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We study critical point finite-size effects in the case of the susceptibility of a film in which interactions are
characterized by a van der Waals-type power law tail. The geometry is appropriate to a slablike system with
two bounding surfaces. Boundary conditions are consistent with surfaces that both prefer the same phase in the
low temperature, or broken symmetry, state. We take into account both interactions within the system and
interactions between the constituents of the system and the material surrounding it. Specific predictions are
made with respect to the behavior of 3He and 4He films in the vicinity of their respective liquid-vapor critical
points.

DOI: 10.1103/PhysRevE.75.011121 PACS number�s�: 64.60.Fr, 75.40.�s

I. INTRODUCTION

Confinement to a finite volume introduces a variety of
modifications to the behavior of a system in the vicinity of a
phase transition. The existence of a single bounding surface
leads to surface phase transitions �1–3�, critical adsorption
�1,2�, wetting �4�, and interface phenomena �5�. The require-
ment that the system is of finite extent in one or more direc-
tions generates effects associated with finite-size scaling
theory �6–9�, including shifts in critical points, dimensional
crossover, rounding of phase transitions, and also to such
phenomena as capillary condensation �10� and the interface
delocalization phase transition �11,12�.

In addition, the nature of the interaction within the system
and between the system and the surrounding world influ-
ences leading and subleading thermodynamic behavior at
and near a critical point �13–18�.

In this paper we will discuss finite-size effects as they
apply to the susceptibility of a film of a nonpolar fluid having
a thickness L in which the intrinsic interaction Jl is of the van
der Waals type, decaying with distance r between the mol-
ecules of the fluid as Jl�r−�d+��. Here d is the dimensionality
of the system while ��2 is a parameter characterizing the
decay of the interaction. The film is bounded by a substrate
that interacts with the fluid with similar van der Waals type
forces, i.e., of the type Jl,s�z−�s, where z is the distance from
the boundary of the system while �s�2 characterizes the
decay of the fluid-substrate potential. For realistic fluids one
has d=�=�s=3. The discussion in this paper will be quite
general, but we will be principally interested in an Ising type
model, which is commonly utilized to represent a nonpolar
fluid.

As a specific application, we will estimate the parameters
required for the prediction of the behavior of the finite-size
susceptibility in the case of 3He and 4He films near their
respective liquid-vapor critical points. We assume that the
film is surrounded by gold surfaces. We will take into ac-
count both the van der Waals type interaction between the
atoms of the 3He �or 4He� and the corresponding interaction
between the Au atoms and 3He �or 4He� atoms.

According to general scaling arguments �2,19�, the finite-
size behavior of the susceptibility in a film of a fluid subject
to ��,�� boundary conditions, i.e., conditions that strongly
favor the liquid phase of the fluid over the gas phase is

��t,h,L� − �bulk�t,h� − L−1��surface,1�t,h� + �surface,2�t,h��

= L�/�X�L/�t,ahhL	/�,bL2−�−
,hw,sL
�d+2−
�/2−�s;a�L−�� ,

�1.1�

where �bulk�t ,h� is the bulk susceptibility, �surface,1�t ,h� and
�surface,2�t ,h� are the surface susceptibilities, �t�T�=���T
→Tc

+ ,h=0���0
+�t�−� is the bulk correlation length, t= �T

−Tc� /Tc is the reduced temperature, Tc is the bulk critical
temperature, �0

+, ah, b, hw,s, and a� are nonuniversal metric
constants, while �, 	, 
, and � are the universal critical
exponents for the corresponding short-range system. For a
schematic phase diagram in the �H ,T� plane of the system
see Fig. 1. Assuming ��2−
 and �s� �d+2−
� /2, one can
expand �1.1�, which leads to

��t,h,L� � �bulk�t,h� + L−1��surface,1�t,h� + �surface,2�t,h��

+ L�/��Xsr�attL
1/�,ahhL	/�;a�L−��

+ hw,sL
�d+2−
�/2−�sXs,1

lr �attL
1/�,ahhL	/��

+ L−��s−2+
��hs
2L−��s−d�Xs,2

lr �attL
1/�,ahhL	/��

+ bL�s−�Xb
lr�attL

1/�,ahhL	/���	 , �1.2�

where Xsr is the �universal� scaling function characterizing
the truly short-range system, while the remaining part in
�1.2� describes the contributions due to the �subleading�
long-range part of the interaction. While it is well established
that Xsr tends to zero as exp�−aL /��� with a a constant when
L /��1, the functions Xs,1

lr , Xs,2
lr , and Xb

lr are expected to
decay only in a power-law-in-L way.

Because of that, whenever L /��1 the functions Xs,1
lr ,

Xs,2
lr , and Xb

lr will determine the leading-in-L finite-size con-
tributions to the susceptibility of the system, and, therefore,
the leading finite-size behavior of the susceptibility. Note
that due to the lack of “+”⇔“−” symmetry in the surface
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field given ��,�� boundary conditions, one finds in the sus-
ceptibility a term linearly proportional to hw,s �in addition to
the term proportional to hw,s

2 �.
With respect to their bulk critical behavior the nonpolar

fluids around their liquid-vapor critical point belong to the
Ising universality class. For the three-dimensional Ising
model �21,22� one has 
=0.034, �=1.2385, �=0.631, �
=0.103, �=0.329, �
��=0.53.

In the remainder of this paper we will consider only the
case of identical substrates bounding the system. That is, we
assume �surface,1�t ,h�=�surface,2�t ,h�
�surface�t ,h� �23�.

In the case of ��,�� boundary conditions the surface sus-
ceptibility is controlled by the extraordinary �or normal� sur-
face universality class. One has

�surface�t → 0,h = 0� = �surface
± �t�−�s, �1.3�

with �s=�+� �1�. Thus, for the three-dimensional Ising uni-
versality class �s�1.87. We are not aware of any study of
explicit corrections to the behavior of this quantity due to
van der Waals forces. It is clear that these forces do not
suffice to change the surface universality class. That is, the
critical exponents will remain the same as in the case of
completely short-range interactions �2,19�.

Let us now investigate in more detail the conditions under
which the expansion in Eq. �1.1�, leading to �1.2�, can be
justified. Some requirements, such as 2−
−��0, �d+2
−
� /2−��0, are obvious and normally are satisfied in any
realistic system for which d=�=3 and 
�1 �i.e., for the 3d
Ising model in which 
�0.034 �21��. Important additional
conditions arise, however, from the fact that we consider a
finite system in which power law long-range surface fields

�i.e., substrate-fluid potentials� act. The influence of those
long-range surface fields is felt everywhere in the finite sys-
tem, the amplitude of the surface field being minimum at the
center of the system. One can think of this smallest value as
a type of a bulk field h, which has the effect of displacing the
system from the position on the phase diagram on which its
bulk field would otherwise place it. Taking into account con-
tributions from both surfaces we obtain for the contribution
of the long range surface field to an effective bulk symmetry-
breaking field hb,s=2hw,s�L / �2�0

+��−�s. Since the bulk mag-
netic field scales as h�L /�0

+�	/� one arrives at the criterion
that in a film the finite-size contributions due to the long-
range surface fields will be negligible in the critical region if

