T_sSIGMA +0.000654 +0.000790 +0.009652

dT_EST/T_sSIGMA +149.346668 -27.351019 +1.729314

-------------------------------------------------------------------

OFFSET NF Delta_CW Delta_CV

3 100 -25.500 +0.000 pixels

OFFSET FRAME NAME: MIPS_24um_small_FOV2

Brown Angle theta_Y(arcmin) theta_Z(arcmin) angle(deg)

WAS(FTB) +5.574000 +3.918000 +0.000000

IS (EST) +5.475980 +3.941639 +0.016691

dT_EST -0.098020 +0.023639 +0.016691

T_sSIGMA +0.000628 +0.000759 +0.009652

dT_EST/T_sSIGMA -156.096434 +31.152524 +1.729313

-------------------------------------------------------------------
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OFFSET NF Delta_CW Delta_CV

4 103 +2.500 +0.000 pixels

OFFSET FRAME NAME: MIPS_24um_large_FOV1

Brown Angle theta_Y(arcmin) theta_Z(arcmin) angle(deg)

WAS(FTB) +6.746000 +3.932000 +0.000000

IS (EST) +6.755408 +3.931220 +0.016691

dT_EST +0.009408 -0.000780 +0.016691

T_sSIGMA +0.000654 +0.000794 +0.009652

dT_EST/T_sSIGMA +14.382693 -0.981727 +1.729313

-------------------------------------------------------------------

OFFSET NF Delta_CW Delta_CV

5 104 -2.000 +0.000 pixels

OFFSET FRAME NAME: MIPS_24um_large_FOV2

Brown Angle theta_Y(arcmin) theta_Z(arcmin) angle(deg)

WAS(FTB) +6.558000 +3.930000 +0.000000

IS (EST) +6.549682 +3.933031 +0.016691

dT_EST -0.008318 +0.003031 +0.016691

T_sSIGMA +0.000652 +0.000791 +0.009652

dT_EST/T_sSIGMA -12.764356 +3.829302 +1.729313

-------------------------------------------------------------------

OFFSET NF Delta_CW Delta_CV

6 1 +64.000 +64.000 pixels

OFFSET FRAME NAME: CORNER PIXEL (DIAGNOSTICS)

Brown Angle theta_Y(arcmin) theta_Z(arcmin) angle(deg)

WAS(FTB) +0.000000 +0.000000 +0.000000

IS (EST) +9.608774 +0.843807 +0.016691

dT_EST +9.608774 +0.843807 +0.016691

T_sSIGMA +0.001582 +0.001628 +0.009652

dT_EST/T_sSIGMA +6074.913827 +518.409962 +1.729315

-------------------------------------------------------------------

OFFSET NF Delta_CW Delta_CV

7 1 +64.000 -64.000 pixels

OFFSET FRAME NAME: CORNER PIXEL (DIAGNOSTICS)

Brown Angle theta_Y(arcmin) theta_Z(arcmin) angle(deg)

WAS(FTB) +0.000000 +0.000000 +0.000000

IS (EST) +9.544149 +6.948933 +0.016691

dT_EST +9.544149 +6.948933 +0.016691

T_sSIGMA +0.001496 +0.001595 +0.009652

dT_EST/T_sSIGMA +6378.896190 +4357.851831 +1.729315

-------------------------------------------------------------------

OFFSET NF Delta_CW Delta_CV

8 1 -64.000 +64.000 pixels

OFFSET FRAME NAME: CORNER PIXEL (DIAGNOSTICS)

Brown Angle theta_Y(arcmin) theta_Z(arcmin) angle(deg)

WAS(FTB) +0.000000 +0.000000 +0.000000

IS (EST) +3.749581 +0.904283 +0.016691

dT_EST +3.749581 +0.904283 +0.016691

T_sSIGMA +0.001449 +0.001538 +0.009652

dT_EST/T_sSIGMA +2587.265561 +588.093853 +1.729315

-------------------------------------------------------------------

OFFSET NF Delta_CW Delta_CV

9 1 -64.000 -64.000 pixels

OFFSET FRAME NAME: CORNER PIXEL (DIAGNOSTICS)

Brown Angle theta_Y(arcmin) theta_Z(arcmin) angle(deg)

WAS(FTB) +0.000000 +0.000000 +0.000000

IS (EST) +3.699961 +6.991274 +0.016691

dT_EST +3.699961 +6.991274 +0.016691

T_sSIGMA +0.001555 +0.001608 +0.009652

dT_EST/T_sSIGMA +2379.601679 +4349.019953 +1.729315

-------------------------------------------------------------------

-------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------

VARNAME MEAN SIGMA SCALED_SIGMA

a00 +1.0017847104128118E-001 +1.7447930652372362E-004 +1.9629417912081742E-004
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b00 +9.9857079033987411E-002 +2.7389518853457290E-004 +3.0813987211271567E-004

c00 +9.9857841173256051E-003 +1.5852180433205965E-004 +1.7834153558996170E-004

a10 +9.9963029864107578E-001 +5.0018962900375219E-001 +5.6272754968044203E-001

b10 +6.8984316170071902E-001 +7.5708531007742474E-001 +8.5174249271715896E-001

c10 +7.6884724024437689E-001 +7.3434694730785255E-001 +8.2616118830156837E-001

d10 +9.2496011502265629E-001 +5.1166920647623926E-001 +5.7564240062472449E-001

a20 -3.3054384657566243E+002 +2.0987512242834891E+003 +2.3611547808021746E+003

b20 +2.2710611782966525E+003 +2.6567031466066878E+003 +2.9888665522632950E+003

c20 -1.8379514563129278E+003 +2.5590093642974434E+003 +2.8789582703834981E+003

d20 +1.1167713002555929E+003 +2.1860615870103934E+003 +2.4593814205205540E+003

a01 +1.9484922747036248E+000 +3.0555144454395855E-001 +3.4375405989925356E-001

b01 +2.4604185140619670E+000 +4.4595305179621858E-001 +5.0170985873823226E-001

c01 +1.7492124723813389E+000 +2.8431056582092984E-001 +3.1985746759949657E-001

d01 +2.5560408827877112E+000 +3.2420065273272469E-001 +3.6473494918407734E-001

e01 +2.1944640205947166E+000 +4.6062412452953683E-001 +5.1821523256384949E-001

f01 +2.1128848772350692E+000 +2.7835766572191900E-001 +3.1316028578690902E-001

del_alpha +9.7101417618344898E-014 +2.7256708575263029E-004 +3.0664571873393633E-004

beta +1.1000920263285241E+000 +4.2729516658701145E-004 +4.8071920755878261E-004

del_theta1 -2.2871996993838878E-014 +1.4973533883221575E-004 +1.6845651216209327E-004

del_theta2 +9.0660120101444905E-018 +1.6881829681581167E-007 +1.8992538229471094E-007

del_theta3 -8.7474420915015356E-017 +2.0499032761154080E-007 +2.3061994506920910E-007

del_arx +7.0990322588492319E-015 +7.2282803569624263E-005 +8.1320208533276558E-005

del_ary +6.8348415973396519E-016 +3.4062034813332439E-006 +3.8320757321205249E-006

del_arz -4.0414493600256273E-016 +3.4047165321493002E-006 +3.8304028720245521E-006

brx -1.9819354972179571E-008 +2.1985765498545561E-008 +2.4734611094370642E-008

bry +2.3780509322415510E-009 +1.1303261347248942E-009 +1.2716490291899543E-009

brz +9.0751675976722572E-010 +1.1290265487486977E-009 +1.2701869580281818E-009

crx +2.1178513642499728E-012 +2.9244079535609258E-012 +3.2900420691469208E-012

cry -2.5502544994697585E-013 +1.5629135512612073E-013 +1.7583221683650293E-013

crz -1.1917760637055323E-013 +1.5608989658369953E-013 +1.7560557025015791E-013

bgx +2.2463333334022776E-007 +4.6377272785529821E-007 +5.2175750079909937E-007

bgy +1.8275281016563494E-008 +1.3251018437683919E-009 +1.4907772380367154E-009

bgz +2.6237650690920771E-009 +1.3742048351481108E-009 +1.5460194990090672E-009

cgx -2.1063048197094546E-011 +5.0626060898833677E-011 +5.6955757472052268E-011

cgy +8.5289246807484838E-013 +1.7130973939394889E-013 +1.9272832601019162E-013

cgz +5.5944436732964080E-013 +1.7947285319163464E-013 +2.0191206105540552E-013

-------------------------------------------------------------------------------------

LSQF RESIDUAL SIGMA SCALE = +1.1250284233226688E+000

-------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------

a_mirror(1) a_mirror(2) a_mirror(3)

a_mirror_ipf +0.0000000000000000E+000 +2.0083432207034409E-002 +9.9979830753546750E-001

a_mirror_tpf -1.9088008036579826E-003 +1.9794372317572122E-002 +9.9980225009951107E-001

beta beta_0 beta beta_total

+2.8047410000000001E-006 +1.1000920263285241E+000 +3.0854732100166912E-006

------------------------------------------------------------------------------------------------------------

qT qT(1) qT(2) qT(3) qT(4)

FrmTbl: -5.5224103706934371E-007 -9.6589398881636961E-004 -5.7174047628006817E-004 +9.9999937008046424E-001

Estim: +1.4510453874923350E-004 -9.6599336627449701E-004 -5.7177904348510019E-004 +9.9999935943490215E-001

DelTheta deltheta(1) deltheta(2) deltheta(3)

+2.9131341622516259E-004 -3.2167338266954286E-008 -3.5852934947754515E-007 [rad]

EulAngT theta(1) theta(2) theta(3) [rad]

Mean +2.9131410882893196E-004 -1.9318207610871999E-003 -1.1438400782834333E-003

SigmaT +1.4973533883221575E-004 +1.6881829681581167E-007 +2.0499032761154080E-007

------------------------------------------------------------------------------------------------------------

qR qR(1) qR(2) qR(3) qR(4)

ASFILE: +0.0000000000000000E+000 +0.0000000000000000E+000 +0.0000000000000000E+000 +1.0000000000000000E+000

Estim: +5.2495135971495827E-005 -2.4052361893128234E-006 +1.7717388088944691E-007 +9.9999999861922217E-001

DelThetaR delthetaR(1) delthetaR(2) delthetaR(3)

+1.0499027113983199E-004 -4.8104909735359424E-006 +3.5409523489211961E-007 [rad]

EulAngR angR(1) angR(2) angR(3) [rad]

Mean +1.0499027113983199E-004 -4.8104909735359424E-006 +3.5409523489211961E-007

SigmaR +7.2282803569624263E-005 +3.4062034813332439E-006 +3.4047165321493002E-006
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------------------------------------------------------------------------------------------------------------

Initial Gyro Bias Bg0(1) Bg0(2) Bg0(3)

+2.4582663655968712E-006 +2.4793742961420354E-006 +2.4976176758578363E-006

Gyro Bias Correction Bg(1) Bg(2) Bg(3)

+2.2463333334022776E-007 +1.8275281016563494E-008 +2.6237650690920771E-009

Total Gyro Bias BgT(1) BgT(2) BgT(3)

+2.6828996989370990E-006 +2.4976495771585991E-006 +2.5002414409269283E-006

Initial Gyro Bias Rate Cg0(1) Cg0(2) Cg0(3)

+0.0000000000000000E+000 +0.0000000000000000E+000 +0.0000000000000000E+000

Gyro Bias Rate Correction Cg(1) Cg(2) Cg(3)

