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JPL Enose Program Overview

WHAT IS AN ELECTRONIC NOSE?
An array of non-specific, conductometric chemical sensors  which 
mimics the mammalian nose by recognizing patterns of response.  

44.. Resistance is recorded, ΔR/R0
is computed, and the distributed
response pattern generated.

11.. Measure baseline resistance in
each polymer-carbon composite
sensor to establish R0.
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22.. Compound from a leak or a spill
comes into contact with sensors
on the sensing head.

Δ
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55.. Responses of the sensor array
are analyzed and quantified using
software developed for the task.

3.3. The sensors change 
resistance ∆R in 
response to change in

insulating polymer
conductive medium
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response to change in 
composition of the air 2-propanol - 300 ppm 



JPL Enose Program Overview

WHY USE AN ENose for Cabin Air Quality Monitoring?

Fills gap between an alarm (no id or quantification) and complex 
analytical instruments

ID and quantification of trained-for chemical species
Wide dynamic range: fractional ppm to 10,000 ppm
Array based sensing; can be trained to detect new species and training dataArray based sensing; can be trained to detect new species and training data 
uplinked
Runs continuously (30 to 360 data points/hr) and autonomously

Simple design robust rugged microgravity-insensitiveSimple design, robust, rugged, microgravity insensitive
Minimal crew interaction required
Requires no consumables
Low mass, volume, power 
Readily integrated with larger devices and with monitoring/control 
systems

3

Can analyze volatile aerosols as well as vapors



JPL Enose Program Overview

THREE GENERATIONS OF ENoses:

10 cm
concept of ISS 
integrated unit

Generation 1
Experiment on STS-95 TRL 6-7

Generation 2
Ground Testing TRL 5 6

Generation 3
Tech. Demo. on ISS, TRL 4

f nded b AEMC

Volume:  2000 cm3 inc. computer

Mass:     1.4 kg  including computer

Power: 1 5 W ave 3 W peak

Volume:  750 cm3 w/o computer
Mass:      800 g  w/o computer
P 1 5 W 3 W k

Volume:   3-4 L inc. computer
Mass:       3-4 kg   inc. computer
Power:     5-8 W ave., ~ 14 W peak
Detect/ID/Quant 10 compounds at

Experiment on STS 95, TRL 6 7
funded by AEMC

Ground Testing, TRL 5-6
funded by AEMC

funded by AEMC

Power:   1.5 W ave., 3 W peak
Detect/ID/Quant 10 compounds at 
1 hour SMAC.  No real-time data 
analysis; data acquisition and 
device control with HP 200LX 
computer

Power:   1.5 W ave., 3 W peak
Detect/ID/Quant 21 compounds at 
24 hour SMAC.  Data acquisition 
and device control possible with 
PDA computer; real time data 
analysis with ultra micro computer

Detect/ID/Quant 10 compounds at 
defined concentrations, including Hg, 
SO2.  Deconvolute mixtures, id 
unknowns by functional group.   
Data acquisition, device control, real 
time data analysis display included
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computer.
6 day flight experiment successful.

analysis with ultra micro computer.
Extensive ground testing in 
environmental chamber.

time data analysis, display included.
Extensive ground testing in 
environmental chamber; then 
six month test on-orbit.



JPL Enose Program Overview

CABIN AIR QUALITY MONITORING
FUNCTIONS

Incident monitor for targeted contaminants exceeding 
targeted concentrations. Identify and quantify.

Monitor for presence of compounds associated with fires 
or overheating electronics

Monitor clean-up process

CHARACTERISTICS
Low mass, low power device 
Requires little crew time for maintenance and calibration
Detects, identifies and quantifies selected chemical 
species at or below 24 hour SMAC
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Enose Data Analysis - Overview

• Challenges:
– Quasi real time, autonomous detection and analysis (Id &Qn)
– Deconvolution of mixtures of up to three
– Functional group identification

– Poor consistency in sensor responses
– Mixed linear and nonlinear sensor responses
– Similar (correlated) response patterns among target analytes
– Large dynamic response range (magnitude difference in the order of 4)
– Baseline drift

O– Only partially controlled environment: humidity, temperature, pressure 
…

Multi-channel time-
series resistance data

Extracted response pattern 
at a given time Software anslysis result

dR
/R

0 35 ppm toluene+
50 ppm benzene
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…
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Enose Data Analysis - Overview

Development History -1st Gen

• Investigated /compared various approachesg p pp
– PCA, DFA, NNBP, LA, GA,  LM NLS
– Off-line data analysis (ID and Qn only, no event detection)

• Selected LM –NLS (Levenberg Marquart Nonlinear Least Squares) method  
– Adaptive to both linear and nonlinear sensor responses 
– Recognition on untrained mixtures (of trained single analytes)

Significantl less training time less training data needed• Significantly less training time, less training data needed
– Robust to noisy data

V ifi ti / 6 d STS 95 fli ht i t d t (1998)• Verification w/ 6-day STS-95 flight experiment data (1998)
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Enose Data Analysis - Overview

Development History -2nd Gen
• LM-NLS:

– Expanded analyte list (from 10 to 22)
– Developed quasi real time data analysis  
– Investigated humidity subtraction technique to uncover small concentrations 

f l t i f h idit hof analyte in presence of humidity change
– Investigated temperature effect
– Investigated func’l group identification w/ sub sensor array

• Extensive Ground Testing
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Enose Data Analysis - Overview

Development Goals/Requirements -3rd Gen
• Third Generation:

– Quasi real time event detection, identification and quantification
– Ability to uncover small analyte signals under large humidity

Ability to classify unknowns by functional group (alcohols or aromatics)– Ability to classify unknowns by functional group (alcohols or aromatics)
– Ability to identify compounds not trained for as “unknown”
– Improvement on data analysis speed, memory efficiency and performance for 

embedded implementation

• Will undergo extended (6-month) testing on ISS (2008)
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Data Analysis - Approach

Mostly developed; need

Flow Chart (current)

Read in new raw data

Extract & Preprocess raw data

Enose Sensing unit 
output

Mostly developed; need 
improvement & modification 
for new sensors /analytes

Mostly New development

Model data
Detect any gas event? 

No

yes

ID. & Qn. 

Classify by funct’l grp?Known targets? no

Calibration & 
Sensor selection 

Model building
no

y y g p

Report and Record result 

yes

g

noyes

g
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Data Analysis - Approach

Approaches Investigated
• Discriminant Function Analysis (DFA):

Attempt to find hyperplanes dividing the groups– Attempt to find hyperplanes dividing the groups.
– Not suitable when groups are not separable (by a hyperplane); not well suited for mixtures.