2�hw,s��L/�2�0
+��−��L/�0

+�	/� � 1, �1.4�

i.e.,

2�+1�hw,s��L/�0
+�	/�−� � 1. �1.5�

Note that hw,s�0 corresponds to attractive walls, i.e., walls
preferring the liquid phase of the fluid while hw,s�0 corre-
sponds to repulsive walls, i.e., to walls preferring the gas
phase of the fluid. More detailed discussion on that point is
presented in Appendix C, where we identify hw,s in the
framework of a mean-field type model. Using the relations
between critical exponents it is easy to show that 	 /�= �d
+2−
� /2. Thus the relation �1.5� is consistent with the form
�1.1�. On the other hand, 	 /�=d−� /� and, therefore, 	 /�
−�=d−�−� /�. By taking into account that for realistic sys-
tems d=�, the condition �1.5� becomes

2�+1�hw,s��L/�0
+�−�/� � 1. �1.6�

For most systems �0
+ is of the order of 3 Å. Taking the values

of � and � to be appropriate to the 3d Ising model, we obtain
in the case �=3,

L Lcrit 
 �0
+�2�+1�hw,s���/� � 612�hw,s�1.918 Å. �1.7�

Later on in this article we will discuss the determination of
the magnitude of �hw,s� for the cases of 3He and 4He films
bounded by Au surfaces. For the moment we note that in
such systems �hw,s��4 �see Appendix C�. The condition L
9000 Å must be met if finite-size effects due to the van der
Waals interactions are to be neglible within the critical re-
gion of an 3He or 4He film. If L�15 000 Å, which is experi-
mentally realizable, then one expects van der Waals finite-
size effects to play an essential role everywhere within the
critical region. This implies that the value of the finite-size
susceptibility at Tc will depend on L and on the choice of the
bounding substrate �i.e., on the value of hw,s�.

Away from Tc one expects �27,28�

� = �bulk +
1

L
�surface +

1

L�
�Hamaker ¯ . �1.8�

Expressions similar to Eq. �1.2� have been shown to de-
scribe the finite-size behavior of the susceptibility in a fully
finite system subject to periodic boundary conditions—in
which case hw,s
0—both in the instance of the exactly solv-
able spherical model �13,14,18� and via �-expansion tech-
niques �up to first order in ��, in O�n� models �15�.

FIG. 1. A schematic �H ,T� phase diagram near the critical point
of a d-dimensional system with ��,�� boundary conditions �12,20�.
The line H=0, T�Tc represents the bulk phase coexistence line. �In
the case of a fluid system the vertical −H axis then corresponds to
the vapor side of the fluid-vapor coexistence curve.� The upper
phase coexistence line is for a system with thickness L2, while the
lower one is for a system with thickness L1, where L1�L2. Away
from the critical region the shift in the phase boundary is propor-
tional to L−1, while within it is proportional to L−	/�. As is shown,
the lines of a first-order phase transition �with respect to the
external bulk magnetic field� end at critical points of the
�d−1�-dimensional system, the positions of which depend on L, on
the amplitude of the �long-range� surface field, and on the presence
or absence of long-range interactions between the spins of the
system.
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Figure 2 displays the behavior of the susceptibility in a
film in which the interactions are completely short range and
of a film in which both the fluid-fluid and the fluid-substrate
interactions are long range, the latter case corresponding to
the actual experimental situation. We observe that the curves
behave quantitatively differently in the two systems. At Tc
and at coexistence, the susceptibility of the van der Waals
type system is severely suppressed in comparison to that of
the short-range system. As explained above and as we will
see in more detail below, the magnitude of the maximum
depends on the strength of the substrate-fluid coupling and
is, therefore, not universal. Furthermore, there is a shift in
the position of the maximum of the susceptibility. We expect
that the curves shown here will resemble those obtained via
experimental investigations.

In this article, we will explore the mechanisms underlying
the similarity of the susceptibility in a fluid film near its bulk
critical point to the susceptibilities plotted in Fig. 2. We in-
vestigate the behavior of the susceptibility as a function of
the temperature, the external bulk magnetic field, the thick-
ness of the film, and the strength of the fluid-substrate inter-
action.

The structure of the paper is as follows. First, in Sec. II
we present a precise formulation of the model of interest
along with the analytical expressions needed for its numeri-
cal treatment. The principal results for the behavior of the
finite-size susceptibility are presented in Sec. III. Some tech-
nical details—including sums containing van der Waals type
potentials—can be found in Appendix A. Appendix B con-
tains a discussion of the role of the definition of L on the
finite-size behavior of the susceptibility. It demonstrates that
for L�Lcrit the surface field plays a role of a quasirelevant
variable allowing for which can significantly improve the
scaling. An estimation of the parameters needed in order to
apply the current results for the behavior of the susceptibility
in 3He and 4He films is contained in Appendix C.

II. THE MODEL

Perhaps the simplest model that captures the basic fea-
tures of systems with van der Waals interactions is a modi-
fication of the one utilized by Fisher and Nakanishi in their
mean-field investigation of short-range systems �30,31�. One
starts with the following form of the functional for the free
energy of the lattice system

�F = �
r
�1 + m�r�

2
ln1 + m�r�

2
�

+
1 − m�r�

2
ln1 − m�r�

2
�� − �

r
h�r�m�r�

−
1

2 �
r,r�

K�r,r��m�r�m�r�� , �2.1�

where K�r ,r��=�Jl�r ,r�� is the nonlocal coupling between
magnetic degrees of freedom, h�r� is an external magnetic
field, and the magnetization m�r� is to be treated as a varia-
tional parameter. Note that in Eq. �2.1� the term in curly
brackets corresponds to the entropic contributions, while the
other terms are directly related to the interactions present in
the system.

The variation of �2.1� with respect to m�r� leads to the
following equation of state for our system:

m*�r� = tanh�
r�

K�r,r��m*�r�� + h�r�� . �2.2�

This equation can be solved numerically by applying the
Newton-Kantorovich method. One is able to treat reasonably
thick films, with L /a of the order of 3000 layers, correspond-
ing to the experimental setup that we envisage as an example
in our study. Its solution for a given geometry and external
fields h�r� determine the order-parameter profile m*�r� in the
system.

We will be interested in a system with a film geometry.
Then if r= �r� ,z	 and h�r�
h�r� ,z�=h�z� one has, because of
the symmetry of the system, m�r�
m�r� ,z�=m�z�. The mag-
netization profile now depends only on the coordinate per-
pendicular to the plates bounding the van der Waals system.
In this case, Eq. �2.2�, which describes the behavior of the
magnetization profile, becomes

m*�z� = tanh��
r�

J�r − r��m*�z�� + h�z�� , �2.3�

where r�= �r�� ,z��. Obviously, the above equation is equiva-
lent to

m*�z� = tanh��
z�=0

L

Ĵ�z − z��m*�z�� + h�z�� , �2.4�

where

Ĵ�z� 
 �
r��

J�r� − r��,z� = �
r�

J�r�,z� . �2.5�

We will now assume that the fluid molecules occupy the
region in space characterized by 0�z�L and that the layers

FIG. 2. A comparison between the behavior of the scaling func-
tions of the susceptibility X��xt� for a fluid in which both the
substrate-fluid and the fluid-fluid interactions are short range and
the same quantity for a fluid in which both interactions are long
range. The thickness of the film is La, where L=3000, while a is
the average distance between the molecules of the fluid. The scaling
variable is xt=�L

1/�, where �=1−Tc /T with Tc being the critical
temperature of the corresponding short-or long-range system. The
curves differ essentially from each other, in that they have different
magnitudes at Tc. The maximum of the scaled susceptibility is also
shifted.

FINITE-SIZE EFFECTS ON THE BEHAVIOR OF THE… PHYSICAL REVIEW E 75, 011121 �2007�

011121-3



z=0 and z=L satisfy the ��,�� boundary conditions, i.e.,
m�0�=m�L�
1. The number of layers containing spins that
can fluctuate is, therefore, L−1.