-2.1063048197094546E-011 +8.5289246807484838E-013 +5.5944436732964080E-013

Total Gyro Bias Rate CgT(1) CgT(2) CgT(3)

-2.1063048197094546E-011 +8.5289246807484838E-013 +5.5944436732964080E-013

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------

OFFSET NF Delta_CW Delta_CV

1 96 +0.000 -64.000 pixels

OFFSET FRAME NAME: MIPS_24um_plusY_edge

qT qT(1) qT(2) qT(3) qT(4)

WAS(FTB) -9.3639450226028116E-007 -9.5920326392183247E-004 -9.7622022412795586E-004 +9.9999906346070921E-001

IS (EST) +1.4468037500129608E-004 -9.6270268630143404E-004 -1.0143842495060132E-003 +9.9999901164737204E-001

DelTheta deltheta(1) deltheta(2) deltheta(3)

Units rad rad rad

+2.9116714246919979E-004 -6.7034052089031509E-006 -7.6608415885881338E-005

EulAngT theta(1) theta(2) theta(3) [rad]

Mean +2.9131410882893201E-004 -1.9251111357299071E-003 -2.0290502144061232E-003

sSigmaT +1.6845645244929723E-004 +3.5736277360800847E-007 +3.9221248245078690E-007

SigmaT +1.4973528575551581E-004 +3.1764777333586837E-007 +3.4862450967454057E-007

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------

OFFSET NF Delta_CW Delta_CV

2 99 +25.000 +0.000 pixels

OFFSET FRAME NAME: MIPS_24um_small_FOV1

qT qT(1) qT(2) qT(3) qT(4)

WAS(FTB) -6.4117382846981564E-007 -1.1180284132340469E-003 -5.7348571352373249E-004 +9.9999921056278462E-001

IS (EST) +1.4501117827978903E-004 -1.1323113892338270E-003 -5.7017768347590169E-004 +9.9999918586971126E-001

DelTheta deltheta(1) deltheta(2) deltheta(3)

Units rad rad rad

+2.9132816512432409E-004 -2.8399845793231449E-005 +6.2861845283510255E-006

EulAngT theta(1) theta(2) theta(3) [rad]

Mean +2.9131410882893196E-004 -2.2644575057624533E-003 -1.1406860061260421E-003

sSigmaT +1.6845649867954388E-004 +1.9016055798045444E-007 +2.2983424313973420E-007

SigmaT +1.4973532684803018E-004 +1.6902733658837931E-007 +2.0429194354124825E-007

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------

OFFSET NF Delta_CW Delta_CV

3 100 -25.500 +0.000 pixels

OFFSET FRAME NAME: MIPS_24um_small_FOV2

qT qT(1) qT(2) qT(3) qT(4)

WAS(FTB) -4.6198041860920160E-007 -8.1070521711647421E-004 -5.6984978266998100E-004 +9.9999950901391088E-001

IS (EST) +1.4520038901489615E-004 -7.9653229295302314E-004 -5.7317198286516483E-004 +9.9999950796339465E-001

DelTheta deltheta(1) deltheta(2) deltheta(3)

Units rad rad rad

+2.9130295933233721E-004 +2.8512848977866270E-005 -6.8764108508032863E-006

EulAngT theta(1) theta(2) theta(3) [rad]

Mean +2.9131410882893196E-004 -1.5928980260865319E-003 -1.1465764211241560E-003

sSigmaT +1.6845650672371083E-004 +1.8266175731444702E-007 +2.2073394851477005E-007

SigmaT +1.4973533399822016E-004 +1.6236190439968812E-007 +1.9620299713215465E-007

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------
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OFFSET NF Delta_CW Delta_CV

4 103 +2.500 +0.000 pixels

OFFSET FRAME NAME: MIPS_24um_large_FOV1

qT qT(1) qT(2) qT(3) qT(4)

WAS(FTB) -5.6111515131371191E-007 -9.8116560995659325E-004 -5.7188591179032191E-004 +9.9999935512990956E-001

IS (EST) +1.4509517353874301E-004 -9.8261716212673790E-004 -5.7162941045143883E-004 +9.9999934332514462E-001

DelTheta deltheta(1) deltheta(2) deltheta(3)

Units rad rad rad

+2.9131455381324535E-004 -2.7365614206183226E-006 +2.2676273566199052E-007

EulAngT theta(1) theta(2) theta(3) [rad]

Mean +2.9131410882893196E-004 -1.9650684170795267E-003 -1.1435456733001341E-003

sSigmaT +1.6845651165311556E-004 +1.9026766261452271E-007 +2.3098382925365007E-007

SigmaT +1.4973533837980255E-004 +1.6912253830226309E-007 +2.0531377204805226E-007

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------

OFFSET NF Delta_CW Delta_CV

5 104 -2.000 +0.000 pixels

OFFSET FRAME NAME: MIPS_24um_large_FOV2

qT qT(1) qT(2) qT(3) qT(4)

WAS(FTB) -5.4520033785992621E-007 -9.5382213577026277E-004 -5.7159503889057917E-004 +9.9999938175088265E-001

IS (EST) +1.4511203527994054E-004 -9.5269561073110093E-004 -5.7189706943792625E-004 +9.9999937212345913E-001

DelTheta deltheta(1) deltheta(2) deltheta(3)

Units rad rad rad

+2.9131242708483918E-004 +2.4196729888382608E-006 -8.8158025892807909E-007

EulAngT theta(1) theta(2) theta(3) [rad]

Mean +2.9131410882893196E-004 -1.9052251994402232E-003 -1.1440722419152306E-003

sSigmaT +1.6845651243514804E-004 +1.8956482568126830E-007 +2.3021998363057301E-007

SigmaT +1.4973533907492497E-004 +1.6849781014545915E-007 +2.0463481531483380E-007

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------

OFFSET NF Delta_CW Delta_CV

6 1 +64.000 +64.000 pixels

OFFSET FRAME NAME: CORNER PIXEL (DIAGNOSTICS)

qT qT(1) qT(2) qT(3) qT(4)

WAS(FTB) +0.0000000000000000E+000 +0.0000000000000000E+000 +0.0000000000000000E+000 +1.0000000000000000E+000

IS (EST) +1.4548539512439278E-004 -1.3975569702967018E-003 -1.2252306968373375E-004 +9.9999900532781127E-001

DelTheta deltheta(1) deltheta(2) deltheta(3)

Units rad rad rad

+2.9131410882893201E-004 -2.7950791491462837E-003 -2.4545350514573538E-004

EulAngT theta(1) theta(2) theta(3) [rad]

Mean +2.9131410882893196E-004 -2.7950791491462837E-003 -2.4545350514573538E-004

sSigmaT +1.6845636436936195E-004 +4.6010185970635906E-007 +4.7347374312805602E-007

SigmaT +1.4973520746421805E-004 +4.0896909817397342E-007 +4.2085491647374961E-007

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------

OFFSET NF Delta_CW Delta_CV

7 1 +64.000 -64.000 pixels

OFFSET FRAME NAME: CORNER PIXEL (DIAGNOSTICS)

qT qT(1) qT(2) qT(3) qT(4)

WAS(FTB) +0.0000000000000000E+000 +0.0000000000000000E+000 +0.0000000000000000E+000 +1.0000000000000000E+000

IS (EST) +1.4425387253851662E-004 -1.3882862082997916E-003 -1.0104779730493976E-003 +9.9999851539214302E-001

DelTheta deltheta(1) deltheta(2) deltheta(3)

Units rad rad rad

+2.9131410882893196E-004 -2.7762803302265374E-003 -2.0213626436624585E-003

EulAngT theta(1) theta(2) theta(3) [rad]

Mean +2.9131410882893196E-004 -2.7762803302265374E-003 -2.0213626436624585E-003

sSigmaT +1.6845638288299759E-004 +4.3522895616195560E-007 +4.6384382075936503E-007

SigmaT +1.4973522392036729E-004 +3.8686040915886067E-007 +4.1229520174205429E-007

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------
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OFFSET NF Delta_CW Delta_CV

8 1 -64.000 +64.000 pixels

OFFSET FRAME NAME: CORNER PIXEL (DIAGNOSTICS)

qT qT(1) qT(2) qT(3) qT(4)

WAS(FTB) +0.0000000000000000E+000 +0.0000000000000000E+000 +0.0000000000000000E+000 +1.0000000000000000E+000

IS (EST) +1.4558530456298621E-004 -5.4537359146879282E-004 -1.3144311288958377E-004 +9.9999983204762244E-001

DelTheta deltheta(1) deltheta(2) deltheta(3)

Units rad rad rad

+2.9131410882893201E-004 -1.0907089436323330E-003 -2.6304513788637989E-004

EulAngT theta(1) theta(2) theta(3) [rad]

Mean +2.9131410882893201E-004 -1.0907089436323326E-003 -2.6304513788637989E-004

sSigmaT +1.6845639152055159E-004 +4.2156822242062697E-007 +4.4728428423462484E-007

SigmaT +1.4973523159799910E-004 +3.7471784150622941E-007 +3.9757598560364500E-007

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------

OFFSET NF Delta_CW Delta_CV

9 1 -64.000 -64.000 pixels

OFFSET FRAME NAME: CORNER PIXEL (DIAGNOSTICS)

qT qT(1) qT(2) qT(3) qT(4)

WAS(FTB) +0.0000000000000000E+000 +0.0000000000000000E+000 +0.0000000000000000E+000 +1.0000000000000000E+000

IS (EST) +1.4510975813337586E-004 -5.3828529956594616E-004 -1.0167608463953416E-003 +9.9999932769451172E-001

DelTheta deltheta(1) deltheta(2) deltheta(3)

Units rad rad rad

+2.9131410882893207E-004 -1.0762749992936219E-003 -2.0336791262474466E-003

EulAngT theta(1) theta(2) theta(3) [rad]

Mean +2.9131410882893201E-004 -1.0762749992936221E-003 -2.0336791262474466E-003

sSigmaT +1.6845640070651876E-004 +4.5229208274313220E-007 +4.6761779624702138E-007

SigmaT +1.4973523976309695E-004 +4.0202724959368474E-007 +4.1564976186642013E-007

------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------

q(1) q(2) q(3) q(4)

PCRS1A: +5.2603126189317361E-007 +3.7451819048221893E-004 -1.4045531552277380E-003 +9.9999894348258311E-001

PCRS2A: -5.1968404336718985E-007 +3.8455385122900486E-004 +1.3513933841514693E-003 +9.9999901292650617E-001

----------------------------------------------------------------------------------------

********** CS-FILE PARAMETERS: ********** ********** AS-FILE PARAMETERS: **********

Row (01) PIX2RADX: +1.2087416876100000E-005 Row (1) TASTART: +7.3051200000000000E+008

Row (02) PIX2RADY: +1.2595908372599999E-005 Row (2) TASTOP: +7.3052690000000000E+008

Row (03) CX0: +6.4500000000000000E+001 Row (3) S/C TIME: +7.3051200000000000E+008

Row (04) CY0: +6.4500000000000000E+001 Row (4) QR1: +0.0000000000000000E+000

Row (05) BETA0: +2.8047410000000001E-006 Row (5) QR2: +0.0000000000000000E+000

Row (06) GAMMA_E0: +2.0070000000000000E+003 Row (6) QR3: +0.0000000000000000E+000