• Back Propagation Neural Networks (BPNN): 
– Try to find a best-fit function (linear or nonlinear; no models needed) for the training data.
– Good for generalization of functions to cases outside the training set.
– Not suitable when data groups overlap;
– Normally requires “clean” training data; not well suited for mixtures 

• Linear Algebra (LA):Linear Algebra (LA):
– Try to find the best-fit (in a least square sense ) parameters vector x from an observation 

vector y by pseudo-inverse y=Ax.  A: system characteristics matrix from training data. 
– Suitable only for linear model.

Diff i l G i Al i h (DGA)• Differential Genetic Algorithm (DGA) :
– Imitates principles of genetics & natural evolution: e.g., recombination, inversion, mutation 

and selection. Various paths to the optimum are checked; info about them exchanged.
– Simple concept, easy to use, fast convergence
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– Limited control ability



Data analysis Approach

Approaches Investigated
• Partial least squares (PLS) †

– Multivariate signal averaging; inverse linear regression
– Non-iterative, rapid calculation
– Can be robust to environmental variations with properly designed calibration

• Support Vector Machine (SVM)*Support Vector Machine (SVM)
– Decomposing N-classes classification into multiple 2-classes tasks
– Need training data of every possible combination of gas compounds
– Good result on trained data, but poor on untrained ones (poor generalization)

• Maximum likelihood*
– Use covariance of error matrix to construct likelihood function
– Two step (classification and quantification) procedure

• Probabilistic Neural Network*• Probabilistic Neural Network
– Soft decision (PDF) based classification
– Much less successful than SVM
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*   Independent work by I-A-I, Inc., on preprocessed JPL 1st Generation ENose data
† Still under investigation



Data Analysis - Approach

Approach Selected

• LM-NLSLM NLS
– Global & local; classification & quantification - simple code and tree structure

– Recognition on untrained mixtures (of trained single analytes) 
• Significantly less training data needed (than many other approaches)

– Robust to noisy data

– Adaptive to both linear and nonlinear sensor responses :
• increase damping (reduce step) for a highly nonlinear problem  
• decrease damping (increase step) for a linear problem

– Good generalization (on future data)
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Data Analysis - Approach

Approach - LM NLS Method
• Objective

– Find best-fit concentration vector c from an observed resistance change 
vector dr/r, which is related to c through a known function, dr/r=f(A, c). i.e., 
dr/r=A1c+A2c2.

A1 and A2 : sensor coefficient matrix pre-established from training data.1 2 p g

• Procedure - Iterative optimization:
– Establish A1 and A2 from training data (curve fitting)

F i t ti i t f l l t di f th fit– From a given starting point of c, calculate discrepancy of the fit:
residual=wt *(computed f(A,c)-observed dr/r)

update c with a better-fitted (smaller residual) concentration c at each step till 
max iteration number reachedmax iteration number reached.

– Repeat for multiple starting point of c, and update better-fitted c that favors 
less number of significant elements
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Data Analysis - Approach

• ID and Qn based on characteristic response if any
• Global (all analytes) ID and Qn

Flow chart

Global (all analytes) ID and Qn
– For most gases, one step global ID & Qn w/ LM-NLS

• Second step local (selective) ID and/or Qn
– For easily confused gases, after the first step

F l / l f li bl i– For analytes w/ only few reliable responsive sensors
• Functional group check

– When residual is too large to be reliable for first step result
• ID of unknowns based on model buildingg

Calibration &

Detected event

Global ID. & Qn. 

funct’l grp ID &QnLocal ID and/or Qn

Calibration & 
modeling data 

Model building

Charc. ID &Qn
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Report and Record result 



Data Preprocessing

Mostly developed; need
Read in new raw data

Extract & Preprocess raw data

Enose Sensing unit 
output

Mostly developed; need 
improvement & modification 
for new sensors /analytes

Mostly New development

Model data
Detect any gas event? 

No

yes

ID. & Qn. 

Classify by funct’l grp?Known targets? no

Calibration data 

Model building
no

y y g p

Report and Record result 

yes

g

noyes

g
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Data Preprocessing

Converting time-series R to resistance response pattern dR/Ro

• General Noise removal 
Appropriate filtering– Appropriate filtering

• Baseline drift estimation
– Multiple causes, e.g., changes in temperature, humidity, flow pressure, etc.
– Need fast and accurate estimation for real time signal detectionNeed fast and accurate estimation for real time signal detection

• Calculation of resistance change
– Dynamic relative resistance change:  dR/Ro

• Event detection

01

Multi-channel time-series 
resistance data 

Extracted  response pattern Relative resistance 
calculation

dR
/R

01
2 
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Preprocessing –Baseline Estimation

• Baseline drift estimation
– Investigate temperature and/or humidity caused baseline drift estimation

– Use appropriate digital filtering (w/ known events if any) to estimate 
slowly varying baseline drift

– Additionally,
• Use clean air reference cycle info to establish piecewise baseline 
• Correct abnormal baseline change due to sudden operating temperature 

changechange
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Preprocessing –Baseline Estimation

Investigation of baseline estimation using temperature & humidity info:Investigation of baseline estimation using temperature & humidity info:

• Correlation (bwtn humidity or temperature or their combination and 
the actual baseline drift) exists butthe actual baseline drift) exists but… 

– The degree of correlation varies greatly among different sensors 
– The degree of correlation also varies greatly among different files (for same or 

different sensors/ analytes) y )

• Temperature & humidity info (or their combination) not reliable enough 
to establish actual baseline drift
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Preprocessing –Baseline Estimation

765
x 104 Nov1605Xb, toluene, sensor 12

755
x 10

4 Feb2706Xa, ammonia, sensor 12

• Correlation exists but… varies from time to time
– Same sensor (sensor #12), different analytes (ammonia, toluene)

7.5

7.55

7.6

7.65
Baseline by filtering

7.4

7.45

7.5

7.55
Baseline by filtering

raw resistance
baseline (green)
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7.45

minutes

115

1.2
x 104

measured raw humidity
measured base humidity

0 100 200 300 400 500 600 700 800 900
7.35

minutes

1.1

1.15
x 10

4

measured raw humidity
measured base humidity

humidity (blue)

