

American Institute of Aeronautics and Astronautics

1

A Roadmap for Using Agile Development in a Traditional
Environment

Barbara Streiffert* and Thomas Starbird†
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109

Sven Grenander‡
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109

 One of the newer classes of software engineering techniques is called “Agile
Development”. In Agile Development software engineers take small implementation steps
and, in some cases, they program in pairs. In addition, they develop automatic tests prior to
implementing their small functional piece. Agile Development focuses on rapid turnaround,
incremental planning, customer involvement and continuous integration. Agile Development
is not the traditional waterfall method or even a rapid prototyping method (although this
methodology is closer to Agile Development). At the Jet Propulsion Laboratory (JPL) a few
groups have begun Agile Development software implementations. The difficulty with this
approach becomes apparent when Agile Development is used in an organization that has
specific criteria and requirements handed down for how software development is to be
performed. The work at the JPL is performed for the National Aeronautics and Space
Agency (NASA). Both organizations have specific requirements, rules and processes for
developing software. This paper will discuss some of the initial uses of the Agile
Development methodology, the spread of this method and the current status of the successful
incorporation into the current JPL development policies and processes.

I. Introduction
gile Development is a new software methodology that is gaining acceptance throughout the software
community. Most Agile developments are used to reduce risk and to produce usable software in short time
increments. Generally, the time span lasts one to four weeks. During that time a full life cycle is performed on

a small set of functional capabilities. The goal is to have working software at the end of each cycle. The customer is
a key part of the process and participates in all aspects of the development process. Agile Development is often
considered the antithesis of the Waterfall Methodology. In the Waterfall approach requirements analysis, design,
implementation and testing are performed in a linear fashion and only once. Usually the customer only participates
in the requirements and design phases and then again during performance testing. The major difference is that the
Waterfall approach is considered to be a more predictive approach in being able to determine schedule, deliveries
and in general all the functional capabilities and the Agile approach is considered to be more adaptive and deals
better with changes in requirements and with user feedback. Waterfall Development falls into the predictive
category because the entire development activity including the milestones is determined at the beginning of the
software project. Agile Development falls into the adaptive category due to its short time cycles. Changes in
functions to be implemented or ordering (reordering) of functions can be based on customer needs.

II. Agile Development at JPL

The beginnings of one of the Jet Propulsion Laboratory’s (JPL’s) agile developments started in a research and
development task called Maestro sponsored by the Mars Technology Program in 2004. This task and another related

* Software System Engineer, Section 317, M/S 301-250 D 4800 Oak Grove Dr., Pasadena, CA 91109 USA.
† Principal Investigator, Section 317, M/S 301-250 D 4800 Oak Grove Dr., Pasadena, CA 91109 USA.
‡ System Engineer, Section 317, M/S 301-250 D 4800 Oak Grove Dr., Pasadena, CA 91109 USA.