Row (07) D11: -1.0000000000000000E+000 Row (7) QR4: +1.0000000000000000E+000

Row (08) D12: +0.0000000000000000E+000

Row (09) D21: +0.0000000000000000E+000

Row (10) D22: -1.0000000000000000E+000

Row (11) DG: +1.0000000000000000E+000

----------------------------------------------------------------------------------------

-----------------------------------------------------------

INITIAL STA-TO-PCRS ALIGNMENT (R) KNOWLEDGE (1-SIGMA)

SIGMA(X) SIGMA(Y) SIGMA(Z)

1.41451738E+001 7.65467990E-001 7.65467990E-001 [arcsec]

-----------------------------------------------------------

PIX2RADX = 1.208741687610E-005[rad/pixel]

XPIXSIZE = 2.4932[arcsec]

PIX2RADY = 1.259590837260E-005[rad/pixel]

YPIXSIZE = 2.5981[arcsec]

CX0 = 64.5[pixel] = 160.81[arcsec]

CY0 = 64.5[pixel] = 167.58[arcsec]

-----------------------------------------------------------

NOMINAL BETA0 = 2.804741000000E-006[rad/encoder unit]

ENCODER UNIT SIZE = 0.58[arcsec]

GAMMA_E0 = 2007.00[encoder unit] = 1161.09[arcsec]
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-----------------------------------------------------------

| -1 | +0 |

FLIP MATRIX D = |----|----| and DG = +1

| +0 | -1 |

-----------------------------------------------------------

8.4 IPF EXECUTION LOG

***********************************************************************

IPF EXECUTION-LOG FILE NAME: LG991095.dat

INSTRUMENT TYPE: MIPS_24um_center

IPF FILTER EXECUTION DATE: 05-Aug-2003 TIME: 21:38

IPF FILTER VERSION USED: IPF.V2.0.1Beta

***********************************************************************

------------------- Loading & Preparing Input Files -------------------

AAFILE: AA991095 Loaded! AAFILE dimension = 149001 X 21

ASFILE: AS991095 Loaded!

CAFILE: CA991095 Loaded! CAFILE dimension = 432 X 15

CBFILE: CB991095 Loaded! CBFILE dimension = 42 X 15

CCFILE: CC991095 Created! CCFILE dimension = 474 X 19

CSFILE: CS991095 Loaded!

Loading Input Files Completed!

-----------------------------------------------------------------------

------------------------ Selected Mask Vectors ------------------------

index = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

-----------------------------------------------------------------------

mask1 = [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]

mask2 = [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]

-----------------------------------------------------------------------

--------------- Selected Initial Gyro Bias Parameters ---------------

IPF>> RNFILE FLAG SET TO USE PREVIOUS AG & AC FILE!

AGFILE USED: AG991095 ACFILE USED: AC991095

IPF Linearized Using Following Nominal Gyro Bias Estimates

bg0 = [+2.4582663655968712E-006 +2.4793742961420354E-006 +2.4976176758578363E-006 ]

cg0 = [+0.0000000000000000E+000 +0.0000000000000000E+000 +0.0000000000000000E+000 ]

-----------------------------------------------------------------------

IPF>> GYRO PREPROCESSOR BYPASSED!

IPF>> LOADING PREVIOUS AG & AC FILE!

FRAME TABLE ENTRIES FOR PCRS LOADED TO TPCRS

q_PCRS4 = [ +5.2603126189317361E-007 q_PCRS5 = [ +7.3379987833742897E-007

+3.7451819048221893E-004 +5.2236196154513707E-004

-1.4045531552277380E-003 -1.4047712280184723E-003

+9.9999894348258311E-001 ]; +9.9999887687698918E-001 ];

q_PCRS8 = [ -5.1968404336718985E-007 q_PCRS9 = [ -7.1963421681856818E-007

+3.8455385122900486E-004 +5.3239763239987400E-004

+1.3513933841514693E-003 +1.3516841804518383E-003

+9.9999901292650617E-001 ]; +9.9999894475050310E-001 ];

--------------------------------------------------------------------------------

------ Initial Conditions for State ----- ------ Inital Square-Root Cov (diag) -----

p1(01) = a00 = +0.0000000000000000E+000 Sigma_initial(01,01) = 1.0000000000000000E+000

p1(02) = b00 = +0.0000000000000000E+000 Sigma_initial(02,02) = 1.0000000000000000E+000

p1(03) = c00 = +0.0000000000000000E+000 Sigma_initial(03,03) = 1.0000000000000000E+000

p1(04) = a10 = +0.0000000000000000E+000 Sigma_initial(04,04) = 3.6384517097704270E+002

p1(05) = b10 = +0.0000000000000000E+000 Sigma_initial(05,05) = 3.6384517097704270E+002

p1(06) = c10 = +0.0000000000000000E+000 Sigma_initial(06,06) = 3.6384517097704270E+002

p1(07) = d10 = +0.0000000000000000E+000 Sigma_initial(07,07) = 3.6384517097704270E+002
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p1(08) = a20 = +0.0000000000000000E+000 Sigma_initial(08,08) = 1.3238330844331343E+007

p1(09) = b20 = +0.0000000000000000E+000 Sigma_initial(09,09) = 1.3238330844331343E+007

p1(10) = c20 = +0.0000000000000000E+000 Sigma_initial(10,10) = 1.3238330844331343E+007

p1(11) = d20 = +0.0000000000000000E+000 Sigma_initial(11,11) = 1.3238330844331343E+007

p1(12) = a01 = +0.0000000000000000E+000 Sigma_initial(12,12) = 1.0000000000000000E+004

p1(13) = b01 = +0.0000000000000000E+000 Sigma_initial(13,13) = 1.0000000000000000E+004

p1(14) = c01 = +0.0000000000000000E+000 Sigma_initial(14,14) = 1.0000000000000000E+004

p1(15) = d01 = +0.0000000000000000E+000 Sigma_initial(15,15) = 1.0000000000000000E+004

p1(16) = e01 = +0.0000000000000000E+000 Sigma_initial(16,16) = 1.0000000000000000E+004

p1(17) = f01 = +0.0000000000000000E+000 Sigma_initial(17,17) = 1.0000000000000000E+004

-----------------------------------------------------------------------------------------

p2f(01) = am1 = +0.0000000000000000E+000

p2f(02) = am2 = +0.0000000000000000E+000 Sigma_initial(18,18) = 1.0000000000000001E-001

p2f(03) = am3 = +1.0000000000000000E+000

p2f(04) = beta = +1.0000000000000000E+000 Sigma_initial(19,19) = 1.0000000000000001E-001

p2f(05) = qT1 = -5.5224103706934371E-007 Sigma_initial(20,20) = 1.0000000000000001E-001

p2f(06) = qT2 = -9.6589398881636961E-004 Sigma_initial(21,21) = 1.0000000000000000E-002

p2f(07) = aT3 = -5.7174047628006817E-004 Sigma_initial(22,22) = 1.0000000000000000E-002

p2f(08) = qT4 = +9.9999937008046424E-001

p2f(09) = qR1 = +0.0000000000000000E+000 Sigma_initial(23,23) = 3.4288868839039716E-003

p2f(10) = qR2 = +0.0000000000000000E+000 Sigma_initial(24,24) = 1.8555467699985827E-004

p2f(11) = qR3 = +0.0000000000000000E+000 Sigma_initial(25,25) = 1.8555467699985827E-004

p2f(12) = qR4 = +1.0000000000000000E+000

p2f(13) = brx = +0.0000000000000000E+000 Sigma_initial(26,26) = 6.7114093959731537E-005

p2f(14) = bry = +0.0000000000000000E+000 Sigma_initial(27,27) = 6.7114093959731537E-005

p2f(15) = brz = +0.0000000000000000E+000 Sigma_initial(28,28) = 6.7114093959731537E-005

p2f(16) = crx = +0.0000000000000000E+000 Sigma_initial(29,29) = 4.5043016080356737E-009

p2f(17) = cry = +0.0000000000000000E+000 Sigma_initial(30,30) = 4.5043016080356737E-009

p2f(18) = crz = +0.0000000000000000E+000 Sigma_initial(31,31) = 4.5043016080356737E-009

p2f(19) = bgx = +0.0000000000000000E+000 Sigma_initial(32,32) = 6.7114093959731537E-005

p2f(20) = bgy = +0.0000000000000000E+000 Sigma_initial(33,33) = 6.7114093959731537E-005

p2f(21) = bgz = +0.0000000000000000E+000 Sigma_initial(34,34) = 6.7114093959731537E-005

p2f(22) = cgx = +0.0000000000000000E+000 Sigma_initial(35,35) = 4.5043016080356737E-009

p2f(23) = cgy = +0.0000000000000000E+000 Sigma_initial(36,36) = 4.5043016080356737E-009

p2f(24) = cgz = +0.0000000000000000E+000 Sigma_initial(37,37) = 4.5043016080356737E-009

-----------------------------------------------------------------------------------------

-------------------- IPF KALMAN FILTER STARTED ---------------------

Iteration#001: |dp|= +3.136219263208E+003 RMS(|Res|)=+3.136219263208E+003

Iteration#002: |dp|= +1.379890498077E+001 RMS(|Res|)=+1.379890498077E+001

Iteration#003: |dp|= +9.830901580851E-002 RMS(|Res|)=+9.830901580851E-002

Iteration#004: |dp|= +8.172273105503E-001 RMS(|Res|)=+8.172273105503E-001

Iteration#005: |dp|= +6.964494745514E-002 RMS(|Res|)=+6.964494745514E-002

Iteration#006: |dp|= +2.750847999648E-003 RMS(|Res|)=+2.750847999648E-003

Iteration#007: |dp|= +3.914500766379E-005 RMS(|Res|)=+3.914500766379E-005

Iteration#008: |dp|= +1.728921133155E-006 RMS(|Res|)=+1.728921133155E-006

Iteration#009: |dp|= +2.366387844766E-006 RMS(|Res|)=+2.366387844766E-006

Iteration#010: |dp|= +4.424385829053E-007 RMS(|Res|)=+4.424385829053E-007

Iteration#011: |dp|= +3.897003643676E-007 RMS(|Res|)=+3.897003643676E-007

Iteration#012: |dp|= +8.127892945278E-007 RMS(|Res|)=+8.127892945278E-007

Iteration#013: |dp|= +1.584513669626E-006 RMS(|Res|)=+1.584513669626E-006

Iteration#014: |dp|= +2.119071531128E-006 RMS(|Res|)=+2.119071531128E-006

Iteration#015: |dp|= +2.367526536459E-006 RMS(|Res|)=+2.367526536459E-006

Iteration#016: |dp|= +8.719548153950E-007 RMS(|Res|)=+8.719548153950E-007

Iteration#017: |dp|= +1.231693233202E-007 RMS(|Res|)=+1.231693233202E-007

Iteration#018: |dp|= +9.147149207192E-007 RMS(|Res|)=+9.147149207192E-007

Iteration#019: |dp|= +5.535627389322E-007 RMS(|Res|)=+5.535627389322E-007

Iteration#020: |dp|= +2.742907176399E-007 RMS(|Res|)=+2.742907176399E-007

Iteration#021: |dp|= +3.054115708920E-007 RMS(|Res|)=+3.054115708920E-007

Iteration#022: |dp|= +3.245014548972E-007 RMS(|Res|)=+3.245014548972E-007

Iteration#023: |dp|= +1.869249742040E-006 RMS(|Res|)=+1.869249742040E-006

Iteration#024: |dp|= +2.203383761894E-006 RMS(|Res|)=+2.203383761894E-006

Iteration#025: |dp|= +1.813571801694E-006 RMS(|Res|)=+1.813571801694E-006

IPF Kalman Filter Completed with Error |dp1| + |dp2| = +1.8135718016940001E-006
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-----------------------------------------------------------------------