Equation �2.4� is equivalent to

arctanh�m*�z�� = h�z� + ��
z�

Ĵ�z − z��m*�z�� . �2.6�

Taking the functional derivative of the both sides of Eq. �2.6�
with respect to the field h�z*� applied to the layer z*, we
obtain

G�z,z*�
1 − m2�z�

= �z,z* + ��
z�

Ĵ�z − z��G�z�,z*� , �2.7�

where

G�z,z*� 

�m�z�
�h�z*�

= �
r�

*

�S�0,z�S�r�
*,z*�� − �S�0,z���S�r�

*,z*�� .

�2.8�

Equation �2.7� can be rewritten in the form

�
z�

 �z,z�

1 − m2�z��
− �Ĵ�z − z���G�z�,z*� = �z,z*. �2.9�

Now it is clear that the solution of the above equation with
respect to G�z� ,z*� is

G�z�,z*� = �R−1�z�,z*, �2.10�

where R−1 is the inverse matrix of the matrix R with ele-
ments

Rz,z� =
�z,z�

1 − m2�z��
− �Ĵ�z − z�� . �2.11�

One can define the “local” susceptibility

��z� 
 �
z*

G�z,z*� = �
r*

�S�0,z�S�r�
*,z*�� − �S�0,z���S�r�

*,z*�� .

�2.12�

Obviously, �
�z��z� / �L+1� is the total susceptibility of the
system per unit spin �see Eq. �2.12��. Thus, one has

��z� = �
z*

�R−1�z,z*, �2.13�

and

� =
1

L + 1�
z,z*

�R−1�z,z*. �2.14�

In Appendix A we demonstrate that the function Ĵ�z� can
be written in the form

Ĵ�z� = Jl�cd−1��z� + cd−1
nn ���z − 1� + ��z + 1�� + Gd�z���z − 2�� ,

�2.15�

where ��z� is the discrete delta function, while ��z� is the
Heaviside function. Explicitly for d=�=3 one has �see Ap-
pendix A�

c2 = �
n�Z2

1

1 + �n�6
� 3.602, �2.16�

c2
nn = −

8

3
���− 1�1/3K0��2 − 2i�3��

− �− 1�2/3K0��2 + 2i�3��� +
�

3 � ��3
− ln 2�

� 1.183, �2.17�

and

G3�x� =
�

3
�3 arctan

�3

2x2 − 1
− ln�1 +

1

x2�
+

1

2
ln�1 −

1

x2 +
1

x4�� . �2.18�

The layer magnetic field h�z� is the only quantity in Eq. �2.6�
the exact form of which still requires specification. In line
with Eqs. �C6� and �C11� from Appendix C we take it to be
of the form

h�z� =
hw,s

�z + 1��s
+

hw,s

�L + 1 − z��s
, 1� z� L − 1,

�2.19�

where hw,s reflects the relative strength of the fluid-wall and
fluid-fluid interactions �see Eqs. �C6�, �C7�, and �C12�
below�. The above expression is consistent with the fact
that the substrate occupies the region Rd−1� �L
+1,���Rd−1� �−�L+1� ,−��. For 3He and 4He bounded by
Au surfaces we show in Appendix C that hws=4. Note that
�2.19� is derived for a system with �=�s. According to �1.1�
the finite-size effects due to the surface field hw,s are con-
trolled by hw,sL

�d+2−
�/2−�s. For d=�=�s=3, an Ising-like
system, this leads to hw,s /�L, where the value of 
=0.034
has been neglected, i.e., 
=0 was used. Let us recall that
within a mean-field treatment with respect to the critical be-
havior, the effective space dimension is d=4 irrespective of
the actual space dimension of the model under consideration.
In order to have within the current mean-field model the
same order of the finite-size effects due to hw,s as in real
systems we take in our model calculations �s=3.5. This
value will be used in the remainder of the article whenever
the substrate-fluid interaction is taken into account.

III. NUMERICAL RESULTS AND FINITE-SIZE SCALING
ANALYSIS

To determine the total susceptibility ��T ,H �L ,hw,s� and
its “scaling function”

X� 
 L−�/���T,H�L,hw,s� �3.1�

in a fluid film with thickness L, one has to solve Eq. �2.6� for
1�z�L−1, which allows one to construct the matrix R
with the use of Eq. �2.11�. Finally, on the basis of Eq. �2.13�
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one obtains the local susceptibility ��z�, 1�z�L−1, and,
summing, the total susceptibility. We recall that within the
mean field treatment one has �=�=1/2, �=1, 
=0 and, for
the extraordinary surface transition, �s=3/2 �1�.

The analytic solution to the set of coupled nonlinear equa-
tions for the magnetization profile is, at present, known only
for purely short-range, continuous, systems �32�. We review
this solution in Sec. III A. Even in this case the finite-size
susceptibility has to be determined numerically. The results
are, again, presented in Sec. III A. Numerical methods ap-
pear to be unavoidable in order to solve the equations for the
magnetization profile in the case of the long-range interac-
tions of the van der Waals type. The results in this case will
be discussed in Sec. III B.

A. The model with purely short-range interactions for H=0

The equations to be solved in the continuum version of
the purely short-range model of a mean-field Ising strip un-
der ��,�� boundary conditions are

1 = 1 −
�

�c
− �

�2

�z2 + m2�z����z� , �3.2�

0 = 1 −
�

�c
− �

�2

�z2 +
1

3
m2�z��m�z� . �3.3�

Because conditions are identical at both bounding surfaces of
the system, the solutions of the above equation satisfy
m��L /2�=0 and ���L /2�=0. The magnetization profile is
known exactly �32�:

�i� when tL2��2 �with t= �T−Tc� /Tc�

m�z� =
2K�k�

L

dn��;k�
sn��;k�

, �3.4�

where

tL2 = �2K�k��2�2k2 − 1�, � = �2K�k�/L�z , �3.5�

and k2�0.
�ii� when tL2��2

m�z� =
2K�k�

L

1

sn��;k�
, �3.6�

where

tL2 = − �2K�k��2�k2 + 1�, � = �2K�k�/L�z , �3.7�

and k2�0.

Here K�k� is the complete elliptic integral of the first kind,
dn�� ;k� and sn�� ;k� are the Jacobian 	 amplitude and the
sine amplitude functions, respectively. The bulk critical point
T=Tc corresponds to k2=1/2. The above expressions are
consistent with the following scaling form for the order pa-
rameter:

m�z� = L−�/�Xm� z

L
,tL1/�� , �3.8�

with �=�=1/2.
The results from the finite-size scaling analysis of the be-

havior of the susceptibility for a system with short-range
interactions are summarized in Figs. 3 and 4. Figure 3 com-
pares the finite-size susceptibilities L−�/���T ,h �L ,hw,s� for
short-range films with L=100 and L=3000 layers. Figure 4
presents the corresponding results for the ratio
��T ,h �L ,hw,s=0� /��T=Tc ,h=0 �L ,hw,s=0�. In both plots the
scaling variable is xt= �1−Tc /T�L1/�. The curves demonstrate
a reasonably good scaling where the small deviations for L
=100 from the L=3000 curve can be explained with the

FIG. 3. The upper dotted line, for L=100, and the lower dotted
line, for L=3000, illustrate the behavior of the scaling function of
the susceptibility X��xt� for a fluid in which both the substrate-fluid
and the fluid-fluid interactions are short range. The scaling variable
is xt= �1−Tc /T�L1/�. Note that the maximum of the finite-size
curves is at T�Tc which is due to the stabilizing effect of the
��,�� boundary conditions on the order parameter in the finite
system. We observe that both curves differ at most around their
maximal value. As it will be demonstrated in Fig. 4 the principal
reason for this deviation is the improper choice of the value of the
distance L between the plates.