0 100 200 300 400 500 600 700 800
1.05

1.1

1.15
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0.95

1

1.05
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24

26
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minutes

measured flow temperature

23

24
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minutes

measured flow temperature

temperature
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22
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Preprocessing –Baseline Estimation

x 104 Nov1705Xb, toluene, sensor 19
9 342

x 104 Nov1705Xb, toluene, sensor 23

• Also varies among different sensors
– Different  sensors (# 23, # 19), same analyte, same  data files

4 998

4.999

5

5.001

5.002
Baseline by filtering

9 334

9.336

9.338

9.34

9.342
Baseline by filtering

raw resistance
baseline (green)

0 100 200 300 400 500 600 700 800 900 1000
4.997

4.998

minutes

1 15

1.2
x 10

4

measured raw humidity
measured base humidity

0 100 200 300 400 500 600 700 800 900 1000
9.332
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1 15
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x 104

measured raw humidity
measured base humidity

humidity (blue)

0 100 200 300 400 500 600 700 800 900 1000
1.05

1.1
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0 100 200 300 400 500 600 700 800 900 1000
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1.15 humidity (blue) 
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measured flow temperature

temperature
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Preprocessing –Baseline Estimation

• Digital filtering w/ automatic peak rejection

– Use known (calibration mode) or detected (real time mode) event info to 
identify peak regions

• Blank out peak/event regions
• Retain non-peak regions as baseline points (A)
• Fill in peak regions with piece-wise Linear fit (B)

– Estimate baseline by filtering points made of (A+B)
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Preprocessing –Baseline Estimation

Baseline estimation  -- calibration mode

1 369
x 105

1 366

1.367

1.368

1.369

Green – raw resistance data R
Red – smoothed R 

0 100 200 300 400 500 600
1.364

1.365

1.366

1.368

1.369
x 105 Dec0903Xb, Benzene, sensor 25

Red -- – smoothed R
Blue + – points retained from R 

0 100 200 300 400 500 600
1.365

1.366

1.367 Green – points filled in for peak areas
Black – baseline estimation by filtering
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Preprocessing –Baseline Estimation

Baseline estimation  -- Real time mode

1.3678

1.368

x 105

• Use detected events info to block peak 

1.3666

1.3668

1.367

1.3672

1.3674

1.3676

p
areas (recent past events)

• Piece-wise Linear fit for all peak region
• Data of 2 ~4hrs retained …

1.3672

1.3674

1.3676

1.3678

1.368

x 105

280 300 320 340 360 380 400 420

1.3664

1 36 8

1.368

x 105

280 300 320 340 360 380 400 420

1.3664

1.3666

1.3668

1.367

Red - – smoothed R
Blue +  – points retained from R 
Green – points filled in for peak areas
Black   – baseline estimation by filtering

1.3668

1.367

1.3672

1.3674

1.3676

1.3678
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Preprocessing – Event Detection

• Event detection & Pattern Extraction
Threshold test of sensors response strength– Threshold test of sensors response strength

• Use selected sensors based on sensor’s limit-of-detection (LOD)
LOD= 3*σ/ sensor sensitivity
σ – standard deviation of a sensor’s response to an analyte

– Humidity subtraction
• Humidity can easily overwhelm weak signals• Humidity can easily overwhelm weak signals 

– 104 vs single digit in response magnitude
• Improve pattern extraction by subtracting large humidity response using 

measured humidity info
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Preprocessing – Humidity Subtraction

• Subtracting humidity response using measured humidity info
• Improved detection/identification of weak analyte signal accompanied with 

large humidity changes by about 50% in a test done with 30 propanol events
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Sensor Calibration & Selection

Mostly developed; need
Read in new raw data

Extract & Preprocess raw data

Enose Sensing unit 
output

Mostly developed; need 
improvement & modification 
for new sensors /analytes

Mostly New development

Model data
Detect any gas event? 

No

yes

ID. & Qn. 

Classify by funct’l grp?Known targets? no

Calibration & 
Sensor selection 

Model building
no

y y g p

Report and Record result 

yes

g

noyes

g
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Sensor Calibration - Singles

• Single gases
– Outliers removal
– Model fitting and coefficients calculation for each analyte, each sensor

• e.g., Least square fit of 2nd order polynomial, passing (0,0)
– Statistics:

• Reliability (inconsistency): variation between actual response vs. fitted 
response (scattering within an analyte) 

• Selectivity: diversity to different analytes
• Sensitivity: responsiveness to different analytes• Sensitivity: responsiveness to different analytes
• Correlation: btwn concentration and response strength
• (Euclidean) Fingerprint distances between analyte pair

– Calibration for different environment conditionsCalibration for different environment conditions
• Base humidity, temperature, pressure
• Experimental design?
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Sensor Calibration - Singles

Resistance change v.s. Concentration, Indole;  2nd order polynomial fit : dr/r=A1c+A2c2

1 9 2 10

Response vs Concentration,    Indole
3 11 4 12 fingerprint @ median conc.= 236ppm, Indole

200 400
0

5

10
1, 9

200 400
0

5

10

2, 10

200 400
0

2

4
3, 11

200 400
0

20

40
4, 12

R
-R

o)
/R

o 

60

0.8

1

1.2
fingerprint @ median conc.  236ppm, Indole

200 400
-20

0

20

40

ta
nc

e 
C

ha
ng

e 
(R 5, 13

200 400
0

20

40

60
6, 14

200 400
0

5

10

7, 15

200 400
0

50

100

8, 16

0.2

0.4

0.6

R
es

is
t

0

20

40

60 17,25

0

5

10 18,26

-1

0

1
19,27

0

10

20

30 20,28

5 10 15 20 25 30

0

200 400
0

200 400 200 400 200 400

0

20

40 21,29

0

2

4

6 22,30

0

1

23,31

50

100

150 24,32

If linear fit

Experimental data 
Polynomial fit

● , ●

29

200 400 200 400
0

200 400
-1

concentration, ppm     
200 400

0



Sensor Calibration - Singles

1
Ammonia 2 Benzene

1 Ethanol 2 Freon113

Fingerprints of 2nd Gen Analytes
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Sensor Calibration - Singles

1.5 2-Butanone 1 Chloro bnz
1

DichloroMethane 2 Furan

Fingerprints of 2nd Gen Analytes
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Sensor Calibration - Singles

Variation, Diversity and Responsiveness of Sensors in Array
Averaged over all analytes at target concentration

Reliability:
Measure of scatter

Variation < 1 preferred 2

4

6
Relative variation

Variation  1 preferred

5 10 15 20 25 30
0

10

Diversivness (max-min of normalized fingerprint)

Selectivity (Diversity)
(max-min of norm. fingerprint)