----------------- IPF LEAST SQUARES FILTER STARTED ------------------

Iteration#001 COND#=+1.571988770362E+012, |dp|=+3.135179836901E+003

Iteration#002 COND#=+1.571989273295E+012, |dp|=+1.598694123393E+001

Iteration#003 COND#=+1.571989272655E+012, |dp|=+2.287588387184E-002

Iteration#004 COND#=+1.571989277419E+012, |dp|=+2.116182767216E-003

Iteration#005 COND#=+1.571989279165E+012, |dp|=+7.927992189079E-005

Iteration#006 COND#=+1.571989280408E+012, |dp|=+1.450568192233E-006

Iteration#007 COND#=+1.571989277798E+012, |dp|=+4.795100932354E-008

Iteration#008 COND#=+1.571989273445E+012, |dp|=+1.134975818328E-007

Iteration#009 COND#=+1.571989269168E+012, |dp|=+6.629818756727E-008

Iteration#010 COND#=+1.571989274939E+012, |dp|=+9.155340425099E-008

Iteration#011 COND#=+1.571989280075E+012, |dp|=+1.025535672956E-007

Iteration#012 COND#=+1.571989270783E+012, |dp|=+1.393199233679E-007

Iteration#013 COND#=+1.571989278079E+012, |dp|=+1.538824474536E-008

Iteration#014 COND#=+1.571989276816E+012, |dp|=+6.875998764586E-008

Iteration#015 COND#=+1.571989272449E+012, |dp|=+3.929231977738E-008

Iteration#016 COND#=+1.571989276204E+012, |dp|=+8.871462548943E-008

Iteration#017 COND#=+1.571989274690E+012, |dp|=+7.875629633004E-008

Iteration#018 COND#=+1.571989274914E+012, |dp|=+3.527463973771E-008

Iteration#019 COND#=+1.571989275874E+012, |dp|=+4.807581430322E-008

Iteration#020 COND#=+1.571989280842E+012, |dp|=+7.313823132831E-008

Iteration#021 COND#=+1.571989269595E+012, |dp|=+9.592392240910E-008

Iteration#022 COND#=+1.571989276512E+012, |dp|=+1.235954492925E-007

Iteration#023 COND#=+1.571989277018E+012, |dp|=+2.551876437337E-008

Iteration#024 COND#=+1.571989273122E+012, |dp|=+4.580802225882E-008

Iteration#025 COND#=+1.571989278072E+012, |dp|=+9.542420247573E-008

IPF Least Squares Filter Completed with Error |dp1| + |dp2| = +9.5424202475733262E-008

-----------------------------------------------------------------------

Total Execution Time: 275 seconds
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9 CONCLUSIONS

This report has summarized the Spitzer Instrument Pointing Frame (IPF) Kalman Filter
algorithm. The main novelty of the IPF filter design lies in its ability to handle a large
variety of array types (cameras, arrays with scanning mirrors, spectroscopy slits, etc.) in
a single formulation, and in its ability to estimate both science and engineering parameters
as part of the same filter state. With it’s companion User’s Guide D-Document [13], the
formulation, implementation and operation of the IPF filter can be retraced from its basic
conceptual level down to its detailed software implementation.

The resulting IPF Kalman filter algorithm was thoroughly tested and all operational
modes were validated using the FLUTE unit test environment. In simulation tests, the IPF
filter has demonstated the capilibity for calibrating frames to an accuracy of 0.1 arcsec-
onds, per-axis, 1-sigma (as needed to meet requirements for Spitzer’s most stringent pointing
frames).

In addition to demonstrating its nominal capability, the IPF algorithm has been designed
to handle various off-nominal cases and specialized operations. For example, the filter acco-
modates slit type instruments and supports 3 different LITE modes of operation (to allow use
with smaller data sets and to allow for troubleshooting). A centroid data editing capability
has also been added to allow the user to diagnose data glitches and provide simple fix-and-run
capability.

The calibration parameters estimated by the IPF filter will play a key role in support-
ing Spitzer’s in-flight precision pointing capability, and for supporting all ground pointing
reconstruction efforts.
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A APPENDIX: ACRONYMS

AA Attitude History Binary Input File
AC Compressed Attitude Intermediary File
AG Gyro-based Attitude Propagation and Linearization Intermediary File
AS Attitude Supplemental File
CA Centroid A File (instrument centroids)
CB Centroid B File (PCRS Centroids)
CC Merged and Cleaned Centroid Data File
CR Merged Raw Centroid Data File
CS Centroid Supplemental File
CVET C-File Visualization and Editing Tool
DOM Distributed Object Manager (Spitzer’s Main Archival Mission Database)
FEO Flight Engineering Office
FF Offset (Inferred Frames) File
FLUTE Filter Unit Test Environment
IF IPF Filter Output File
IOC In-Orbit Checkout
IPF Instrument Pointing Frame
IPT Integrated Product Team
IRAC Infrared Array Camera
IRS Infrared Spectrograph
KF Kalman Filter
LG IPF Filter Log File
MF Multi-MIPS Run Tool Output File
MIPL Multi-mission Image Processing Laboratory
MIPS Multi-band Imaging Photometer for SIRTF
MUI MATLAB User Interface
NF Instrument Frame Table Number (from 001 to 128)
OET Observatory Engineering Team
PCRS Pointing Control Reference Sensor
RN IPF Filter Run Configuration File
SBF Spacecraft Body Frame
SI Science Instrument
SIS Software Interface Specification
SSC Spitzer Science Center
STA Star Tracker Assembly
SV Science Verification
TPF Telescope Pointing Frame
TR IPF Run TAR file
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B APPENDIX: IPF Filter Interfaces

B.1 Velocity Correction of Star Data

This section describes the velocity aberration correction (cf., [21]) which is applied to all RA
and DEC values.

Note: Star Unit Vector (Interface with Input Data Files as specified in SIS)

Star Unit Vector � = ustar+VSC/c

‖ustar+VSC/c‖ where ustar =

⎡⎣ cos (DEC) ∗cos (RA)
cos (DEC) ∗sin (RA)

sin (DEC)

⎤⎦
VSC Spacecraft Velocity in ICRS [km/sec] A FILE Col(17-19)
RA Right Ascension of Source (target star) [rad] C FILE Col(13)
DEC Declination of Source (target star) [rad] C FILE Col(14)
c Speed of Light [km/sec]

B.2 Centroid Measurements to Oriented Angular Pixel Coordi-
nates

Note: Centroid Measurement (Interface with Input Data Files as specified in SIS)

y =

[
yw
yv

]
=

[
D11 ∗ (CX− CX0) ∗ PIX2RADX + D12 ∗ (CY− CY0) ∗ PIX2RADY
D21 ∗ (CX− CX0) ∗ PIX2RADX + D22 ∗ (CY− CY0) ∗ PIX2RADY

]
CX X-Axis Centroid (pixels) C FILE Col(8)
CY Y-Axis Centroid (pixels) C FILE Col(9)
PIX2RADX Nominal angular pixel size in X direction (rad/pixel) CS FILE Row(1)
PIX2RADY Nominal angular pixel size in Y direction (rad/pixel) CS FILE Row(2)
CX0 Center pixel along X axis (pixels) CS FILE Row(3)
CY0 Center pixel along Y axis (pixels) CS FILE Row(4)
D11 x-to-w frame flip parameter (D11=0,+1,-1) CS FILE Row(7)
D12 y-to-w frame flip parameter (D12=0,+1,-1) CS FILE Row(8)
D21 x-to-v frame flip parameter (D21=0,+1,-1) CS FILE Row(9)
D22 y-to-v frame flip parameter (D22=0,+1,-1) CS FILE Row(10)
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B.3 Mirror Encoder Data to Mirror Angle Conversion

Note: Mirror Rotation angle Γ (Interface with Input Data Files as specified in SIS)
Γ = DG ∗ BETA0 ∗ (GAMMA E− GAMMA E0)

where,
GAMMA E Measured Mirror Encoder Angle [encoder units] C FILE Col(12)
GAMMA E0 MIPS Reference Mirror Position [encoder units] CS FILE Row(6)
BETA0 Nominal Mirror Scale Factor [rad/(encoder unit)] CS FILE Row(5)
DG MIPS Mirror Flip Parameter CS FILE Row(11)
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B.4 Inferred Frames from Desired Offsets

The definition of an Inferred Frame has been given in Section 6.6.1 and Section 6.6.2 in terms
of the offset vector,

y =

[
Δw
Δv

]
(B.1)

where Δw and Δv are angular offsets in oriented angular pixel coordinates. The values for
Δw and Δv are calculated from the quantities DELTA CW, DELTA CV provided by the user in
the O-File according to the following formula,

y =

[
Δw
Δv

]
= D

[
PIX2RADX 0

0 PIX2RADY

]
D−1

[
DELTA CW

DELTA CV

]
(B.2)

where,

D =

[
D11 D12

D21 D22

]
(B.3)

The formula (B.2) is motivated by the need to correctly apply nominal pixel scales PIX2RADX,
PIX2RADY (which are specified in x, y coordinates) to DELTA CW, DELTA CV which are specified
in v, w coordinates.

DELTA CW Pixel offset in W direction [pixels] O-FILE Col(2)
DELTA CV Pixel offset in W direction [pixels] O-FILE Col(3)
PIX2RADX Nominal angular pixel size in X direction (rad/pixel) CS FILE Row(1)
PIX2RADY Nominal angular pixel size in Y direction (rad/pixel) CS FILE Row(2)
D11 x-to-w frame flip parameter (D11=0,+1,-1) CS FILE Row(7)
D12 y-to-w frame flip parameter (D12=0,+1,-1) CS FILE Row(8)
D21 x-to-v frame flip parameter (D21=0,+1,-1) CS FILE Row(9)
D22 y-to-v frame flip parameter (D22=0,+1,-1) CS FILE Row(10)
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C APPENDIX: Useful Definitions

C.1 Definition: Cross-Product Matrix

DEFINITION C.1 Cross-Product Matrix

Given a vector x ∈ R3 with elements,

x =

⎡⎣ x1

x2

x3

⎤⎦ (C.1)

the cross product matrix x× ∈ R3 is defined as follows,

x× =

⎡⎣ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤⎦ (C.2)

C.2 Definition: Matrix Square-Root

DEFINITION C.2 Matrix Square-Root

Consider a square positive-definite symmetric matrix P ∈ Rn×n. Let P be decomposed
into the following form,

P = XXT (C.3)

where X ∈ Rn×n. Then the matrix X is said to be the square-root of P , written as,

X = P
1

2 (C.4)

It is noted that transposed matrix is on the right in the product (C.3). Substituting

(C.4) into (C.3) of Definition C.2 gives P = P
1

2P
T
2 , where it has been convenient to define

P
T
2

Δ
= (P

1

2 )T .
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D APPENDIX: Useful Lemmas

This Appendix contains a summary of various results used in the estimator design, and is
included to help make the report self-contained.