FIG. 4. The lines show the behavior of the scaling function of
the normalized susceptibility X��xt� /X��0� for a fluid in which both
the substrate-fluid and the fluid-fluid interactions are short range.
The curves are for L=100 and for L=3000. The scaling variable is
xt= �1−Tc /T�L1/�. Both curves coincide perfectly well with each
other. The main reason for the deviation of the curves in Fig. 3 is
the improper choice of the length L �for a discussion see Appendix
B�.
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ambiguousness in the definition of L �for a discussion see
Appendix B�, as well as with the corrections to scaling terms
and the role of the background �nonuniversal terms�. Note
that the curves present the behavior of the total susceptibility
and not only of its singular part.

B. The model with van der Waals type interactions

We note that the critical temperature Tc depends on the
presence or absence of long-range fluid-fluid interactions in
the system. Let us denote by Tc,lr the critical temperature of
the system with subleading long-range fluid-fluid interac-
tions �from van der Waals type� and with Tc,sr the corre-
sponding temperature for short-range fluid-fluid interactions.
If K=�Jl then it is straightforward to show that Kc,lr
�0.161, while Kc,sr�0.168 in the framework of our model
defined by Eq. �2.1�.

The results from the finite-size scaling analysis of the be-
havior of the susceptibility for a system with long-range van
der Waals type interactions are presented in Figs. 5–10. The
scaling procedure is explained in detail in Appendix B.

1. The temperature dependence at H=0

Let us first consider the behavior of the finite-size suscep-
tibility in the absence of an external magnetic field, which is
equivalent to the behavior in a fluid system along the liquid-
vapor coexistence line. Our results are presented in Figs. 5
and 6. One observes that the susceptibility possesses a maxi-
mum above the bulk critical temperature �which reflects that
fact that the ��,�� boundary condition stabilize the long-
range order at temperatures slightly above Tc� and that
this maximum is weaker than for the corresponding short-
range system �see Fig. 3�. The scaling variable is xt= �1
−Tc /T�L1/�. Note that the scaling functions decay much more

slowly as a function of �xt� in comparison with the short-
range case. The maximum of the short-range case is around
xt�4 while in the case of a van der Waals type system it is
around xt�8. These results imply that, as expected, the long-
range tails of the interactions help to stabilize the long-range
order even a bit above the corresponding limit in T for the
short-range system with ��,�� boundary conditions.

2. The temperature dependence of the susceptibility at HÅ0

In this section we consider the behavior of the finite-size
susceptibility for values of the external bulk magnetic field
that support the vapor phase of the fluid. The results are
presented in Fig. 7. Note that by changing the sign of H �by

FIG. 5. The upper dotted line �for L=100� and the lower dotted
line for �L=3000� show the behavior of the scaling function of the
susceptibility X��xt� for a fluid in which both the substrate-fluid and
the fluid-fluid interactions are of van der Waals type, i.e., are long
range. The scaling variable is xt= �1−Tc /T�L1/�. We observe that
both curves differ at most around their maximal value. The ampli-
tude of the surface field for L=100 is hw,s=0.73 while for L
=3000 it is hw,s=4 which ensures that the variable
2�s+1 �hw,s � �L /�0

+�	/�−�s =24.5 �hw,s � �L /�0
+�−1/2 has the same value for

both the cases.

FIG. 6. The lines show the behavior of the scaling function of
the normalized susceptibility X��xt� /X��0� for a fluid in which both
the substrate-fluid and the fluid-fluid interactions are long range.
The curves are for L=100 and for L=3000. The scaling variable is
xt= �1−Tc /T�L1/�. We observe that both curves coincide perfectly
well which each other only near the bulk critical point. The devia-
tion of the curves from each other is due to the effect of the van der
Waals interaction �compare with the short-range case� and increases
with the increase of �xt�. Note also that the scaling function decays
much slower with �xt� in comparison with the short-range case.

FIG. 7. The lines show the behavior of the scaling function of
the susceptibility X��xt ,xh� for a fluid in which both the substrate-
fluid and the fluid-fluid interactions are long range. The substrate-
fluid potential is characterized by hw,s=4, which corresponds to the
situation of 3He or 4He films bounded by Au surfaces �see Appen-
dix C�. The curves are for L=3000 and at xh=0,−5,−25,−50,
−100, where xh=�HL	/�. The scaling variable is xt= �1−Tc /T�L1/�.
The changed shape of the curve for xh=−100 signals that this curve
is the precursor of a first-order phase transition.
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choosing negative values of xh=�HL	/�� one can show that
the position of the maximum in the behavior of the suscep-
tibility, which for H=0 is at T�Tc, moves gradually toward
Tc and for negative field with large enough magnitude can
even be below Tc. In Fig. 8 we present the above results as a
function of L /�t. This resolves the question about the value
of the nonuniversal metric factor in xt. Note that then the
shape of the curve and the position of its maximum shall be
a reasonable approximation for the real experimental system
of 3He or 4He films bounded by Au surfaces.

3. The field dependence of the susceptibility at TÅTc

Here we analyze the behavior of the finite-size suscepti-
bility as a function of the field scaling variable xh=�HL	/�

for fixed values of the temperature close to the bulk critical
temperature Tc. The results are presented in Fig. 9. The
curves are for �=0,10−6 ,10−5 ,10−4. Note that the behavior
of the susceptibility possesses a peak that essentially differs
from the corresponding background contribution only for

����10−6. In Fig. 10 we present the same results, this time as
a function of L /�h. This resolves the question about the value
of the possible nonuniversal metric factor in xh. Thus, the
shape of the curve and the position of its maximum shall be
a reasonable approximation for the real experimental system
of 3He or 4He films bounded by Au surfaces.

IV. CONCLUDING REMARKS AND DISCUSSION

In this article we investigated the behavior of the suscep-
tibility in thin films with van der Waals type long-range in-
teractions. Prominent examples of such systems are simple
nonpolar fluids in thermodynamic equilibrium with their va-
por, as well as binary fluid mixtures close to their demixing
point. We have seen that despite the fact that this kind of
interaction does not change the critical exponents of the sys-
tem it nevertheless gives rise to a variety of finite-size effects
that become dominant when L /��1. Furthermore, we have
formulated a criterion regarding the conditions under which
such effects also essentially modify the finite-size behavior
of the susceptibility everywhere within the critical region.
According to this criterion if the thickness L of the film is
such that �see Eq. �1.7��

L� Lcrit = �0
+�16�hw,s���/�, �4.1�

the effects due to the van der Waals interaction are essential
and cannot be neglected. Here �0

+ is the amplitude of the bulk
correlation length while the �dimensionless� factor hw,s char-
acterizes the strength of the fluid-substrate interaction
�hw,sz

−�, where z is the distance from the substrate surface
toward to the bulk of the fluid. In the case of 3He or 4He
bounded by Au surfaces we find that at the corresponding
critical point of both the fluids hw,s�4 �see Appendix C�.
Then, for a three-dimensional Ising type system the direct
evaluation yields the estimate Lcrit�9000 Å. A comparison
when L /a=3000 layers �where a is the lattice constant� be-
tween the behavior of the finite-size susceptibility of a sys-
tem with completely short-range interactions and one with
long-range fluid-fluid and substrate-fluid interactions is given
in Fig. 2. One observes a clear distinction between the curves

FIG. 8. The same as in Fig. 7 but the scaling function is pre-
sented as a function of L /�t at several fixed values of xh. We expect
this curve to be a good approximation of the corresponding finite-
size scaling function for a real three-dimensional experimental sys-
tem of 3He or 4He films bounded by Au surfaces.