Higher number preferred
5 10 15 20 25 30

0

5

responsiveness

Responsiveness
(Sensitivity)

Relative response strength 
Higher number preferred 2

4

6
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Sensor Calibration - Singles

Wthn- Cross- Analyte fingerprint distance

analytes #: 1      2      3      5      6      7      8      9    10    11    12    13    14    15    16    17    18    19 21    22    23    24    25 

Ammonia( 1)    11    
Benzene ( 2)    34      31 

Ethanol( 3)     4      28    15 
Freon113( 5)    34      31      7 17  

Indole( 6)    19      29    23    31    25 
Methane( 7)    18      27    11    16    11    25 
Methanol( 8)    25      28    13    10    13    29    13 

2-Propanol( 9) 7 29 15 9 16 29 15 152-Propanol( 9)     7      29    15      9    16    29    15    15
Toluene(10)    20      29    16    22    14    27    19    22    15 

Acetaldehyde(11)     8       35    17    22    17    26    15    18    24    29 
Acetone(12)    14      35    28    25    28    35    27    29    23    28    36 

Acetonitrile(13)    21      31    10    13    12    27    10     9    16    23    14    29 
2-Butanone(14)    16      30    21    19    22    32    22    23    11    13    32    23    25 
Chloro bnz(15)    10      30    17    22    15    26    21    22    14      8    29    25    24    14 

DichloroMethane(16)    15      33    17    16    17    30    19    19    15    18    26    12    19    15    16 
Furan(17)    42      29      9    15    11    26    10    11    16    20    13    31      7 24    20    20 

Hexane(18)    27      30      7 16      7 24    10    10    16    16    17    28    10    20    16    16     8 
DichloroEthane(19)    28      28    13    15    15    29    19    15    16    14    27    28    20    17    16    17    17 15 
tetrahydrofuram(21)    20      27    18    19    19    32    22    23    13    11    32    28    25      9    14    19    22 18    13 

111-tce(22)    31      30      7 15      7 24    13    13    13    13    20    30    12    18    13    17     9      6 12    15 
Xylenes(23) 6 38 26 34 24 27 32 35 27 18 37 31 35 29 17 31 32 28 29 27 25Xylenes(23)     6       38    26    34    24    27    32    35    27    18    37    31    35    29    17    31 32    28    29    27    25  

%H20(24)    15      39    23    30    23    30    21    26    31    33    12    42    21    38    35    33  20    24    32    37    27    40   
Ethyl bnz(25)     4       47    37    43    33    36    42    44    41    35    44    40    44    42    35    40 44    38    41    41    36    21    49 

analytes #: 1      2      3      5      6      7      8      9     10    11    12    13    14    15    16    17    18    19    21    22    23    24    25 

Avg distance: 19 23 min btwn-class distance: 6

33
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Sensor Calibration - Mixtures

• Mixture gases
– Additive linearity (superposition) validation  

polynomial with no cross interaction effect: dr/r =A c +A c 2+ A c +A c 2polynomial with no cross interaction effect:   dr/r =A1aca+A2aca + A1bcb+A2bcb

– Alternative mixture model if necessary:  
e.g., polynomial with 2-way cross interaction effect: dr/r =A1aca+A2aca

2+ A1bcb+A2bcb
2 +Aabcacb

– Dominant effect of one component?
• Subtraction technique

ns
e

1
Ammonia    &  Ethanol    

1
Methan ol   &   B enz ene     

Additive linearity holds reasonable well in a previous study

Se
ns

or
 R

es
po

n

0.5 0 .5
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Sensor Calibration - Other Conditions

• Calibration for different environment conditions:
Nominal ISS Atmosphere conditions:Nominal ISS Atmosphere conditions:
– Relative Humidity: 25% -75% 
– Temperature: 20oC -34oC  
– Partial Pressure: ~15mmHg

• Investigation of sensor calibration needs at different RH conditions
– Difference of fitted normalized fingerprints at 5k ppm, 18k ppm, or 23k 

ppm against 10k ppm with 2nd gen datappm, against 10k ppm with 2nd gen data
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Sensor Calibration - Other Conditions

60
% change in normalized fingerprintAnalyte      Fngr chg   Mag chg   Calib?

Ammonia        33            32                     x
Benzene 61 11 yes

Changes for diff humidity: 10k vs 5k

2 4 6 8 10 12 14 16 18 20 22
0

20

40

% change in response magnitude

Benzene        61            11                 yes
Ethanol        17            17                   no

Freon113        25              1                     x
Indole        18            16                   no

Methane        28              9                     x
Methanol        22            20                   no

2-Propanol        30              8                     x

Avg=25%

10

20

30

40Toluene        17              2                   no
Acetaldehyde        15              0                   no

Acetone        21              1                     x
Acetonitrile        29            24                     x
2-Butanone        22            11                   no
Chloro bnz        14              9                   no

DichloroMethane 29 23 x

Avg=15%

2 4 6 8 10 12 14 16 18 20 22
0

20

40

60
Mean % change of a sensor's response  in a normalized fingerprint

DichloroMethane        29            23                     x
Furan        23            20                   no

Hexane        33              5                     x
DichloroEthane        30            27                     x

tetrahydrofuram        46            41                     x
111-tce        38            29                     x

Xylenes        15            12                   no

5 10 15 20 25 30
0

20

nth sensor 

y
%H20        25            25                     x

Ethyl bnz         4               1                  no

yes – need recalib
x     – borderline
no  – no need recalib

36

Most...Least changed Sensors:     8   16     4     2   12     6   27     5   14   25   17 ....   18   23   30   22   31   24 28   21
(Mean % change in fngrprnt):    60  55   48   44   39   39   36   35   35   34   33 ....   16   15   15   13   13   12   10 7

* Change in average success rate if use 10k coefficient for 5k data:  - 4%



Sensor Calibration - Other Conditions

Analyte     Fngr chg   Mag chg   Calib?
Ammonia        34              1                  x
Benzene        20              1                no 80

% change in normalized fingerprint
Changes for diff humidity: 10k vs 18k

Ethanol        25            18                no
Freon113        29              3                  x

Indole        40            22                  x
Methane        99            99              yes

Methanol        30              3                  x
2-Propanol        43            36                  x

T l 48 26
5 10 15 20

0

20

40

60

% change in response magnitude

Avg=35%

Toluene        48            26                  x
Acetaldehyde        21           18                no

Acetone        27            26                  x
Acetonitrile        26              5                  x
2-Butanone        31            28                  x
Chloro bnz        38            31                  x