D.1 Kalman Filter Update - Array Square Root Method

LEMMA D.1 Array Square-Root Relations

Consider the unitary triangularization of the matrix[
R

1

2 HM
1

2

0 M
1

2

]
=

[
X 0
Y Z

]
Θ (D.1)

where R = R
1

2R
T
2 > 0, M = M

1

2M
T
2 , and Θ is an orthogonal matrix (i.e., ΘTΘ = I). Then,

(i) X =
(
HMHT +R

) 1

2 (D.2)

(ii) Y = MH
(
HMHT +R

)−T
2 (D.3)

(iii) Y X−1 = MH
(
HMHT +R

)−1
(D.4)

(iv) Z =

(
M −MHT

(
HMHT +R

)−1
HM

) 1

2

(D.5)

Proof: Squaring up both sides of (D.1) and using ΘTΘ = I yields,

[
R

1

2 HM
1

2

0 M
1

2

][
R

T
2 0

M
T
2HT M

T
2

]
=

[
X 0
Y Z

] [
XT Y T

0 ZT

]
(D.6)

[
R +HMHT HM

MHT M

]
=

[
XXT XY T

Y XT Y Y T + ZZT

]
(D.7)

Inspection of (D.7) yields,

XXT = HMHT +R (D.8)

Y XT = MHT (D.9)

Y Y T + ZZT = M (D.10)
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The proof of (i) follows by inspection of (D.8). The proof of (ii) follows by post-multiplying
(D.9) by X−T using the form of X given in (i). The proof of (iii) follows by rearranging
(D.10) and using the form of Y given in (ii) to yield,

ZZT = M − Y Y T (D.11)

= M −MHT
(
HMHT +R

)−T
2

(
HMHT +R

)− 1

2 HM (D.12)

= M −MHT
[(
HMHT +R

) 1

2

(
HMHT +R

)T
2

]−1

HM (D.13)

= M −MHT
(
HMHT +R

)−1
HM (D.14)

COROLLARY D.1 KF Measurement Update (Array Square Root Method)

Consider the state-space measurement equation,

y = Hx+ v (D.15)

where R = Cov(v) is the noise covariance matrix, H is the observation matrix and M =
Cov(x) is the a-priori state covariance matrix. Define the square-root Kalman filter quantities

(K,Ω
1

2 , P
1

2 ) as follows,

K
Δ
= MH(HMHT +R)−1 (Kalman Gain) (D.16)

Ω
1

2
Δ
= (HMHT +R)

1

2 (Square-root innovations covariance) (D.17)

P
1

2
Δ
=

(
M −MHT

(
HMHT +R

)−1
HM

) 1

2

(Square-root A-posteriori covariance)(D.18)

Let (H,R
1

2 ,M
1

2 ) be used in the unitary triangularization (D.1) of Lemma D.1 to define
the square-root factors X, Y, Z. Then,

K = Y X−1 (D.19)

Ω
1

2 = X (D.20)

P
1

2 = Z (D.21)

Proof: Equation (D.19) follows by inspection of result (iii) of Lemma D.1; equation (D.20)
follows by result (i) of Lemma D.1; and equation (D.21) follows by inspection of result (iv)
of Lemma D.1.
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D.2 Gyro Perturbation Lemma

Define a nominal rate vector ω◦
m ∈ R3 according to the construction,

ω◦
m = wm + b◦g + c◦gt (D.22)

where wm ∈ R3 denotes the measured rate, and b◦g, c
◦
g ∈ R3 are nominal estimates of the

3-axis gyro bias and bias rate parameters, respectively. Let the true rate ω ∈ R3 be related
to the nominal rate according to,

ω = ω◦
m + bg + cgt (D.23)

where the parameters bg, cg ∈ R3 denote a correction factor applied to the nominal. Com-
bining (D.22) and (D.23), the total correction to the measured rate is given by,

ω = wm + (b◦g + bg) + (c◦g + cg)t (D.24)

which is the sum of the nominal parameter estimates and correction factors. However, for
the purpose of this report, it is convenient to keep steps (D.22) and (D.23) separate, and
consider the correction as being applied in two distinct stages.

LEMMA D.2 Gyro Perturbation

Let the nominal gyro offset G◦ be defined by integrating the differential equation,

(
Ġ◦ = − (ω◦

m)×G◦
)∣∣∣Tk(j)

tj
(D.25)

starting with the initial condition G◦ (tj) = I, where ω◦
m is a nominal rate estimate (e.g., of

the form (D.22)). Here, the notation (·)|ba denotes integration over the time interval t ∈ [a, b].

Let the true gyro offset G be defined by integrating the differential equation,(
Ġ = −ω×G

)∣∣∣Tk(j)

tj
(D.26)

starting with the initial condition G (tj) = I, where the true rate ω is related to the nominal
rate estimate by,

ω = ω◦
m + bg + cgt (D.27)

If the angle/axis perturbation γ(t) ∈ R3 between G and G◦ is sufficiently small such that one
can write,

G(t) =
(
I − γ(t)×

)
G(t)◦ (D.28)

then,
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γ (Tk) = Hg (Tk)

[
bg
cg

]
(D.29)

where

Hg (Tk) =
[

Λb (Tk) Λc (Tk)
]

(D.30)

and

(
Λ̇b = − (ω◦

m)× Λb + I
)∣∣∣Tk(j)

tj
with I.C. Λb (tj) = 0 (D.31)

(
Λ̇c = − (ω◦

m)× Λc + t · I
)∣∣∣Tk(j)

tj
with I.C. Λc (tj) = 0 (D.32)

Proof: Given equations (D.25), (D.26), (D.28), the Attitude Linearization Lemma D.4 states
that,

γ̇ = γ×ω◦
m − Δ (D.33)

where,
Δ = ω◦

m − ω (D.34)

However, in light of (D.27) one has,

Δ = ω◦
m − ω = −bg − cgt (D.35)

Combining (D.33) and (D.35) gives upon rearranging,

γ̇ = − (ω◦
m)× γ + bg + cgt (D.36)

This is a Linear Time-Varying differential equation whose solution is in general the sum of
a zero-input response and a zero-state response. Since the initial state is zero (i.e., since
G (tj) = G◦ (tj) = I ⇒ γ (tj) = 0), the solution only depends on the inputs. By linear
superposition the solution can be written as,

γ (Tk) = Hg (Tk)

[
bg
cg

]
(D.37)

where,
Hg = [Λb,Λc] (D.38)

Λb =
∂γ

∂bg
, Λc =

∂γ

∂cg
(D.39)
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More specifically, if ei denotes a unit vector with a “1” in ith place and zeros elsewhere, the
ith column of the sensitivity matrices Λb and Λc can be obtained by integrating,(

γ̇bi = − (ω◦
m)× γbi + ei

)∣∣Tk(j)

tj
(D.40)

(
γ̇ci = − (ω◦

m)× γci + t · ei
)∣∣Tk(j)

tj
(D.41)

with initial conditions γbi(tj) = 0, γci(tj) = 0. In matrix form, equations (D.40)(D.41) are
identical to (D.31) and (D.32).

D.3 Measurement Equation Lemma

LEMMA D.3 Measurement Equation

Let q denote the true quaternion, let qm denote a noisy measurement which is close to
q, and let q̂ be a nominal estimated quaternion which is assumed to be close to both q and
qm. Given q, qm, q̂, let the three small rotational perturbations y, θ, v ∈ R3 be defined (to
first-order), according to the following expressions,

C (qm) =
(
I − y×

)
C (q̂) (D.42)

C (qm) =
(
I − v×

)
C (q) (D.43)

C (q) =
(
I − θ×

)
C (q̂) (D.44)

(Note that y can be interpreted as an incremental measurement, θ an incremental estimation
error, and v an incremental measurement noise). Then to first order,

y = θ + v (D.45)

Proof: Equating (D.42), (D.43) and (D.44) gives,(
I − y×

)
C (q̂) =

(
I − v×

)
C (q) =

(
I − v×

) (
I − θ×

)
C (q̂) (D.46)

Right multiplying (D.46) by C (q̂)T (noting that C (q̂)C (q̂)T = I by orthogonality), yields,(
I − y×

)
=

(
I − v×

) (
I − θ×

)
(D.47)

=
(
I − (v + θ)×

)
+ (high-order terms) (D.48)

Subtracting the identity matrix from both sides of (D.48) and rearranging, gives to first-order,

y× = (v + θ)× (D.49)

which is equivalent to (D.45), as desired.
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D.4 Attitude Linearization Lemma

LEMMA D.4 Attitude Linearization

Let the true attitude matrix C propagate according to the kinematic equation,

Ċ = −ω×C (D.50)

where ω ∈ R3 denotes the true angular rate vector. Let an approximation Ĉ to C be con-
structed according to the following propagation equation,

˙̂
C = −ω̂×Ĉ (D.51)

where ω̂ ∈ R3 differs from the true angular rate vector ω by the amount,

Δ = ω̂ − ω (D.52)

If the angle/axis perturbation θ ∈ R3 between C and Ĉ is sufficiently small such that one can
write,

C =
(
I − θ×

)
Ĉ (D.53)

then to first order, θ propagates according to,

θ̇ = θ×ω̂ − Δ (D.54)

Proof: Taking the time-derivative of both sides of (D.53) gives,

Ċ =
(
I − θ×

) ˙̂
C − θ̇×Ĉ (D.55)

Substituting (D.50) and (D.51) into (D.55) yields,

−ω×C =
(
I − θ×

) (−ω̂×Ĉ
)
− θ̇×Ĉ (D.56)

Right-multiplying both sides of (D.56) by ĈT yields,

−ω×CĈT =
(
I − θ×

) [−ω̂×
]− θ̇× (D.57)
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Solving for θ̇× gives upon rearranging,

θ̇× = ω×CĈT +
(
I − θ×

) [−ω̂×
]

(D.58)

= ω×
(
I − θ×

)− (
I − θ×

)
ω̂× (D.59)

= (ω̂ − Δ)×
(
I − θ×

)− (
I − θ×

)
ω̂× (D.60)

= ω̂× − ω̂×θ× − Δ× + Δ×θ× − ω̂× + θ×ω̂× (D.61)

= θ×ω̂× − ω̂×θ× − Δ× + Δ×θ× (D.62)

=
[
θ×ω̂

]× − Δ× + Δ×θ× (D.63)

� [
θ×ω̂

]× − Δ× (D.64)

Here, equation (D.59) follows by substituting CĈT = I−θ× (obtained by rearranging (D.53));
equation (D.60) follows by substituting ω = ω̂ − Δ (obtained from (D.52)); equation (D.61)
follows by expanding all expressions; equation (D.62) follows by cancelling terms and rear-
ranging; equation (D.63) follows by applying the identity θ×ω̂× − ω̂×θ× = [θ×ω̂]

×
from the

Matrix to Vector I Lemma D.7; and equation (D.64) follows by dropping second-order terms.
Equation (D.64) can be re-written in the form,

θ̇ = θ×ω̂ − Δ (D.65)

which is the desired expression (D.54).