FIG. 9. The lines show the behavior of the scaling function of
the susceptibility X��xt ,xh� as a function of xh at several fixed val-
ues of xt for a fluid in which both the substrate-fluid and the fluid-
fluid interactions are long range. The substrate-fluid potential is
characterized by hw,s=4, which corresponds to the situation of 3He
or 4He films bounded by Au surfaces �see Appendix C�. The scaling
variable is xh=�HL	/�. The numerical calculations are performed
for L=3000 layers.

FIG. 10. The same as in Fig. 9 but the scaling function is pre-
sented as a function of L /�h at several fixed values of �. We expect
this curve to be a good approximation of the corresponding finite-
size scaling function for a real three-dimensional experimental sys-
tem of 3He or 4He films bounded by Au surfaces.
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in the critical region. The calculations were preformed using
a mean-field type model which is described in detail in Sec.
II. In order to determine the susceptibility one solves L /a
=3000 coupled nonlinear equations; we make use of the
Newton-Kantorovich method. We have chosen a film with
this number of layers because it corresponds to a realistic
experimental setup of 3He film between the Au electrodes of
an experimental cell in which the smallest distance between
the plates is 1.5 �m; the distance r0 between the atoms of
3He at its liquid-vapor critical point has been estimated to be
r0�4.9 Å �see Appendix C�. For such a system the behavior
of the susceptibility as a function of �1−Tc /T�L1/� for differ-
ent values of the bulk field xh=�HL	/� is shown in Fig. 7,
while in Fig. 9 the susceptibility is plotted as a function of xh
for a few fixed values of �. The same data are shown in Figs.
8 and 10 as functions of L /�t and L /�h, respectively. We
expect these curves to resemble the actual experimental data
for 3He �or 4He� film. One observes that for xh=0, the maxi-
mum of the susceptibility is above the bulk critical point.
Furthermore, we note that when one is on the vapor side of
the bulk phase diagram the maximum moves toward the bulk
critical point with increasing distance from the coexistence
curve in the phase diagram as a function of −xh and that for
−xh large enough the maximum positions itself at a tempera-
ture less than Tc. Additionally, one observes that as a func-
tion of the scaling field variable �xh, or yh=L /�h� the suscep-
tibility does not display an easily distinguishable maximum

unless ����10−6. The position of this maximum changes very
slightly with t and is around sign�h�L /�h�−8.7 on the vapor
side of the bulk phase diagram.

We stress that all of the above curves depend on the value
of hw,s and are, thus, nouniniversal. This implies that if hw,s is
kept fixed when L changes one will obtain different curves
for the different L’s. The same will also be true when L is
kept fixed but hw,s changes. This is illustrated in Appendix
B—see Figs. 11–13. Only when hw,s /�L is kept fixed can a
curve that does not depend on L nor on hw,s, but just on their
ratio, be obtained—see Fig. 14. In practice, one does not
know the precise value of the system size L—an important
issue for very thin film thicknesses �for more details see Ap-
pendix B�. When this is also taken into account further im-
provement of the data collapse can be achieved as seen in
Fig. 15, where the corresponding data for the susceptibility
for fixed hw,s /�L are normalized by its value at the bulk
critical point. Definitely the above predictions are clearly ex-
perimentally verifiable. For a given fluid, one can either
change the size L of the distance between the plates of the

FIG. 11. The behavior of the G3-function as defined in �A9�.

FIG. 12. The behavior of the finite-size susceptibility normal-
ized per L	/� for different fixed values of hw,s and for L=500.
Within the mean-field approximation one has that 	 /�=3. The val-
ues of hw,s for which results are presented are hw,s=0.1, 0.18, 0.3,
0.7, 1.1, 1.6, 2.0, 2.3, 3.0, and 4.0. They model the role of different
substrates that surround a given fluid film with thickness L.

FIG. 13. The behavior of the finite-size susceptibility normal-
ized per L	/� for different fixed values of L with the surface-field
amplitude kept fixed at hw,s=4. Systems with thickness L=3000,
1000, 500, and L=100 are considered. The curves represent the
behavior of the susceptibility of 3He and 4He films with different
thickness when the surrounding surfaces are made of gold.

FIG. 14. The finite-size susceptibility for L=3000, L=1000, L
=500, L=250, L=100. The amplitude of the surface magnetic field
is rescaled in such a way that hw,s /�L=const for all values of L and,
as in the experimental realization, hw,s=4 for L=3000. One ob-
serves that practically all the curves for L�250 coincide with each
other, i.e., the scaling is indeed valid. The curve with L=100 differs
from the others. Thus L=100 is too small, and in this case the
importance of � is demonstrated.
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experimental cell �i.e., the fluid film� or the corresponding
substrate �i.e., the value of hw,s�. The bigger the change in the
new hw,s, the bigger will be the deviation of the new curve of
the finite-size susceptibility from the old one. Of course, this
will be possible only if L�Lcrit. When LLcrit the universal
behavior of the finite-size susceptibility in its standard form
will prevail and the van der Waals interaction will only lead
to small, probably experimentally negligible, corrections to
the universal curve. Let us also note that when the experi-
ment is performed for 3He or 4He around their liquid-vapor
critical points according to our predictions one will obtain
for any fixed L—even when L�Lcrit—practically the same
curve X� for the finite-size susceptibility of both the fluids.
For L�Lcrit this will be simply due to the fact that hw,s�4
for both the fluids �see Appendix C�, while for LLcrit that
will be due to universality since near their liquid vapor criti-
cal points these fluids belong to the three-dimensional Ising
universality class.

In the work described above, the effects of retardation on
the van der Waals force have been neglected. These effects
set in for distances r larger that 160 Å between the He and
Au atoms �33�. A possible concern is the influence of retar-
dation on the system investigated in this paper. We have
estimated that influence by performing numerical calcula-
tions in which an “extreme” retardation was imposed, in that
the interaction potential was set to zero for separations r
�100 layers. We discovered that the numerical consequence
of retardation grows with increasing film thickness. At L
=3000 the difference between the calculation with the unre-
tarded van der Waals force and the force with long-distance
cutoff is 13.5% at T=Tc. This is an overestimate of the actual
influence of retardation in experimental realizations. We note
that retardation reduces the suppression of the susceptibility
by the van der Waals interaction—see Fig. 2.

The numerical results reported above are obtained within
a mean-field type model. If one goes beyond this and takes
into account the influence of the fluctuations we do expect
only quantitative changes in this behavior—all qualitative
effects like the general shape of the curve of the finite-size
susceptibility, including the relative positions �with respect to
the bulk critical point �T=Tc ,h=0�� of its maximum as a
function of T ,h and hw,s will remain similar to the ones pre-
sented in Figs. 8 and 10. Of course, the values of the critical

exponents, as well as the precise position of the maximum
will be influenced by the fluctuations. Finally, let us note that
in the current study we did not take into account the influ-
ence of gravity on the behavior of the finite-size susceptibil-
ity. Because gravity leads to stratification of the density one
expects an additional, more complicated z dependence of the
local and, therefore, of the total susceptibility.
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APPENDIX A: DERIVATION OF THE EQUATION
FOR THE MAGNETIZATION PROFILE

IN A VAN DER WAALS FILM

Here we derive an explicit form for the function Ĵ�z� for
some basic cases of special physical interest. Namely we
take J�r� to be of the “van der Waals form”

J�r� =
J

1 + rd+� , �A1�

where r= �r�, and d=�=3 for the “real” �nonretarded� van
der Waals interaction.