DichloroMethane 49 47 x
20

40

60

80

Avg=24%
DichloroMethane        49            47                  x

Furan        34            24                  x
Hexane        36            34                  x

DichloroEthane        23            17                no
tetrahydrofuram        78            40              yes

111-tce        31            27                  x
Xylenes        28            23                  x

5 10 15 20
0

40

60

80

Mean % change of a sensor in a normalized fingerprint

%H20        19              5                no
Ethyl bnz         6              5                no

5 10 15 20 25 30
0

20

40

nth sensor 

yes – need recalib
x – borderline
n – no need recalib

* Ch i A t if 10k ffi i t f 18k d t 15%

37

Most...Least changed Sensors:     8   16     5     6   12     4   17   14     2   25   27 ....   31   28     1   29   24   22 30   21 
(Mean % change in fngrprnt):    92   74   70   65   59   54   51   49   46   45   40 ....   19   18   17   17   16   15   12 10

* Change in Average success rate if use 10k coefficient for 18k data:  -15%



Sensor Calibration - Other Conditions

60

80

% change in normalized fingerprint
Changes for diff humidity: 10k vs 23k

Analyte       Fngr    Mag   Calib?
Ammonia        46       10               x
Benzene 37 26 x

2 4 6 8 10 12 14 16 18 20
0

20

40

60

% change in response magnitude

Benzene        37       26               x
Ethanol        40       31               x

Freon113        45       41               x
Indole        46       22               x

Methane       100     100           yes
Methanol        34       26               x

2-Propanol        46       34               x

Avg=50%

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80Toluene        58       37           yes
Acetaldehyde        31         9               x

Acetone        61         7           yes
Acetonitrile        40       26               x
2-Butanone        56       53           yes
Chloro bnz        54       44           yes

DichloroMethane 58 58 yes

Avg=33%
2 4 6 8 10 12 14 16 18 20

20

40

60

80

Mean % change of a sensor's response  in a normalized fingerprint
DichloroMethane        58       58           yes

Hexane        39       34               x
DichloroEthane        36       27               x

tetrahydrofuram        51       43           yes
111-tce        40       40               x

Xylenes        50         9               x
Ethyl bnz        71       26           yes

5 10 15 20 25 30
0

20

nth sensor 

y y

Yes –need calib
X – borderline
N – no need calib

* Change in average success rate if use 10k coefficient for 23k data:  - 20%

38

Most...Least changed Sensors:     5   17   25     6     8   12   14     4     2     3   16 ....   31   30   22   28   24     9  1   21
(Mean % change in fngrprnt):    94   92   87   85   80   73   72   67   60   58   58 ....   31   30   25   24   24   24   23 19



Sensor Calibration - Other Conditions

Analyte       Fngr    Mag  Calib?
Ammonia        31       15               x 100

% change in normalized fingerprint

Changes for diff humidity: 18k vs 23k

Benzene        28       23               x
Ethanol        19       15             no

Freon113        41       21               x
Indole        14        0              no

Methane       61       44           yes
Methanol        33       25               x

2 P l 60 5

2 4 6 8 10 12 14 16 18 20
0

50

% change in response magnitude

Avg=37%

2-Propanol        60        5            yes
Toluene        15       15             no

Acetaldehyde        14         7             no
Acetone        17         8             no

Acetonitrile        20       14             no
2-Butanone        47        35               x
Chloro bnz 29 18 x 2 4 6 8 10 12 14 16 18 20

0

50

100

Avg=23%
Chloro bnz        29        18               x

DichloroMethane        39        20               x
Hexane        20         1             no

DichloroEthane        20       15             no
tetrahydrofuram        123     118           yes

111-tce        26        19               x
Xylenes        45        24               x

2 4 6 8 10 12 14 16 18 20

50

100
Mean % change of a sensor's response  in a normalized fingerprint

Ethyl bnz        75        32           yes

Yes – need calib
X     – borderline
no   – no need calib

5 10 15 20 25 30
0

nth sensor 

39

Most...Least changed Sensors:     5     8   16   17     2   12   25     6   14     4   13 ....   31   20   19   24     1     9  21   28
(Mean % change in fngrprnt):   104   95   76   67   66   64   63   59   48   48   41 ....   19   18   17   17   15   14   12 10



Sensor Calibration - Other Conditions
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Sensor Calibration - Other Conditions

Summary:
• Base humidity change affects data analysis results

Within 5k are almost tolerable; need calibration for bigger change– Within 5k are almost tolerable; need calibration for bigger change

• Sensor coefficient vs base humidity can be roughly modeled as linear
– Correlation >0.80 mostly; could be higher if we have better calibration data set

• Calibration needs / strategy: 
– Calibration at two base humidity levels, e.g., 10k & 20k (or 18k) 
– Interpolate /Extrapolate to get the rest 
– Similarly, calibration at two temperature levels
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Sensor Selection

• Poorly behaved sensors can be more detrimental to data analysis than 
being helpful.

• Optimal sensor array selection and weighting
– For global classification and quantification
– For local classification and/or quantification
– For functional group classification and quantification
– For event detecting
– Assistance in sensor material selection

• ENose sensor selection challenge:
– Selectivity is important while reliability and sensitivity can be major limiting 

factors in detecting target compounds reliablyfactors in detecting target compounds reliably
– Meaningful selection that will actually improve data analysis result
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Sensor Selection

• Sensor selection approaches
– PCA, Cluster Analysis

ANOVA b d h– ANOVA-based approach
– Genetic algorithm optimization w/ appropriate statistic measures

• Sensor selection by ANOVA-based technique:Sensor selection by ANOVA based technique:
f =(selectivity / reliability) *sensitivity*correlation 

– Selectivity (cross-class variation):
Diff b t i l ti t th ll l t• Difference bwtn max, min relative response strengths among all analytes

• Mean of differences of relative response strengths among analyte pairs
– Reliability (within-class variation): mean variation btwn relative actual vs. fitted 

responses 
– Sensitivity:  mean of a sensor’s relative response strengths to all analytes
– Correlation:  btwn concentration and response strength
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Sensor Selection

• Sensor array optimization:
– Class separation vs threshold of f (worst sensors removed)

Class separation = cross class fingerprint distance / within class fingerprint variationClass separation = cross-class fingerprint distance / within-class fingerprint variation

200

220
Clas s  s eperat ion vs  thres hold

120

140
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180

at
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n 
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or
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2nd generation sensors:

The Best sensors:  

30 31 22 25 23 10 17 27…

60

80

100

120

cl
as

s 
se

pe
ra 30  31  22  25  23  10  17  27…

Best class separation w/ these worst 
sensors removed:

0 5 10 15 20 25 30 35
20

40

num ber of the wors t n bad s ens ors  rem oved

4  12   8   5  16  20  13  14   1   6
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Functional Group Classification

Mostly developed; need
Read in new raw data

Extract & Preprocess raw data

Enose Sensing unit 
output

Mostly developed; need 
improvement & modification 
for new sensors /analytes

Mostly New development

Model data
Detect any gas event? 