D.5 Angle-Axis Perturbation Lemma

LEMMA D.5 Angle-Axis Perturbation

Let the directional cosine matrix C be parameterized in angle/axis form as follows,

C (a, φ)
Δ
= cosφ · I + (1 − cos φ) aaT − sinφa× (D.66)

aTa = 1 (D.67)

where a ∈ R3 is the rotation axis and φ is the scalar rotation angle. Define a perturbed
directional cosine matrix as,

Ĉ = C
(
â, φ̂

)
Δ
= cos φ̂ · I +

(
1 − cos φ̂

)
ââT − sin φ̂â× (D.68)

where â and φ̂ are the perturbed values of the angle/axis parameters, i.e. satisfying,

a = â+ δa, (D.69)
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φ = φ̂+ δφ (D.70)

âT â = 1 (D.71)

Then,

(i) the matrix C can be expanded to first-order as,

C(a, φ) = C(â+ δa, φ̂+ δφ) = Ĉ +Hφ +Ha (D.72)

where,

Hφ
Δ
= s(ââT − I)δφ− câ×δφ (D.73)

Ha
Δ
= (1 − c)(δaâT + âδaT ) − sδa× (D.74)

s
Δ
= sin(φ̂), c

Δ
= cos(φ̂) (D.75)

(ii) If the mapping from Ĉ to C is sufficiently small such that there exists a θ ∈ R3 satisfying,

C =
(
I − θ×

)
Ĉ, (D.76)

then,

θ =
[
sin φ̂ · I −

(
1 − cos φ̂

)
â×
]
δa+ âδφ (D.77)

Proof of (i): Substituting the perturbations (D.69) (D.70) into (D.66) and expanding gives,

C(a, φ) = C(â+ δa, φ̂+ δφ) (D.78)

= cos(φ̂+ δφ) · I +
(
1 − cos(φ̂+ δφ)

)
(â+ δa)(â+ δa)T

− sin(φ̂+ δφ)(â+ δa)× (D.79)

� (c− sδφ) · I + (1 − c+ sδφ)ââT + (1 − c+ sδφ)(δaâT + âδaT )

−(s+ cδφ)â× − (s+ cδφ)δa× (D.80)

� (c− sδφ) · I + (1 − c+ sδφ)ââT + (1 − c)(δaâT + âδaT )

−(s+ cδφ)â× − sδa× (D.81)

=

[
c · I + (1 − c)ââT − sâ×

]
+

[
s(ââT − I)δφ− câ×δφ

]

+

[
(1 − c)(δaâT + âδaT ) − sδa×

]
(D.82)

= Ĉ +Hφ +Ha (D.83)

132



Here (D.80) follows from (D.79) by using the first-order trigonometric expansions cos(φ̂ +

δφ) � c−sδφ, sin(φ̂+ δφ) � s+ cδφ, and eliminating the second-order term involving δaδaT ;
equation (D.81) follows by eliminating second-order terms in (D.80); equation (D.82) follows
by regrouping terms in (D.81); and equation (D.83) follows by substituting definitions (D.68)
(D.73) (D.74) into (D.82). Equation (D.83) is equivalent to (D.72) which proves the desired
relation.

Proof of (ii): Expanding (D.76) gives,

C = (I − θ×)Ĉ = Ĉ − θ×Ĉ (D.84)

Equating (D.84) with (D.72) and rearranging yields,

−θ×Ĉ = Hφ +Ha (D.85)

or equivalently,
θ× = −HφĈ

T −HaĈ
T (D.86)

It will be convenient to examine each term on the RHS of (D.86) separately, in the following
two cases.

Case I: In this case, a simple expression is sought for the term,

HφĈ
T (D.87)

The scalar term δφ in the expression (D.73) for Hφ can be brought outside the brackets to
give,

Hφ =

[
s(ââT − I) − câ×

]
δφ (D.88)

The transpose of Ĉ can be taken in the expression (D.68) to give,

ĈT
(
â, φ̂

)
= c · I + (1 − c)ââT + sâ× (D.89)
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Substituting (D.88) and (D.89) into the expression (D.87) gives,

HφĈ
T =

[
s(ââT − I) − câ×

]
δφ

[
c · I + (1 − c)ââT + sâ×

]
(D.90)

=

[
cs(ââT − I) − c2â× + s(1 − c)(ââT ââT − ââT ) − c(1 − c)â×ââT

+s2(ââT â× − â×) − scâ×â×
]
δφ (D.91)

=

[
cs(ââT − I) − c2â× − s2â× − scâ×â×

]
δφ (D.92)

=

[
csâ×â× − (c2 + s2)â× − scâ×â×

]
δφ (D.93)

= −â×δφ (D.94)

Here, (D.91) follows by expanding (D.90); equation (D.92) follows by using the vector iden-
tities xxTxxT = xxT and x×x = 0 with the choice x = â; equation (D.93) follows by using
the vector identity xxT − I = x×x× (cf., Lemma D.11) with the choice x = â; and (D.94)
follows by cancelling terms and using the well-known relation s2 + c2 = 1. In summary,

HφĈ
T = −â×δφ (D.95)

Case II: In this second case, a simple expression is sought for the term,

HaĈ
T (D.96)
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Substituting (D.74) and (D.68) into (D.96) yields,

HaĈ
T =

[
(1 − c)(δaâT + âδaT ) − sδa×

][
c · I + (1 − c)ââT + sâ×

]
(D.97)

= c(1 − c)(âδaT + δaâT ) − csδa×

+(1 − 2c+ c2)δaâT − s(1 − c)δa×ââT

+s(1 − c)(δaâT â× + âδaT â×) − s2δa×â× (D.98)

= c(âδaT + δaâT ) − c2âδaT − c2δaâT − csδa×

+δaâT − 2cδaâT + c2δaâT

+s(1 − c)
(
âδaT â× − [

âδaT â×
]T)− s2âδaT (D.99)

= c[âδaT − δaâT ] − (c2 + s2)âδaT − csδa× + δaâT

+s(1 − c)
(
âδaT â× − [

âδaT â×
]T)

(D.100)

= c[−(â×δa)×] + (δaâT − âδaT ) − csδa× + s(1 − c)(−δa×) (D.101)

= (1 − c)(â×δa)× − csδa× − s(1 − c)δa× (D.102)

= (1 − c)(â×δa)× − sδa× (D.103)

=
[(

(1 − c)â× − s · I) δa]× (D.104)

Here, (D.98) follows by expanding terms and using the relations δaT â = 0 (from Lemma
D.6) and âT â = 1 (since â is a unit vector); equation (D.99) follows by applying âT â× = 0,
and using the relations δa×ââT = [âδaT â×]T (from Lemma D.10), and δa×â× = âδaT (from
Lemma D.9); equation (D.100) follows by cancelling the c2δaâT terms and rearranging the
remaining terms; equation (D.101) follows by using the relations âδaT − δaâT = −(â×δa)×

(M2V Lemma D.8) and âδaT â×−[âδaT â×]T = −δa× (cf., Lemma D.13), and the applying the
trigonometric relation c2+s2 = 1; equation (D.102) follows by using the relation δaâT−âδaT =
(â×δa)× (M2V Lemma D.8) and rearranging; equation (D.103) follows by cancelling terms;
and (D.104) follows by extracting the common term δa to the right, before taking the cross-
product.

In summary,
HaĈ

T =
[(

(1 − c)â× − s · I) δa]× (D.105)

Combining Case I and Case II results:
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Substituting Case I result (D.95) and Case II result (D.105) into (D.86) gives,

θ× = −HaĈ
T −HφĈ

T (D.106)

= − [(
(1 − c)â× − sI

)
δa
]×

+ â×δφ (D.107)

=
[(
sI − (1 − c)â×

)
δa+ âδφ

]×
(D.108)

Dropping the crossproduct from each side of (D.108) (note, this is equivalent to equating
the corresponding non-zero elements), gives the relation,

θ =
(
sI − (1 − c)â×

)
δa+ âδφ (D.109)

which is the desired expression (D.77).

D.6 Unit Vector Perturbation Lemma

LEMMA D.6 Unit Vector Perturbation

Let the unit vectors a and â be related to each other by a small perturbation vector δa
where,

a = â + δa (D.110)

aTa = 1 (D.111)

âT â = 1 (D.112)

Then the following relations hold to first-order,

δaT â = 0 (D.113)

δaTa = 0 (D.114)

Proof:

aTa = (â+ δa)T (â+ δa) (D.115)

= âT â+ 2δaT â+ δaT δa (D.116)

Substituting the unit vector constraints (D.111)(D.112) into (D.116) gives upon rearrang-
ing,

2δaT â+ δaT δa = 0 (D.117)

or equivalently,
δaT â = 0 + O(||δa||2) (D.118)

Hence, relation (D.113) holds to first order, as desired. Expression (D.114) is proved similarly,
by expanding âT â = (a− δa)T (a− δa).
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D.7 Cross Product Operations Lemma: Matrix to Vector I

LEMMA D.7 Cross Product Operations: Matrix to Vector I

Let x,a and b be vectors in R3.

If the following identity holds,

x× = a×b× − b×a× (D.119)

then,
x = a× b (D.120)

Proof: Let x, a, b ∈ R3 have the following components,

x =

⎡⎣ x1

x2

x3

⎤⎦ ; a =

⎡⎣ a1

a2

a3

⎤⎦ ; b =

⎡⎣ b1
b2
b3

⎤⎦ (D.121)

Expanding a×b× − b×a× componentwise gives,

a×b× =

⎡⎣ −a3b3 − a2b2 a2b1 a3b1
a1b2 −a3b3 − a1b1 a3b2
a1b3 a2b3 −a2b2 − a1b1

⎤⎦ (D.122)

b×a× =

⎡⎣ −a3b3 − b2a2 a1b2 a1b3
a2b1 −a3b3 − a1b1 a2b3
a3b1 a3b2 −a2b2 − a1b1

⎤⎦ (D.123)

a×b× − b×a× =

⎡⎣ 0 −(a1b2 − a2b1) a3b1 − a1b3
a1b2 − a2b1 0 −(a2b3 − a3b2)

−(a3b1 − a1b3) a2b3 − a3b2 0

⎤⎦ (D.124)

Likewise, expanding (a× b)× componentwise gives,

(a× b)× =

⎡⎣ a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

⎤⎦×

=

⎡⎣ 0 −(a1b2 − a2b1) a3b1 − a1b3
a1b2 − a2b1 0 −(a2b3 − a3b2)

−(a3b1 − a1b3) a2b3 − a3b2 0

⎤⎦
(D.125)

Noting that (D.124) and (D.125) are componentwise identical, they can be be equated to
give the identity,

x× = a×b× − b×a× (D.126)

where x = a× b. This is exactly the desired result (D.120).
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D.8 Cross Product Operations Lemma: Matrix to Vector II

LEMMA D.8 Cross Product Operations: Matrix to Vector II

Let x,a and b be vectors in R3.