Then one can further simplify the sum in the right-hand
side of the above equation. Using the identity

1

1 + z�
= �

0

�

dt exp�− zt�t�−1E�,��− t�� , �A2�

where

E�,��z� = �
k=0

�
zk

���k + ��
, � � 0, �A3�

are the Mittag-Leffler functions, the sum can be rewritten in
the form

�
r�

J�r − r��m�z�� = �
z�=0

L

Ĵd,��z − z��m�z�� , �A4�

where

Ĵd,��z� = J�
0

�

dtt�d+��/2−1E�d+��/�2�,�d+��/�2��− t�d+��/2�

���
r�

e−tr�
2�e−tz2

. �A5�

The main advantage of the above form is that it factorizes the
summation over the components of r��. With the help of the
Poisson identity Eq. �A4� becomes

FIG. 15. The finite-size susceptibility for L=3000, L=1000, L
=500, L=250, and L=100 normalized to its value at T=Tc. The
amplitude of the surface magnetic field is rescaled in such a way
that hw,s /�L=const for all values of L.
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�
r�

J�r − r��m�z�� = J��
r��

1

1 + r��
d+��m�z� + J�

0

�

dt��
t
��d−1�/2

t�d+�/2�−1E�d+��/2,�d+��/2�− t�d+��/�2�� �
z�=0

z�z�

L

e−t�z − z��2
m�z��

+ J�
0

�

dt��
t
��d−1�/2

t�d+��/2−1E�d+��/2,�d+��/2�− t�d+��/�2�� �
n�Zd−1

n�0

e−�2n2/t �
z�=0

z�z�

L

e−t�z − z��2
m�z�� , �A6�

where n�Zd−1 is a �d−1�-dimensional vector with integer
components, and all the lengths are measured in units of
lattice spacings. It is easy to show that maxt exp�−�2n2 / t
+ t�z−z��2� is attained at t=��n� / �z−z�� and is equal to
exp�−2��n��z−z���. Because of this exponential decay in the
last row of the above equation we will take into account only
the terms with �n�=1 and �z−z��=1 �the corresponding im-
provements that take into account n=2,3 , . . . and �z−z��
=2,3 , . . . are obvious; as we will see even the contributions
stemming from �n�=1 and �z−z��=1 are very small�. It is
clear that size dependent contributions that are due to the
terms in the last row of �A6� will be exponentially small in L.

For d=�=3 the corresponding Mittag-Leffler function
can be expressed in the following simple form

E3,3�− t3� =
1

3t2e−t − 2et/2 cos��
3

+
�3

2
t�� . �A7�

Taking into account that, if x�0,

��
0

�

tE3,3�− t3�e−txdt = G3�x� , �A8�

where

G3�x� =
�

3
�3 arctan� �3

2x − 1
� − ln�1 +

1

x
�

+
1

2
ln�1 −

1

x
+

1

x2�� , �A9�

we arrive at the following equation for the magnetization
profile:

arctanh�m*�z�� = h�z� + K�c2m*�z� + c2
nn�m*�z + 1�

+ m*�z − 1�� + �
z�=0

�z�−z��2

L

G3��z − z��2�m*�z��� ,

�A10�

where

c2 = �
n�Z2

1

1 + �n�6
� 3.602, �A11�

and

c2
nn = −

8

3
��

0

�

e−t/2−�2/t cos��3

2
t +
�

3
� + G3�1�

= −
8

3
���− 1�1/3K0��2 − 2i�3�� − �− 1�2/3

�K0��2 + 2i�3��� +
�

3 � ��3
− ln 2�

� 0.009 55 + 1.173 54 � 1.183. �A12�

As we see, the contribution due to the first part in Eq. �A12�,
and therefore the contributions due to the last row of Eq.
�A6� are of the order of 1% in the constant c2

nn. It is easy to
verify that

G�x� �
�

2
x−2 −

�

5
x−5 +

�

8
x−8 + O�x−11�, x → � .

�A13�

Setting G
0 in Eq. �A10� one obtains an equation having a
form that is familiar in the mean-field theory of short-range
systems. Actually in our case the system in question has
short-range interactions in the z direction and long-range
ones within the planes perpendicular to z. The standard
Ginzburg-Landau equation follows, for small m, after taking
into account that arctanh�m��m+m3 /3+O�m5�. A con-
tinuum version of the equation follows from the replacement
m�z−1�+m�z+1�→2m�z�+m��z�. Obviously such a con-
tinuum version can also be constructed for the long-range
system by adding the terms contributed by the function G�x�,
which is, in this case, a continuous function. Note that the
function G�x� is well defined everywhere for x�0 and not
only for x�1 as we actually need it in the lattice formulation
of the theory. Thus, in the continuum formulation of the
theory the integration can be extended over the region z
� �0,L�. This does not change the long-range behavior of the
magnetization profiles. In the continuum case the equation
for the magnetization profile reads
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m*�z� +
1

3
�m*�z��3 = h�z� + K�c2m*�z� + c2

nn2m*�z�

+
d2m*�z�

dz2 � + �
0

L

G��z − z��2�m*�z��dz�� .

�A14�

APPENDIX B: HOW TO SCALE

In the discussion up to now we have tacitly assumed that
the value of L is precisely known. This is, however, not only
an experimental problem—due to the roughness of the sur-
face, the existence of impurities, dust, etc.—but also a theo-
retical problem that might play a role when L is not “large
enough.” Let us make a brief comment about this issue. The
definition of the size of the system is unambiguous only for
systems with periodic boundary conditions. If N is the num-
ber of layers with independent degrees of freedom, then the
size of the system is simply L=Na, where a is the distance
between the layers. Any point in the system is equivalent to
any other point. Therefore, any layer is equally suitable to be
taken as the origin with respect to which one measures dis-
tance. However, how one proceeds for a system with ��,��
boundary conditions—when the first and the last layers have
fixed degrees of freedom—is less clear. For consistency with
periodic boundary conditions one can, of course, count the
number of layers with independent degrees of freedom and
let this, as in the case of periodic boundary conditions, be
equal to N. Then the question is, shall we include in the total
size of the system the half distance between the two outer-
most layers with independent degrees of freedom and the
adjacent layers with the fixed degrees of freedom? A reason-
able approach seems to be that at least half of these distances
should be taken to belong to the system, i.e., L= �N+1�a.
This, of course, is not an unambiguous procedure. We have
two layers with fixed degrees of freedom, which do not be-
long to the “substrate” surrounding the system that strongly
prefers the ordered phase of the system in the case of ��,��
boundary conditions. Thus one has to somehow decide
which portion of the bounding layers are to be counted
within the system. Much more complicated is the case of
systems with long-range interactions. Then any particle
�atom or molecule� of the system interacts with any other
one from the substrate. How then does one define the size of
the system or the borderline between the substrate and the

system? Let as denote by L̂ the “true” size of the system
�which we do not know�, and by L a reasonable approxima-
tion of that size �say, by taking, as above for the short-range

case, the size to be L= �N+1�a�. The last implies that L̂=L

+�, where �� L̂. Figure 12 demonstrates the difficulties
when studying the scaling in systems with subleading long-
range interactions of the van der Waals type. The role of the
long-range surface potentials, which are irrelevant in the
renormalization group sense but for moderate values of L,
i.e., for a�L�Lcrit �see Eq. �1.7��, contribute to the leading
behavior of the finite-size susceptibility is clearly seen. One
can say that, for such values of L, the quantity xs is a sort of