No

yes

ID. & Qn. 

Classify by funct’l grp?Known targets? no

Calibration & 
Sensor selection 

Model building
no

y y g p

Report and Record result 

yes

g

noyes

g
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Functional Group Classification

• Analytes can be grouped into “families” or functional groups 
B d i il iti i h i l t t / t ll b d ti– Based on similarities in physical structure /externally observed properties, 
e.g.,

• Alcohol: ethanol, 1-, 2- Butanol, 1-, 2- propanol, etc.,
• Aromatic: benzene toluene chlorobenzene furan etcAromatic: benzene, toluene, chlorobenzene, furan, etc., 
• One nitrogen: ammonia, acetonitrile, indole, etc.
• Ketone: acetone, 2-butanone, etc.
…

… But not strictly member of one and only one functional group

• Desire to identify an “unknown” (not-trained-for) analyte according to 
its functional groupits functional group
– e.g., identify methanol as an alcohol without being trained for 
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Funct’l Group Classification - Approach

• Select optimum subset sensors that minimize the distance within a

NLS  with sensor subset optimized for functional groups

• Select optimum subset sensors that minimize the distance within a 
funct’l grp and maximize the distance btwn the rest of analytes

• Result in the 1st (regular Id&Qn) step be given preference in the 2ndResult in the 1st (regular Id&Qn) step be given preference in the 2nd 
(funct’l group Id) step

– e.g., If the 1st step results in “methanol +freon” w/ an unacceptably large 
residue, then in the 2nd step, check first if “alcohol+freon” would result in an 

t bl idacceptable residue .

• Other possibilities will also be checked and the result will be accepted 
only if the associated residue is less than that in the aboveonly if the associated residue is less than that in the above 

• if all residues are greater than acceptable levels unknowns
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Funct’l Group Classification –Case Study

• Case studied:
– Use simulated sensor response (from molecular modeling)

• 10 trained target analytes: methanol, ethanol, 1-proponal, methane, ammonia, 
benzene,  formaldehyde, freon 113, indole, toluene

• 4 untrained alcohols: 2-propanol, butanol, pentanol, phenol
• 5 untrained aromatic: anthracence, ethyl benzene, p-xylene, and m-xylene

– 170 simulated binary mixture test events: 
• One trained analyte+ one untrained analyte, or two untrained analytes
• Different concentration combinations

– Two possible functional groups
• alcohol and aromatic

– Average success rate ~ 84%
2 l (86%) b t l (67%) t l (76%) h l (67%)• 2-propanol (86%), butanol (67%), pentanol (76%), phenol (67%), 

• Anthracene (86%), Ethyl benzene (95%), p-xylene (95%),  o-xylene (86%), and m-
xylene (100%).
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Model Building

Mostly developed; need
Read in new raw data

Extract & Preprocess raw data

Enose Sensing unit 
output

Mostly developed; need 
improvement & modification 
for new sensors /analytes

Mostly New development

Model data
Detect any gas event? 

No

yes

ID. & Qn. 

Classify by funct’l grp?Known targets? no

Calibration & 
Sensor selection 

Model building
no

y y g p

Report and Record result 

yes

g

noyes

g
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Model Building

• Can we determine the identity of an unknown chemical whichCan we determine the identity of an unknown chemical which 
causes the sensor array to respond by models built from 
simulation?
– Sensor modeling supportg pp
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Sensor Modeling Support 

• Objectives
– Develop the ability to determine the identity of an unknownDevelop the ability to determine the identity of an unknown 

chemical which causes the sensor array to respond.
– Provide characteristic sensor response of untrained analytes for 

functional group identification based on known responses to 
trained ones

– Predict sensor’s response under different base humidity given 
response under nominal humidity 

• Approach
– Quantitative Structure Activity Relationships (QSAR)
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MODEL OF SENSOR RESPONSE

• Goal
– Develop representative response equation (using known experimental data) 

for each polymer-carbon sensing film in the array (16 equations for the array) 
t t i t l t i i t f i

Ammonia ,  PEO-CB sensor
15

to generate virtual training sets for any given sensor array

Experimental sensor response fit:

Resistance change (y) = A1 x+ A2 x2

R
es

po
ns

e

10

A1 and A2 : constant; x: concentration

0

5 actual data points
least-squares fitted 

Concentration (ppm)
0 20 40 60

0

Correlate the constant A1 from experimental response fit with molecular 
descriptors using Quantitative Structure-Activity Relationships (QSAR)

52

descriptors using Quantitative Structure Activity Relationships (QSAR)



MODEL OF SENSOR RESPONSE

Generate molecular models for polymer-carbon sensing film
Calculate analyte interactions energies w/ polymer-carbon sensing film

QSAR METHODOLOGY

Calculate analyte interactions energies w/ polymer-carbon sensing film

Generate QSAR table
Calculate molecular descriptors (analyte and sensor response)

Correlate sensor response to molecular descriptors
- Generate QSAR equations using Genetic Algorithms

S l t th t ti ti ll t i ifi t ti- Select the statistically most significant equation 
containing the polymer-analyte interaction term

53

Experimental sensor response
(training set)



MODEL OF SENSOR RESPONSE

Intrinsic analyte descriptors Sensor interaction energy 

QSAR DESCRIPTORS

molar Refractivity                          MR
size of the molecule                       Vm
H-bond donor/acceptor                 HBD, HBA

descriptors

(Electrostatic, vdW, H-bond 
contributions)

dipole                                                    
principal moment of inertia

contributions)
polymer-analyte Epa
polymer-water Epw
analyte-water Eawy aw
analyte-analyte Eaa
polymer-carbon black Epcb
analyte-carbon black Eacb

Descriptor calculations
Sensor interaction energy : Monte Carlo technique (sorption calculation)
Intrinsic analyte descriptors : Quantitative Structure-Property Relationships (QSPR )

54

Intrinsic analyte descriptors : Quantitative Structure Property Relationships (QSPR )