If the following identity holds,
x× = abT − baT (D.127)

then,
x = b× a (D.128)

Proof: Let x, a, b ∈ R3 have the following components,

x =

⎡⎣ x1

x2

x3

⎤⎦ ; a =

⎡⎣ a1

a2

a3

⎤⎦ ; b =

⎡⎣ b1
b2
b3

⎤⎦ (D.129)

Expanding abT − baT componentwise gives,

abT − baT =

⎡⎣ a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

⎤⎦−
⎡⎣ a1b1 a2b1 a3b1
a1b2 a2b2 a3b2
a1b3 a2b3 a3b3

⎤⎦ (D.130)

=

⎡⎣ 0 a1b2 − a2b1 a1b3 − a3b1
a2b1 − a1b2 0 a2b3 − a3b2
a3b1 − a1b3 a3b2 − a2b3 0

⎤⎦ (D.131)

=

⎡⎣ 0 − (a2b1 − a1b2) a1b3 − a3b1
a2b1 − a1b2 0 − (a3b2 − a2b3)

− (a1b3 − a3b1) a3b2 − a2b3 0

⎤⎦ (D.132)

Likewise, expanding (b× a)× componentwise gives,

(b× a)× =

⎡⎣ a3b2 − a2b3
a1b3 − a3b1
a2b1 − a1b2

⎤⎦×

=

⎡⎣ 0 − (a2b1 − a1b2) a1b3 − a3b1
a2b1 − a1b2 0 − (a3b2 − a2b3)

− (a1b3 − a3b1) a3b2 − a2b3 0

⎤⎦
(D.133)

Noting that (D.132) and (D.133) are componentwise identical, they can be equated to give
the identity,

x× = abT − baT (D.134)

where x = b× a. This is exactly the desired result (D.128). .
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D.9 Cross Product Operations Lemma: Matrix to Outer Product

LEMMA D.9 Cross Product Operations: Matrix to Outer Product

If a and b are orthogonal vectors (i.e. aT b = 0) in R3, then the following identity holds,

a×b× = baT (D.135)

Proof: Let x ∈ R3 be an arbitrary vector. Construct the vector y ∈ R3 such that,

y = a×b×x (D.136)

Then,

y = a×b×x = a× (b× x) (D.137)

=
(
aTx

)
b− (

aT b
)
x (D.138)

=
(
aTx

)
b (D.139)

= b
(
aTx

)
(D.140)

where (D.138) follows from the well-known vector identity a × (b × c) = (aT c)b − (aT b)c;
equation (D.139) follows from the assumed orthogonality condition aT b = 0; and equation
(D.140) follows by writing the scalar term aTx on the right instead of the left of the vector b.

Relation (D.140) can be summarized as,

a×b×x = baTx (D.141)

Since x in (D.141) is an arbitrary vector, it follows that,

a×b× = baT (D.142)

which is the desired result (D.135).

D.10 Cross - Outer Product Lemma I

LEMMA D.10 Cross - Outer Product Lemma I

If a, b and c are vectors in R3, then the following identity holds,

a×bcT =
[
caT b×

]T
(D.143)
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Proof: By standard matrix manipulations,[
caT b×

]T
= (b×)T (caT )T (D.144)

= −b×(acT ) (D.145)

= −(b×a)cT (D.146)

= (a×b)cT (D.147)

which proves the desired identity.

D.11 Cross - Outer Product Lemma II

LEMMA D.11 Cross - Outer Product Lemma II

If a is a unit vector in R3 (i.e., aTa = 1), then the following identity holds,

a×a× = aaT − I (D.148)

Proof: Let a
Δ
= [ax, ay, az]

T . Expanding a×a× componentwise gives,

a×a× =

⎡⎣ 0 −az ay
az 0 −ax
−ay ax 0

⎤⎦⎡⎣ 0 −az ay
az 0 −ax
−ay ax 0

⎤⎦ (D.149)

=

⎡⎣ − (
a2
z + a2

y

)
axay axaz

axay − (a2
x + a2

z) ayaz
axaz ayaz − (

a2
x + a2

y

)
⎤⎦ (D.150)

Likewise, expanding aaT−I componentwise and using the unit vector constraint a2
x+a

2
y+a

2
z =

1 gives,

aaT − I =

⎡⎣ (a2
x − 1) axay axaz
ayax

(
a2
y − 1

)
ayaz

azax azay (a2
z − 1)

⎤⎦ (D.151)

=

⎡⎣ − (
a2
z + a2

y

)
axay axaz

axay − (a2
x + a2

z) ayaz
axaz ayaz − (

a2
x + a2

y

)
⎤⎦ (D.152)

Noting that (D.150) and (D.152) are componentwise identical, they can be equated to give
the identity (D.148), which is the desired result.
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D.12 Cross - Outer Product Lemma III

LEMMA D.12 Cross - Outer Product Lemma III

Let a be a unit vector in R3 (i.e., aTa = 1, and b be a vector in R3. If the following
identity holds,

abTa× − [
abTa×

]T
= x× (D.153)

then,
x =

(
aaT − I

)
b (D.154)

Proof: Construct the quantity

c
Δ
= −a×b (D.155)

Taking the transpose of (D.155) gives the useful relation,

cT = −(a×b)T = −bT (a×)T = bTa× (D.156)

Then,

abTa× − [
abTa×

]T
= acT − caT (D.157)

=
(
c×a

)×
(D.158)

= − (
a×c

)×
(D.159)

=
(
a×

(
a×b

))×
=
(
a×a×b

)×
(D.160)

=
[(
aaT − I

)
b
]×

(D.161)

where (D.157) follows by substituting (D.156); equation (D.158) follows by applying the
results of Lemma D.8 (the Matrix to Vector II Lemma); equation (D.159) follows by reversing
the order of the vectors in the crossproduct; equation (D.160) follows by substituting (D.155);
and (D.161) follows by applying the results of Lemma D.11 (the Cross - Outer Product Lemma
II ). Equation (D.161) is the desired result.

D.13 Cross - Outer Product Lemma IIIa

LEMMA D.13 Cross - Outer Product Lemma IIIa

Imposing the orthogonality constraint aT b = 0 in the result of Lemma D.12 (the Cross -
Outer Product Lemma III) gives the following identity,

abTa× − [
abTa×

]T
= −b× (D.162)
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Proof: Starting with the result of Lemma D.12 gives upon rearranging,

abTa× − [
abTa×

]T
=

[(
aaT − I

)
b
]×

(D.163)

=
[
aaT b− b

]×
(D.164)

= −b× (D.165)

where (D.165) follows from the orthogonality constraint aT b = 0.

D.14 Push-Through Lemma

LEMMA D.14 Push-Through Lemma

Let A ∈ R3×3 be a direction cosine matrix (i.e., AT = A−1 and det(A) = 1), and let
x ∈ R3 be an arbitrary vector. Then the following identity holds,

A(I − x×) = (I − (Ax)×)A (D.166)

Proof: Consider an arbitrary vector e ∈ R3. Then one has the identity,

A(x×e) = (Ax)×(Ae) (D.167)

since the cross product of two vectors is invariant under frame transformation. Continuing,

A(I − x×)e = Ae− A(x×e) (D.168)

= Ae− (Ax)×(Ae) (D.169)

= (I − (Ax)×)Ae (D.170)

Here, (D.169) follows from (D.168) by using identity (D.167). The main result (D.166) follows
from the fact that (D.170) holds for arbitrary e.

D.15 Directional Cosine Matrix Exponential Equivalence Lemma

LEMMA D.15 Directional Cosine Matrix Exponential Equivalence Lemma

Let θ ∈ R3 be an arbitrary non-zero constant vector. Then the following relationship
holds.

eθ
×

= C

(−θ
‖θ‖ , ‖θ‖

)
(D.171)
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where the matrix C is a direction cosine matrix of the form,

C (a, φ)
Δ
= cosφ · I + (1 − cosφ) aaT − sin(φ)a× (D.172)

In particular, for an arbitrary nonzero constant vector ω ∈ R3 and scalar ΔT > 0, the
following relationship holds,

e−ω
×ΔT = C

(
ω
|ω|
, |ω|ΔT

)
(D.173)

Proof: (Following the approach in [17]). Define the elements of θ as,

θ =

⎡⎣ θ1
θ2
θ3

⎤⎦ (D.174)

Then the characteristic polynomial p(λ) of the matrix θ× ∈ R3×3 can be calculated as,

p(λ) = det(λ · I − θ×) (D.175)

= det

⎡⎣ λ θ3 −θ2
−θ3 λ θ1
θ2 −θ1 λ

⎤⎦ (D.176)

= λ(λ2 + θ2
1) − θ3(−λθ3 − θ1θ2) − θ2(θ1θ3 − λθ2) (D.177)

= λ3 + λ‖θ‖2 (D.178)

The Cayley-Hamilton Theorem ensures that a matrix (θ× in this case) satisfies its own char-
acteristic equation,

p(λ)

∣∣∣∣
λ=θ×

= 0 (D.179)

Using (D.178) in (D.179) and rearranging yields,

(θ×)3 = −‖θ‖2θ× (D.180)

This key identity is used in the next step.
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Consider the power series expansion,

eθ
×

= I + θ× +
(θ×)2

2!
+

(θ×)3

3!
+

(θ×)4

4!
+

(θ×)5

5!
+

(θ×)6

6!
+ ... (D.181)

= I + θ× +
(θ×)2

2!
− ‖θ‖2θ×

3!
(D.182)

−‖θ‖2(θ×)2

4!
+

‖θ‖4θ×

5!
+

‖θ‖4(θ×)2

6!
+ ... (D.183)

= I +
θ×

‖θ‖
(
‖θ‖ − ‖θ‖3

3!
+

‖θ‖5

5!
− ...

)
(D.184)

+
(θ×)2

‖θ‖2

(‖θ‖2

2!
− ‖θ‖4

4!
+

‖θ‖6

6!
− ...

)
(D.185)

= I +
sin ‖θ‖
‖θ‖ θ× + (1 − cos ‖θ‖)(θ

×)2

‖θ‖2
(D.186)

= I +
sin ‖θ‖
‖θ‖ θ× + (1 − cos ‖θ‖)

(
θθT

‖θ‖2
− I

)
(D.187)

= I · cos ‖θ‖ +
1 − cos ‖θ‖

‖θ‖2
θθT +

sin ‖θ‖
‖θ‖ θ× (D.188)

= C

(−θ
‖θ‖ , ‖θ‖

)
(D.189)

Here, equation (D.183) follows by using identity (D.180) and rearranging; equation (D.186)
follows by recognizing the Taylor expansions for sin x = x − x3/3! + x5/5! − ... and cosx =
1−x2/2!+x4/4!−...; equation (D.187) follows by applying the result of Lemma D.11 with the
choice a = θ/‖θ‖; equation (D.188) follows by rearranging; and (D.189) follows by applying
the definition (D.172). Equation (D.189) is the desired expression (D.171).

Letting θ
Δ
= −ωΔT in (D.171) gives the desired expression (D.173).

D.16 Directional Cosine Matrix Integral Lemma

LEMMA D.16 Directional Cosine Matrix Integral

For an arbitrary nonzero constant vector ω ∈ R3 and scalar ΔT > 0, the following
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relationship holds,∫ ΔT

0

e(ωτ)
×

dτ =
sin (‖ω‖ΔT )

‖ω‖ · I +

(
ΔT − sin (‖ω‖ΔT )

‖ω‖
)(−ω

‖ω‖
)(−ω

‖ω‖
)T

−
(

cos (‖ω‖ΔT ) − 1

‖ω‖
)(−ω

‖ω‖
)×

(D.190)

Proof: Let the following angle/axis variables be defined for notational convenience,

a
Δ
=

−ω
‖ω‖ and ϕ

Δ
= ‖ω‖. (D.191)

Then, ∫ ΔT

0

e(ωτ)
×

dτ =

∫ ΔT

0

C

(−ω
‖ω‖ , ‖ω‖τ

)
dτ =

∫ ΔT

0

C (a, ϕ) dτ (D.192)

=

∫ ΔT

0

[
cos (ϕτ ) · I + (1 − cos (ϕτ )) aaT − sin (ϕτ)a×

]
dτ (D.193)

=

[
sin (ϕτ)

ϕ
· I +

(
τ − sin (ϕτ)

ϕ

)
aaT +

cos (ϕτ)

ϕ
a×
]ΔT

0

(D.194)

=
sin (ϕΔT )

ϕ
· I +

(
ΔT − sin (ϕΔT )

ϕ

)
aaT −

(
cos (ϕΔT ) − 1

ϕ

)
a× (D.195)

Here, equation (D.192) follows by equation (D.171) of Lemma D.15 with the choice θ =
ωΔT , and using the angle/axis quantities defined in (D.191); equation (D.193) follows by
the definition of C in (D.172); equation (D.194) follows by direct integration; and (D.195)
follows by evaluating the expression between its lower and upper limits. Applying definitions
(D.191) to equation (D.195) gives the desired expression (D.190).