“dangerous” irrelevant variable—in the sense that, despite
being irrelevant, one cannot neglect it when L�Lcrit. We
further note that the greatest deviation of the curves for dif-
ferent L from each other is around the maximum value of the
scaling functions. The lack of the data collapse is due to the
fact that xs�hw,s /�L is not the same for all the curves �see
Eq. �1.7��. Definitely similar spreading of the data for the
finite-size susceptibility are to be observed if hw,s is kept
fixed while L changes—say hw,s=4 as in case of 3He or
4He confined by Au plates and—one considers L
=3000,1000,500,100 �see Fig. 13�. However, when xs is
kept fixed for the same values of L considered before, the
data collapse improves greatly, as shown in Fig. 14. One
observes that violations of scaling are now clearly detectable
only for the smallest system size L=100. Let us now recall
that when L is “large but small enough” the effect of �, i.e.,
of the fact that we do not know exactly the system size L is

clearly evident. In the case of � one has �� L̂�/��1
+��� /��L̂−1+O��2L̂−2��X��x̂t , x̂h � x̂s , x̂b , x̂��, where x̂t=attL̂

1/�,

x̂h=ahhL̂	/�, xs=hw,sL̂
�d+2−
�/2−�, x̂b=bL̂2−
−�, x̂�=a�L̂−�.

Note now that the expansion of the above expressions in

terms of L̂ will yield all possible nonuniversal �proportional

to L̂−1� corrections to the leading finite-size behavior of the
susceptibility with the greatest deviation of the curves for
different � occurring near the maximum value of X�. For the
sake of precision let us also note that similar corrections will

be produced if one takes into account the change from L to L̂
in the variables x̂t, x̂h, x̂s, x̂b, and x̂�. Thus, only the leading
finite-size behavior can be determined unambiguously. All
corrections will depend on the definition of L, i.e., on �.
There is, nevertheless, still something that one can do in
order to check that the behavior of the susceptibility for L
=100 is simply due to the above explained unambiguity in
the definition of L. Note, that if we normalize � to its value
at a given point within the critical region—say to the value
�0 at the bulk critical point �T=Tc, H=0�—then, whatever
the definition of L is, the leading behavior of the resulting
quantity will not depend on this definition. Explicitly, we
have

�

�0
�

X��x̂t, x̂h�x̂s, x̂b, x̂��
X��0,0�x̂s, x̂b, x̂��

+ O�L̂−1� . �B1�

The result from the application of the above procedure is
shown in Fig. 15. We observe that all the curves, including
L=100, now allow for data collapse and that only a small
deviation of the curves from each other is observed for very
large values of the scaling variable xt, when the onset of the
nonuniversal corrections to scaling due to the role of the
fluid-fluid interaction �i.e., proportional to xb� is expected to
set in. Thus, despite ignorance of the precise value of L, we
are able to determine the leading finite-size behavior of the
susceptibility.

APPENDIX C: EVALUATION OF THE SCALING FIELD
PARAMETERS FOR HELIUM

We imagine a simple model for helium �3He or
4He� in which atoms interact via a pair potential

FINITE-SIZE EFFECTS ON THE BEHAVIOR OF THE… PHYSICAL REVIEW E 75, 011121 �2007�

011121-11



wl�r ,r��=−4Jl�r ,r��. We assume that the fluid is bounded by
a substrate whose particles interact with the helium particles
with a pair potential wl,s�r ,r��=−4Jl,s�r ,r��. Within the lat-
tice gas model for any given configuration C of particles
�pi

s , pj
l	, i�S, j�L with L and S denoting the region occu-

pied by the helium and substrate particles, respectively, the
energy of the fluid is given by

E = �
i�S,j�L

wi,j
l,spi

spj
l +

1

2 �
i,j�L

wi,j
l pi

lpj
l

= − 4 �
i�S,j�L

Ji,j
l,spi

spj
l − 2 �

i,j�L
Ji,j

l pi
lpj

l , �C1�

where pj
l � �0,1	 and pi

s� �0,1	 denote the occupation num-
bers for the fluid and substrate particles, respectively. Since
only the part �pj

l	 belonging to the fluid becomes critical
around Tc and the fluctuations of the particles �pj

s	 belonging
to the substrate are unimportant here, one can replace the
latter ones by their mean-field values. If the fluid is in con-
tact with a particle reservoir with a given �excess� chemical
potential � and temperature T, the partition function for the
liquid is

Z = �
�pj

l	

exp− ��E − ��
j�L

pj
l��

= �
�pj

l	

exp��4 �
i�S,j�L

Ji,j
l,s�i

spj
l + 2 �

i,j�L
Ji,j

l pi
lpj

l + ��
j�L

pj
l�� ,

�C2�

where �i
s
�pi

s�. Since the solid substrate is only weakly in-
fluenced by its surface, we assume ��i

s�=�s=const., in S so
that

Z = �
�pj

l	

exp��
j�L

�4�s�
i�S

Ji,j
l,s + ��pj

l + 2� �
i,j�L

Ji,j
l pi

lpj
l� .

�C3�

By modeling the pair potentials as follows:

Ji,j
l 
 Jl/�1 + �ri − r j�d+�����ri − r j� − 1� ,

and

Ji,j
l,s 
 Jl,s/�ri − r j�d+�s���ri − r j� − 1�

one finds for �iJi,j
l,s:

�
i�S1/2

Ji,j
l,s = Jl,s �

i�S1/2

1

�ri − r j�d+�s
= Jl,s �

r1=0

�

�
r2=−�

�

¯ �
rd=−�

�
1

��zj + r1�2 + r2
2 + r3

2 + ¯ + rd
2��d+�s�/2

� Jl,s�
0

�

dr1�
−�

�

dr2 ¯ �
−�

�

drd
1

��zj + r1�2 + r2
2 + r3

2 + ¯ + rd
2��d+�s�/2

= Jl,s��d−1�/2
��1 + �s

2
�

�s��d + �s

2
� zj

−�s, �C4�

where zj�1 characterizes the distance of the particle pj from
the boundary with the half space S1/2 occupied by the sub-
strate. We consider the fluid particles to be in the region 0
�z�L, where L is the width of the film confined between
the two surfaces. Therefore, the partition function is

Z = �
�pl	

exp���
j�L
� jpj

l + 2 �
i,j�L

Ji,j
l pi

lpj
l�� , �C5�

i.e., the system is equivalent to one with a spatially varying
chemical potential � j =�−Vj acting on a particle pj at a dis-
tance zj +1, 0�zj�L, from the left boundary surface and at
a distance �L+1−zj� from the right one where Vj 
V�zj� is
given by the superposition

V�z� = vs��z + 1�−�s + �L + 1 − z�−�s� , �C6�

with

vs = − 4��d−1�/2
��1 + �s

2
�

�s��d + �s

2
��sJ

l,s. �C7�

In the current paper we choose such boundary conditions that
��0�=��L�=1, where ��z�= �pj

l�. This is known as ��,��
boundary conditions. The pressure p in the fluid as a function
of �� j	 and T follows from �p= �L�−1ln Z, where �L� is the
number of lattice sites in the region L. The critical properties
of this model can be directly derived from the known critical
behavior of the corresponding magnetic system that one
obtains under the transformation mi=2pi−1, where mi
� �−1,1	. One arrives at