MODEL OF SENSOR RESPONSE
A R t A iArray Response to Ammonia

2

2.5

3

Experiment-A1
Calculated-A1

0 5

1

1.5

2

A
1

-0.5

0

0.5

1 2 3 4 5 6 7 8 9 10 11

sensor #

Polymer list (sensors #)
1 Poly (4-vinylphenol-co-methyl methacrylate) 7. Cyanoethyl hydroxyethyl cellulose

-1

1 Poly (4 vinylphenol co methyl methacrylate)
2. Poly (ethylene-co-acrylic acid) 
3. Poly (styrene-co-maleic acid)
4. Poly (2-vinyl pyridine) 
5. Poly (4-vinylpyridine)
6 Vi l l h l/ i l b t l l

7. Cyanoethyl hydroxyethyl cellulose
8. Soluble polyimide
9. Polyepichlorohydrin
10. Poly (epichlorohydrin-co-ethylene oxide)
11. Polyethylene oxide
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6. Vinyl alcohol/vinyl butyral copolymer



QSAR SENSOR RESPONSE MODEL
MODEL OF SENSOR RESPONSE

QSAR SENSOR RESPONSE MODEL
Predictive Model

Correlate polymer and analyte interactions to A1 from analysis algorithm

Calculated Coefficient A1=

p y y 1 y g

PEO-carbon composite film
1.2

+ 0.116         HBD
2

+ 2.4E-03 MR2

+ 0.152          Epa

0 6

0.8

1

te
d 

A
1

training set
benzene (test)
dichloroethane (test)

indole (test)

r2 = 0.86
0.2

0.4

0.6

C
al

cu
la

t

monomer

(  CH2 C    O1 )
H

pKa calculations:

-0.2

0

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

pKa (site1, 25°C) = 15.24 ± 0.10

H2
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pKa calculations:  
ACD/Lab online softwareExperimental A1



Backup MaterialBackup Material

57



Data Analysis – PCA analysis 

3
priciaple coomponent analysis (90% variation)

• PCA plot of 2nd generation Enose data on 22 analytes
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Data Analysis – Cluster Analysis

Freon113 

• Cluster Analysis of 2nd generation Enose data, Single linkage

Hexane 
Benzene 

111-tce 
Furan

Acetonitrile 
Methanol 

Acetaldehy
de 

%H20 
Ethanol

Methane 
2-Propano
DichloroEt

hane 
Toluene 

Chloro bnz 
Xylenes 

Ethyl bnz
2-

Butanone 
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Data Analysis Results -1st  generation

Singles:
• Overall success rate ~ 85%. 

– "Success" is correct identification and quantification (within ± 50%).

Gas Conc Range Success

q ( )
• Most failed cases (~10%) are no-event identification -- concentration below 

identifiable threshold

g
Compound tested (ppm) Rate  (%)

Ammonia 10 - 50 100
Benzene 20 - 150 88
E h l 10 130 87Ethanol 10 - 130 87
Freon 113 50 - 525 80
Formaldehyde 50 - 510 100
Indole .006 - .06 80
Methane 3000 7000 75Methane 3000 - 7000 75
Methanol 10 - 300 63
Propanol 75 - 180 80
Toluene 30 - 60 50
%Relative Humidity 5 - 65 100

60

y
Wipe 500 - 4000 100



Data Analysis Results -1st  generation

• Moderate overall success rate ~60%. 
• No training data on mixtures used; total 75 testing events

Mixtures

• No training data on mixtures used; total ~75 testing events. 
• Sensor loosely follows additive linearity property for the tested binary mixtures.
• Those of low success rates are largely due to low concentrations of one of the 

mixture components (for which detecting even the single gases is difficult)

Gas Conc. Gas Conc. Success
Compound 1 range (ppm) Compound 2 range (ppm) Rate (%)

ammonia 20-50 ethanol 100 100
ammonia 10-20 benzene 20-60 65
benzene 50-150 methanol 50 100
benzene 30-100 propanol 75 – 100 60
benzene 10-30 formaldehyde 85 – 250 20
ethanol 40-130 wipe 60-185 90
methanol 25 propanol 80-185 25
methanol 50-75 toluene 30-60 40
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Data Analysis Results -1st generation

• Every daily marker was correctly identified as 2 propanol In some cases

FLIGHT DATA ANALYSIS

Every daily marker was correctly identified as 2-propanol.  In some cases
it was identified as 2-propanol plus a humidity change

• All peaks other than daily markers were identified as humidity change

• In every case where the independent humidity monitor in the cabin 
recorded a humidity change, it was detected by the ENose.  Humidity 
change quantification by the ENose corresponded to the change 
recorded by the cabin monitorrecorded by the cabin monitor.

• Independent air samples analyzed by Gas Chromatography/Mass 
Spectrometry showed no presence of contaminants that should have
been detected by the ENosebeen detected by the ENose.
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Data Analysis Results -2nd generation

Miss False Id Id &Qn

• Ground Testing

Case 1:  all/all: 4% 9% 78% 73%

Case 2a: half/all: 4% 10% 78% 73%

Case 3b: third/all: 4% 13% 78% 72%

C 4c 1st h lf / 2nd h lf 4% 11% 77% 73%Case 4c: 1st half / 2nd half: 4% 11% 77% 73%

Case 5d: all /2nd half: 4% 11% 77% 74%

Case 6e 10k coeff/5k data 3% 11% 73% 67%Case 6e: 10k coeff/5k data: 3% 11% 73% 67%

a. sort events from all data files by conc for each analytes, then use odd cased for 
training and all cases for testingg g

b. Similar as a, but use every other 2 cases for training and all cases for testing
c. Training on 1st (early) half data files; testing on (later) 2nd half data.
d. Testing on 2nd half data which are part of training data
e Training data are of RH @10kppm test data are of RH @5kppm

63

e. Training data are of RH @10kppm, test data are of RH @5kppm



Data Analysis Results -2nd generation

• Breakdown success rates:

Ammonia ( 6 - 60)  miss= 0%, false= 5%,  Id=100%,IQ=100%,  
Benzene ( 3 - 75)  miss= 4%, false= 3%,  Id= 79%, IQ= 79%,  

Ethanol ( 200-6000)  miss= 0%, false= 1%,  Id=100%,IQ=100%,  
Freon113 ( 15 - 500) miss=10%,false=12%,  Id= 63%, IQ= 56%,  

Indole ( 25 -415)  miss=13%,false=42%,  Id= 79%, IQ= 79%,  
Methane ( 1550 -15000)  miss= 6%, false=22%,  Id= 64%, IQ= 36%,  
Methanol ( 6 -100)  miss= 5%, false=13%,  Id= 55%, IQ= 45%,  