D.17 Sum Factorization Lemma

LEMMA D.17 Sum Factorization Lemma

Given matrices A ∈ Rn×m and B ∈ Rn×�, let the matrix factor C ∈ Rn×n be defined
(non-uniquely) by the following relation,

CCT = AAT +BBT (D.196)

Then a value for C can be computed as,

C = X (D.197)
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where X is determined from the unitary triangularization of the matrix

[
A

... B

]
given as

follows, [
A

... B

]
=

[
X

... 0

]
Θ (D.198)

where Θ is an orthogonal matrix (i.e., ΘΘT = I).

Proof: Both sides of (D.198) can be squared up to give,

AAT +BBT =

[
A

... B

]⎡⎢⎣ AT

. . .

BT

⎤⎥⎦ (D.199)

=

[
C

... 0

]
ΘΘT

⎡⎢⎣ CT

. . .

0

⎤⎥⎦ (D.200)

=

[
C

... 0

]⎡⎢⎣ CT

. . .

0

⎤⎥⎦ (D.201)

= CCT (D.202)

where the orthogonality property ΘΘT = I has been used in (D.201).

D.18 QR Calculation of C Lemma

LEMMA D.18 QR Calculation of C

The matrices C and Θ in the unitary triangularization,[
A

... B

]
=

[
C

... 0

]
Θ (D.203)

can be computed as Θ = QT and C = RT where matrices Q and R are defined by the following
QR decomposition, [

AT

BT

]
= Q

⎡⎣ R
. . .
0

⎤⎦ (D.204)

Proof: Taking the transpose of both sides of (D.204) gives,[
A

... B

]
=

[
RT ... 0

]
QT (D.205)
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which becomes equivalent to (D.203) under the correspondences C = RT and Θ = QT .

REMARK D.1 Lemma D.18 is useful because it indicates the C factor defined in (D.196)
of Lemma D.17 can be computed by first taking the QR factorization indicated in (D.204)
and then setting C = RT . Since Q is not needed, the “economy size” QR decomposition can
be used for reducing computation.
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D.19 Differentiation through Inversion Lemma

LEMMA D.19 Differentiation through Inversion Lemma

Let the matrix A ∈ Rn×n be a function of a scalar parameter p, and let A−1 exist. Then
the derivative of A−1 with respect to p is given by,

∂

∂p

(
A−1

)
= −A−1∂A

∂p
A−1 (D.206)

Proof: Since A invertible,
A−1A = I (D.207)

Differentiating both sides with respect to p (using the chain rule for matrix products) gives,

∂

∂p

(
A−1

)
A+ A−1∂A

∂p
= 0 (D.208)

Multiplying on the right by A−1 and rearranging yields (D.206), as desired.
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D.20 Norm of Mirror-Axis Perturbation Lemma

LEMMA D.20 Norm of Mirror-Axis Perturbation Lemma

Define the perturbation δa ∈ R3 on the mirror spin axis (restricted to in-plane motion)
as follows,

δa = ha (â) δα (D.209)

where,

ha (â) =

⎡⎣ 0
â3

−â2

⎤⎦ (D.210)

Then the following identities hold,

|δα| Δ
=

‖δa‖√
â2

3 + â2
2

(D.211)

δα = sign

(
δa2

â3

)
· ‖δa‖√

â2
3 + â2

2

(D.212)

Proof: Since δα is a scalar, one can write (D.209) as,

δa =

⎡⎣ 0
â3δα
−â2δα

⎤⎦ (D.213)

Taking the norm of both sides yields,

‖δa‖ =

√
â2

3δα
2 + â2

2δα
2 = |δα|

√
â2

3 + â2
2 (D.214)

which gives (D.211) upon rearranging. Moreover, using (D.213) the signs can be related as,

sign (δα) = sign

(
δa2

â3

)
= sign

(
δa3

−â2

)
(D.215)

Combining (D.215) and (D.211) gives (D.212) as desired.
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D.21 Optical Distortion Vectorization Lemma

LEMMA D.21 Optical Distortion Vectorization Lemma

Let’s consider an optical distortion function fd = M(y, p1)z where M is a 2 × 2 matrix
and y, z ∈ R2. This optical distortion function is defined and can be expanded as

M(y, p1)z =
(
M00 + ΓM10 + Γ2M20 +M01 (y)

)
z (D.216)

where

M00 =

[
a00 c00
c00 b00

]
; M10 =

[
a10 c10
d10 b10

]
; M20 =

[
a20 c20
d20 b20

]
;

M01 (y) =

[
a01yw + c01yv b01yv

d01yw f01yw + e01yv

]
. (D.217)

Given the state vector p1 definition of:

p1 =
[
a00 b00 c00 a10 b10 c10 d10 a20 b20 c20 d20 a01 b01 c01 d01 e01 f01

]T
,

(D.218)

the vectorization of Mz results in a relationship of:

−M (p1, y) z = − (
zT ⊗ I

)
V ec (M) . (D.219)

Where the Kronecker Product (⊗) results in:

zT ⊗ I =

[
zw 0 zv 0
0 zw 0 zv

]
, (D.220)

and the vectorization of M can be written as:

V ec (M) =
[
S00 ΓS10 Γ2S20 fu (y)

]
p1 (D.221)

where

S00 =

⎡⎢⎢⎣
1 0 0
0 0 1
0 0 1
0 1 0

⎤⎥⎥⎦ , S10 =

⎡⎢⎢⎣
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤⎥⎥⎦ , S20 =

⎡⎢⎢⎣
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤⎥⎥⎦ , (D.222)

and
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fu (y) =

⎡⎢⎢⎣
yw 0 yv 0 0 0
0 0 0 yw 0 0
0 yv 0 0 0 0
0 0 0 0 yv yw

⎤⎥⎥⎦ . (D.223)

Proof: Let A = I, B = M , and C = z. If the Lemma D.22 is applied to ABC, then

vec (ABC) =
(
CT ⊗ A

)
vec (B) =

(
zT ⊗ I

)
vec (M) . (D.224)

Since

vec (M00) =

⎡⎢⎢⎣
a00

c00
c00
d00

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 0 0
0 0 1
0 0 1
0 1 0

⎤⎥⎥⎦
⎡⎣ a00

c00
d00

⎤⎦ =⇒ vec (M00)
Δ
= S00

⎡⎣ a00

c00
d00

⎤⎦ (D.225)

vec (M10) =

⎡⎢⎢⎣
a10

d10

c10
b10

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
a10

b10
c10
d10

⎤⎥⎥⎦ =⇒ vec (M10)
Δ
= S10

⎡⎢⎢⎣
a10

b10
c10
d10

⎤⎥⎥⎦ (D.226)

vec (M20) =

⎡⎢⎢⎣
a20

d20

c20
b20

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
a20

b20
c20
d20

⎤⎥⎥⎦ =⇒ vec (M20)
Δ
= S20

⎡⎢⎢⎣
a20

b20
c20
d20

⎤⎥⎥⎦ (D.227)

and

vec (M01) =

⎡⎢⎢⎣
yw 0 yv 0 0 0
0 0 0 yw 0 0
0 yv 0 0 0 0
0 0 0 0 yv yw

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
a01

b01
c01
d01

e01
f01

⎤⎥⎥⎥⎥⎥⎥⎦
Δ
= fu (y)

⎡⎢⎢⎢⎢⎢⎢⎣
a01

b01
c01
d01

e01
f01

⎤⎥⎥⎥⎥⎥⎥⎦ (D.228)

Thus V ec (M) =
[
S00 ΓS10 Γ2S20 fu (y)

]
p1
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D.22 Matrix Vectorization Lemma

LEMMA D.22 Matrix Vectorization Lemma

For any m× n matrix A, n× p matrix B, and p× q matrix C,

vec (ABC) =
(
CT ⊗A

)
vec (B) . (D.229)

Proof: (see Reference [11],[5], and [16] ) Assume B can be vectorized and is expressible as

B =

p∑
j=1

bju
T
j . (D.230)

where (for j = 1, ..., p) bj is the jth column of B and uTj is the jth row of Ip. Thus making
use of Lemmas D.24 and D.23, we find that

vec (ABC) = vec

[
A

(
p∑
j=1

bju
T
j

)
C

]
(D.231)

=

p∑
j=1

vec
(
Abju

T
j C

)
(D.232)

=

p∑
j=1

[(
CTuj

)⊗ (Abj)
]

(D.233)

=

p∑
j=1

(
CT ⊗A

)
(uj ⊗ bj) (D.234)

=

p∑
j=1

(
CT ⊗A

)
vec

(
bju

T
j

)
(D.235)

=
(
CT ⊗ A

)
vec

(
p∑
j=1

bju
T
j

)
=
(
CT ⊗A

)
vec (B) (D.236)
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D.23 Vector-Kronecker Equivalence Lemma

LEMMA D.23 Vector-Kronecker Equivalence Lemma

For any m-dimensional column vector a = {ai} and n-dimensional column vector b,

vec
(
baT

)
= a⊗ b (D.237)

Proof:(see Reference [11]) Let a = {ai} and b = {bi} to represent column vectors of dimen-
sions m and n, respectively. The Kronecker Product of a and b can be written as

a ⊗ b =

⎛⎜⎜⎜⎝
a1b
a2b
...

amb

⎞⎟⎟⎟⎠ (D.238)

Note that a ⊗ b is an mn-dimensional partitioned column vector comprising m subvectors,
the ith of which is aib. Since the ith (of the m columns) of baT is aib, the right hand side
of (D.238) equals the vectorization of baT .
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D.24 Kronecker Product Lemma

LEMMA D.24 Kronecker Product Lemma

For any m × n matrix A = {aij}, p× q matrix B = {bij}, n× u matrix C = {cij}, and
q × v matrix D = {dij},

(A⊗B) (C⊗D) = (AC) ⊗ (BD) . (D.239)

Proof: (From Reference [11]) By definition, A ⊗ B is a partitioned matrix, comprising m
rows and n columns of p × q dimensional blocks, the ij th of which is aijB; and C ⊗ D is a
partitioned matrix, comprising n rows and u columns of q × v dimensional blocks, the jrth
of which is cjrD. Thus, (A ⊗ B) (C ⊗ D) is a partitioned matrix, comprising m rows and u
columns of p× v dimensional blocks, the irth of which is the matrix

n∑
j=1

(aijB) (cjrD) =

(
n∑
j=1

aijcjr

)
BD (D.240)

By way of comparison, (AC) ⊗ (BD) is a partitioned matrix, comprising m rows and u
columns of p× v dimensional blocks, the irth of which is the matrix

firBD (D.241)

where fir is the irth element of AC. The proof is complete upon observing that:

fir =
n∑
j=1

aijcjr (D.242)

and hence that the irth block of (AC) ⊗ (BD) equals the irth block of (A ⊗B) (C ⊗ D).
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