�p =
1

2
��L�−1�

j�L
� j + �

i,j�L
Ji,j

l � − �f , �C8�
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where f is the free energy of the magnetic system

− �f = ln �
�m	

exp�
j�L

mjhj +
1

2 �
i,j�L

Ki,jmimj� , �C9�

where

Ki,j = �Ji,j
l , and hj =

1

2
�� j + �

i�L
Ki,j . �C10�

The mean-field critical properties of the model �C9� are well
known. The critical exponents are �=�=1/2, �=1 and for
the uniform system the critical point is at �h=0, Kc

−1=�iKi,j	.
At the critical point �mi�c=mc=0. Thus, for the fluid system
we derive that the corresponding critical point is at �K=Kc,
�=�c	, where �c=−2�i�ZdJi,j

l while at this point �pi�c=�c

=1/2. With the help of �c and �c the corresponding expres-
sions for hj can be rewritten in the form

hj =
�

2
�� − �c� −

�

2 �Vj + 4�
i�S

Ji,j
l �c�

=
�

2
�� − �c� + �

2��d−1�/2

���d + �

2
� �Jl,s�s − Jl�c�

���zj + 1�−� + �L + 1 − zj�−�� . �C11�

From Eq. �C11� �see also �34�� one identifies that

hw,s = 2��d−1�/2
��1 + �

2
�

���d + �

2
����sJ

l,s − �cJ
l� . �C12�

The equation of the magnetization profile �2.2� also di-
rectly follows from Eq. �C9�. Denoting mi

*= �mi� one obtains

mi
* = tanh�

j

Ki,jmj
* + hj� . �C13�

Taking into account that �c=1/2 one can rewrite mi
* in the

form mi
*=2�i−1= ��i−�c� /�c and, thus Eq. �C13� takes the

form

�i − �c

�c
= tanh�

j

Ki,j
� j − �c

�c
+ hj� . �C14�

In what follows we take the 3He or 4He atoms to be con-
strained by an Au substrate. Then, according to Refs. �35–37�
vs�−270 meV Å3/r0

3, where r0 is the distance between the
helium atom and the Au surface. We will assume that r0 is
the same as the distance between the 3He or 4He atoms
�but being different for 3He and 4He cases, respectively�.
It is clear that r0 provides the scale of the length of the unit
cell of the lattice on which we consider the fluid embedded.
An estimation of r0 can be obtained from some general data
for 3He or 4He. The critical density of 3He is �c
�0.013 75 mol/cm3�0.041 45 g/cm3 �38�, while for 4He
it is �c�0.017 399 mol/cm3�0.0690 g/cm3 �39,40�,
wherefrom one easily derives that at the critical
point one has 8.28�1027 particles/m3 for 3He and

1.38�1028 particles/m3 for 4He. This leads to the conclu-
sion that the space “allocated” for one particle is of the order
of 120.77 Å3 for 3He and of the order of 72.55 Å3 for 4He,
i.e., the size of one 3He atom at the critical point is of the
order of 4.9 Å while for 4He it is 4.2 Å. Thus, for vs one has
vs�−2.3 meV�−3.68�10−22 J for 3He and vs�
−3.6 meV�−5.82�10−22 J for 4He. For T near the critical
temperature Tc=3.3 K of 3He �38� one has kBTc�4.55
�10−23 J and thus ���c�2.2�1022 J−1 with �cvs�−8.1.
For 4He Tc=5.2 K �39,40� and therefore kBTc�7.17
�10−23 J, ���c�1.4�1022 J−1, and �cvs�−8.1. Taking
into account that the atomic weight of Au is 196.97 u,
whereas its density is 19.3 g/cm3 and having in mind that
the atomic weight of 3He is 3 u and that the atomic weight of
4He is 4 u �where u=1.6605�10−27 kg is the atomic mass
unit�, it is easy to verify that the number density of Au is 7.1
times larger than the number density of the 3He and 5.7 times
larger than that of 4He at the critical point of the respective
fluid. Since within the mean-field theory, the number density
of both 3He and 4He at their respective bulk critical points is
�=�c=1/2, we obtain that �s�3.55 for 3He films and �s
�2.85 for 4He films. As an estimate of Jl,s one immediately
derives from Eq. �C7� �for d=�s=3� the result that Jl,s

�4.95�10−23 J for 3He and that Jl,s�9.75�10−23 J for
4He. Next, neglecting the contribution due to Jl, i.e., the
interaction between the atoms of 3He and also between the
atoms of 4He, one finds that hw,s�− 1

2�cvs�4.05 both for
3He and 4He films, i.e., the surface field is, indeed, relatively
large and cannot be neglected.

Next, we justify the approximation made for Jl. Within
the mean-field approximation we have �cJ

l=0.160. Thus,
from the experimentally known value of �c we conclude that
Jl�7.3�10−24 J for 3He and Jl�1.14�10−23 J for 4He.
Note that these estimates are very close to those based on the
general expectation that kBTc�Jl, which leads to Jl

�10−23 J. Therefore, Jl,s /Jl�6.6 for 3He and Jl,s /Jl�8.5 for
4He, i.e., the interactions of the atoms of 3He and 4He with
the Au substrate are much stronger than the interactions be-
tween themselves. If, nevertheless, one insists on taking
these interactions into account a simple calculation shows
that hw,s changes from hw,s=4.05 to hw,s=3.96 for 3He and
from hw,s=4.05 to hw,s=3.97 for 4He. Summarizing, one can
conclude that the surface field has almost the same value for
both the 3He and 4He films bounded by Au surfaces, and thus
one can predict that the finite-size behavior of their finite-
size susceptibilities for a given fixed L will be practically
indistinguishable for both fluids.

We finish this appendix by briefly commenting on the
correlation length amplitudes for the correlation lengths

�t�T� 
 ���T → Tc
±,h = 0� � �0

±�t�−�

and

�h�h� 
 ���Tc,h → 0� � �0,h�h�−�/	.

One can show that in the case of a van der Waals fluid-fluid
potential the amplitude �0

+ of the second moment correlation
length is �34�
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�0
+ = �

1

2d
�

r

r2

1 + rd+�

�
r

1

1 + rd+�
�

1/2

. �C15�

Furthermore one has

�0
− = �0

+/�2 and �0,h = �0
+/�3 3. �C16�

The numerical evaluation of the sum �C15� for d=�=3 in
the case of a simple cubic lattice then gives �0

+=0.635 a.
Taking into account that, as we derived above, a=4.9 Å for
3He and a=4.2 Å for 4He we obtain that �0

+=3.11 Å for 3He
and that �0

+=2.67 Å for 4He. Of course the procedure used to

calculate the above numbers constitutes a very strong
approximation and one shall not expect to reproduce the
best known values of these quantities. Nevertheless, the
comparison with the known data reported in the literature
�0

+=2.71 Å �26,41� for 3He, and �0
+=2.0 Å �42� for 4He,

shows that the above results are not too bad. One straightfor-
ward way to improve the above approximation is to consider
the fluid imbedded not on a simple cubic but on a body
centered cubic lattice which is probably “closer” to the real-
ity since then the atoms are more closely pact. For such a
lattice we obtain �0

+=0.574 a, and thus �0
+=2.811 Å for 3He,

and �0
+=2.409 Å for 4He. These results are indeed essentially

close to the ones obtained by using much more elaborate
methods �26,41,42�.
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