2 Propano ( 30 400) miss= 0% false= 1% Id= 96% IQ= 96%2-Propano ( 30 - 400)  miss= 0%, false= 1%,  Id= 96%, IQ= 96%,  
Toluene ( 5 - 50)  miss= 0%, false= 6%,  Id= 86%, IQ= 76%,  

Acetaldehyde ( 4 -20)  miss= 4%, false= 5%,  Id= 88%, IQ= 88%,  
Acetone ( 65 - 600) miss= 3%, false= 1%,  Id= 91%, IQ= 91%,  

Acetonitrile ( 4 -25)  miss= 0%, false=11%, Id= 85%, IQ= 81%,  
2-Butanone ( 15 - 150) miss= 4%, false= 8%,  Id= 75%, IQ= 71%,  ( ) , , , Q ,
Chloro bnz ( 6 -30)  miss= 8%, false=17%, Id= 50%, IQ= 50%,  

DichloroMethane ( 10 - 150)  miss= 7%, false=18%, Id= 86%, IQ= 79%,  
Furan ( 1 - 35)  miss= 0%, false= 9%,  Id= 60%, IQ= 53%,  

Hexane ( 16 -150)  miss= 0%, false=11%, Id= 71%, IQ= 63%,  
DichloroEthane ( 10 -100)  miss= 0%, false= 6%,  Id= 44%, IQ= 42%,  
Tetrahydrofuram (13 - 120)  miss= 0%, false= 4%,  Id= 71%, IQ= 71%,  

111-tce ( 7 -200)  miss=13%,false=18%, Id= 49%, IQ= 47%, 
Xylenes ( 33 - 300)  miss= 0%, false=24%, Id= 96%, IQ= 96%,  

%H20 (1000 - 13400)  miss= 7%, false= 4%,  Id= 89%, IQ= 89%,  
Ethyl bnz ( 20 - 185)  miss= 0%, false= 2%,  Id=100%,IQ=100%,  
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(conc range) Avg= miss= 4%, false= 11%,     Id= 77%,  IQ=73%,     



Enose Data Analysis - Overview

Sensor response recorded in an Early Human Testing (EHT) chamber test
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When the EHT chamber door was opened, there is significant change in resistance 
in Enose sensors.  Dotted vertical lines show 30 minute reference cycles with a 
corresponding dip in sensor response
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corresponding dip in sensor response.



JPL Electronic Nose (ENose) 
Comparison w/State of Artp

Relative to current ISS monitoring
No real-time event monitor currently exists aboard ISS. 

Relative to higher-end analytical instruments (e g VOA VCAM):Relative to higher end analytical instruments (e.g. VOA, VCAM):
Low mass, small volume, low power, rugged.
No consumables required. 
Runs continuously (30 to 360 data points/hr). 
Excellent complement to these instruments - can serve as trigger to activate them.

Relative to other ENoses, which are based on pure conducting polymers:
Much wider range of usable polymers - superior fingerprinting. 
Q tifi ti i l d d i l t id tifi tiQuantification included in analyte identification.
Superior environmental stability.
Tunable resistance properties - facilitates readout. 

Relative to materials-specific sensors:Relative to materials specific sensors:
Can be trained to recognize new materials and unknowns. 
Can be used to deconvolute and identify simple mixtures of knowns. 
One array serves to detect and identify a wide variety of analytes.  
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JPL Enose Program Overview and Background

Second Generation JPL ENose: 21 Analytes
tested concentrations

24 hr SMAC
(ppm)

1/3 SMAC
(ppm)

3x SMAC
(ppm)

low
(ppm)

high
(ppm)(pp ) (pp ) (pp ) (pp ) (pp )

acetaldehyde (1500ppm gas) 6 2.00 18 2 20
acetone 200 66.67 600 65 600
acetonitrile (1500 ppm gas) 4 1.33 12 1 25
ammonia - NH3 20 6.67 60 6 60
benzene (1510 ppm gas) 3 1 00 9 3 75benzene (1510 ppm gas) 3 1.00 9 3 75
2-butanone 50 16.67 150 15 150
chlorobenzene 10 3.33 30 3 30
dichloromethane 35 11.67 105 11 150
dichloroethane 0.4 0.13 1.2

h l 2000 666 67 6000 665 6000
980.12

ethanol 2000 666.67 6000 665 6000
ethyl benzene 60 20.00 180 16 184
freon 113 50 16.67 150 15 150
hexane 50 16.67 150 16 150
indole 0.3 0.10 0.9 0.900.10
methane 5300 1766.67 15900 3000 40000
methanol 10 3.33 30 3 100
isopropanol 100 33.33 300 30 600
tetrahydrofuran 40 13.33 120 13 120
toluene 16 5.33 48 5 50
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1,1,1-trichloroethane 11 3.67 33 5 200
o,p-xylenes 100 33.33 300 33 300



JPL Enose Program Overview and Background

QUANT. 
RANGEJUSTIFICATION

ODOR 
THRESHOLD*

Target ANALYTE

Analytes for Technical Demonstration Onboard ISS

.003 - .03

1.6 – 15

RANGE
(ppm)

Hg vapor in lighting

Coolant; 24 hr SMAC 20 

JUSTIFICATION

odorless0.01Mercury

505AmmoniaTIER 1

THRESHOLD
(ppm)

Con 
(ppm)

ANALYTE

20 - 600 

3

3 – 30

90 – 810

.3 – 3

24 Hr SMAC

24 Hr SMAC

Thionyl chloride batteries

200 - 30010Dichloromethane

270AcetoneTIER 2

1Sulfur Dioxide

30 300

3 – 30

6 – 60

166 – 1500

24 Hr SMAC

24 Hr SMAC

Russian AC coolant

Solvent; 24 hr SMAC 2000 

20 401002 Propanol

10 - 10010Methanol

na20Freon 218

10500Ethanol

* SOURCE: US Coast Guard Chemical Hazards Response Information System; http://www chrismanual com/

0.5 - 1

0.2 - 2

TBD

5 – 50

30 – 300

24 Hr SMAC

24 Hr SMAC

24 Hr SMAC

TBDFormaldehydeTIER 3

16Toluene

20 - 401002-Propanol
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  SOURCE: US Coast Guard, Chemical Hazards Response Information System;  http://www.chrismanual.com/
National Institutes of Health, Hazardous Substance Data Bank   http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB


