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Abstract: This paper describes the advantages of visible direct detection and spectroscopy of
Earth-like extrasolar planets using a nulling coronagraph instrument behind a moderately sized
single aperture space telescope. Our concept synthesizes a nulling interferometer by shearing the
telescope pupil, with the resultant producing a deep null. We describe nulling configurations that
also include methods to mitigate stellar leakage, such as spatial filtering by a coherent array of
single mode fibers, and post-starlight suppression wavefront sensing and control. With
diffraction limited telescope optics and similar quality components in the optical train
(lambda/20), suppression of the starlight to 1e-10 is readily achievable. We describe key features
of the architecture and analysis, present latest results of laboratory measurements demonstrating
achievable null depth and component development, and discuss future key technical milestones.
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The IWA, inner working angle is the angle SR
inside which direct detection of a planet is - s
not possible. (N*A/D)

Different types of coronagraphs have IWA

Our Solar System

with different values Of_N o TPF inner working Angle
Next to Contrast, IWD is a driving
requirement
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i the number of stars available for
search in the habitable zone.

— Late F,G,K, and M main sequence
dwarts

— Habitable Zone @ 300K

# of stars
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ccD & Transmission Pattern of Nuller

On the sky. (Star is at the center)

*  When the light from two pupils are combined, the output can be
imaged.

— The image is an Airy function with diameter 2.441/D where D is the telescope
diameter.

e But the intensity of that image is modulated by the fringe pattern (on
the sky) where b is the baseline between the pupils.

— If the star is at a null, the star’s image has O intensity. If the planet is at the
peak, the planet’s light is unattenuated.

* A nulling interferometer that works with a single aperture telescope is
different than one that combines light from 2 or more telescopes
— For an Earth @ 10pc 2s~1.5m

— This type of interferometer is synthesized by shearing the telescope pupil
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Small Inner working angle
— 2 A/D with calibration

Relaxed optical figure for
telescope
— A/20 optics vs the requirements
of ‘ultra-precision’ mirrors.
Will ultimately prove much
easier to achieve 1019
suppression of starlight
— Control of: Amplitude, Phase,
Spectral width, Polarization,
etc.
Expandable to very large
apertures using a segmented
primary telescope.

— Compatible with MEM’s type
deformable mirrors.

Why a Visible Nuller for TPF Coronagraph?

R Stellar Leakage for D= 4.0m aperture at wavelength=0.75um
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04 interferometer leakage below 10-1°
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Nuller Architecture for Planet Imaging

e Yields 6% null

Dark
putput

Bright
output
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Dispersive
«Single pupil input Components
siep p p Pupil Input Bright output For Achromatic

*Symmetric design 4 Null
*Preserves pupil orientation
and polarization \
*Pupil shear adjustable—
variable null baseline  Null output Variable
*Dielectric plates provide < N / delay
achromatic null .
.o | o | Symmetric

. Beam

o \ / - Splitters

wavelength (um)

Dispersive A=
Components Variable shear, s >
For Achromatic ’

Null
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* A high contrast imaging system for extra-solar planet detection
requires a calibration to combat the effects of post starlight
suppression errors

— How can you tell the difference between starlight speckles and planet light?

— By using the coherence of starlight and property that the star light and planet
light are incoherent with each other.

*Spatially filter the starlight from the Nuiling Cororiagraph
bright output of the nuller.
sInterfere it with the output from the nuller
(after fiber bundle). N \ P
*This measures the amplitude and st ’ f'\\
phase of the light in the speckle | | \/f’\ D
pattern. —
*The PSF (starlight speckle pattern) is — -
estimated by the Fourier transform of the § A A Y,

Sampling
Beamsplitter Beamsplitter
<

measured amplitude and phase
*Subtract psf from science image to remove
speckles

Spat1a1 ﬁlter
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Post Starlight suppression wavefront sensing

[NASA

Nominal Contrast of a 2-Stage Nuller (A=1.0pm R=3)

e  O4nuller

* Shot noise, Detector noise,
pixelization included

Field Angle (Arcseconds)
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e Contrast improvement o impov SV e e
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Broadband Contrast Performance of 2-Stage Nulling at 1.0um (R=5)

107 =
f + Nominal Performance |
+ I/F Model-Subtracied Pcrformancc! ]

* Reference: Shao et. al. |
Session X1V
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Prior to 2005,
experiment was
conducted on an
optical table

e Since May nuller
moved into the
vacuum chamber

* To date, experiments
have been run at 1
atm, with the door
shut
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Progress in Demonstrating Deep
Nulling

5% white fight null Jan 19, 2005

photans/0.1 sec

seconds

Laser Null: 7x107

0 50 100 150 200 250 300 350
10 samples/sec

White Light Null: 7x10-7

Reference: Schmidtlin et. al.
Session XII
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power balance in two nulling arms

o 1 L S D +  0.15% imbalance limits null to
Comsp i nge_r_ubalanga__0___1.__5%..% ------ — 2.8e-7 and 0.1 nm rms opd
3 ol eft_.__,f____rlght ................ Left : right | fluctuation limits null to 2.5e-7
o — Sum of amplitude and phase
errors => ~5e-7 versus 7e-7
0.2 ] measured.
02 e e Expect both amplitude and
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e OPD stability to improve by
S IO N O?D Wbr;amnjd;rm 1] factors of at least 3~5 when
(7% N N S O S U O SO S chamber is evacuated.
m::jw * Current experiment capable of
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Lens Array . Lens Array
Matching
X Bonding
W .
R — * Fiber Array. Material
(0000000007 — 3 Dove prisms on rectangular slab
X — Prism 2 corner is cut flat to accommodate
*Fiber Array caa Fibers
Detail — New Technology Report filed Fiber
) Array
< > >
 Lens Array Lens |Spacer
. . Array =1.4mm
— Monolithic Lens Array on thin substrate A
— Spacer bonded with thickness = focal = lmm -
length
— Lens spacing 126.2pum 1

— NA=0.048 @A=0.632pm

<+ —Pb

Focal length = 2.4 mm

See SPIE 5170-22, Liu et. al
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Fiber Array Placement Accuracy

500 (331) Fiber Array

Prel
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1.893um , rmsy= 2.038um, rms= 2.781um

Input Image for polished array, centroid box = 2121
rms,

image scale = 4.304um/pix, average fiber spacing = 29.291pix
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Measurements show 2.

position error

iminary

e Prel

— Lens arrays to be integrated with Fiber Array
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mirror sepment_ e Current development is for a 361
P segment device

stlicon substrate

e Future development path is for a
1000 segment DM
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* 61 channel pathfinder DM e [28-channel D/A board

— Boston University

e Reference: Rao et. al.
Poster #25
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Near Term
— Advanced Automation of Nuller Experiment
— Initial integration of Single Mode Fiber Array
— Design and Modification of Nuller Test Bed

Long Term Experiments:

— Integration of Nuller and SMF Array i
Bed System Demonstration on Test B

Reference: Lyons et. al. Session XI

Integrated nuller and

calibration wavefront sensor
design

Single nuller design suitable for
a future sounding rocket
experiment Sep 1,2
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