A

American Institute of Aeronautics and Astronautics

2

task, the Next Generation Uplink Planning System (NGUPS) task, have been looking at ways to infuse technology
into the Mars Science Laboratory (MSL) ground system software. MSL is the next JPL rover going to Mars in
2009. The Maestro task began using an agile process and spawned a new team, called the Ensemble team. This team
now develops not only Maestro software, but also other related software. The team members include contingents at
JPL and at the Ames Research Center. This paper focuses on the JPL portion of the Ensemble team’s work on
Maestro. The NGUPS task hasn’t followed many of the precepts of Agile Development, but has incorporated the
work from the Ensemble task and has refactored legacy tools to be used with the software from the Ensemble task.
 The heart of the process used by the Ensemble team is a weekly cycle. The cycle begins (or ends) with a weekly
planning meeting, attended by the software designers and implementers and also by users or representatives of the
Flight Projects that are depending upon the work. The meeting begins by reviewing the status of each of the detailed
tasks that had been planned for the previous week. The tasks are displayed on a screen using the issue tracking
system (JIRA). Each developer has recorded the progress of the previous week. It is common and expected that not
all tasks planned are completed; a few tasks than can actually be completed are included each week in case other
assigned tasks are completed earlier than predicted or must be postponed because of some unexpected barrier.
 The next step is to plan the detailed tasks that are to be implemented in the next week. The lists of required
features and the status of failure reports are consulted; discussion of priorities and ordering ensues. Tasks are
defined (each in a brief phrase), and each task is assigned. The assignee estimates how long the task will take,
typically in the range of 0.25 to 1 day. All tasks involving production code are implemented in pairs. Two people
literally sit side-by-side in front of a dual-headed computer with two keyboards. Production code tasks are
distinguished from other prototype or investigatory tasks during the planning meeting. At the end of the meeting, all
the tasks are entered into JIRA as “unresolved”. During the week, their status is changed by the implementer
assigned to the task as the task progresses. Figure 1 shows a sample of a JIRA page. This sample shows only open
issues because the screen capture was performed at the beginning of the week.
 One hallmark of the Ensemble team’s process is its use of various tools that support efficient collaborative
development and provide documentation on the current work. As mentioned above, JIRA is used to track all tasks.
It is also the tool that tracks failure reports. In addition, it is intended, in the future, to be used to track all
requirements, linking them to tasks and to tests. Another tool used extensively is Confluence, which is a wiki. A
wiki is server software that is used to create and modify web page content. All documentation (other than
documentation in the code itself) is added to Confluence: meeting notes, design decisions, diagrams for user
interface interactions, scenarios for demonstrations, use cases, the software development process, detailed
requirements, and “how to” pages. Confluence allows anyone on the team to document the work that they are
implementing. It also allows the team to document designs or any other data that should be available to the team.
Figure 2 shows a sample Confluence page. The document shown is a copy of this paper that resides in Confluence.
One characteristic of Agile Development is that it produces less documentation than other methods because it relies
on face-to-face communication. The Ensemble team addresses this criticism using by Confluence and JIRA.
 A third tool called Cruise Control is also used by the team. Cruise Control is the build management tool. Cruise
Control understands the relationships of the various components of software to the applications that they are a part
of, and not only builds the software, but also runs all necessary tests to check that the insertion of the new
component(s) is viable. If the build fails because a test fails, e-mail notification is sent to the appropriate software
developer(s). Figure 3 shows the summary results maintained by Cruise Control. JIRA, Confluence, and Cruise
Control are all commercial products.
 Along with the implementation that occurs each week, the designers hold a weekly meeting where they present
and discuss design issues, particularly ones related to the user interface. Mockups of possible screen views, or
prototypes of possible user interaction, are shown. Alternatives and trades are discussed and weighed. When
decisions are made, they are documented in Confluence, and become the design goal for the assigned implementers.
 The NGUPS team is responsible for integrating the Ensemble work with legacy tools. The legacy tools have been
altered to work effectively with Ensemble as well as provide interprocess communication among all the tools.
Periodically, members from both teams participate in pair programming depending on the “story” (functional
element) to be implemented.
 As the work from these two groups began to be noticed for its excellence and high productivity, a third group
decided to adopt the work and further its development so that it could become multi-mission ground sequencing
software for in-situ missions such as rovers. Until now the multi-mission ground system software has been
developed according to all the rules and precepts of a traditional system including the traditional set of documents,
reviews, and other gates that are not typically part of the Agile Development process – at least not part of it in a
traditional sense.

American Institute of Aeronautics and Astronautics

3

Figure 1 shows a sample page from JIRA. This page was taken at the beginning of the week so all of the issues are
unresolved.

Figure 2 shows a sample page in Confluence, a wiki that offers users the ability to document and edit any data in a
web browser.

American Institute of Aeronautics and Astronautics

4

Figure 3 shows the results of the Cruise Control run to build the software. Features contain multiple components.

III. Traditional Approach
 All NASA programs must follow NASA Procedural Requirements (NPRs). These requirements are for all
development phases of projects. For software projects NASA developed NPR 7150.2. California Institute of
Technology’s (Caltech’s) JPL has developed a response to NPR 7150.2 called the Software Development
Requirements (SDR). The SDR has requirements that correspond to the applicable NASA requirements in NPR
7150.2. All software development at JPL is required to be in compliance with the SDR. The SDR is also compliant
with the goals of Capability Maturity Model Integrated (CMMI).
 The SDR contains requirements that deal with all aspects of a software development process. It includes
information on who is required to comply with the requirements in the SDR (basically all who develop software at
JPL) and the various software classifications. The software classifications are A (Human Rated), B (Mission
Critical), C (Contributes to Mission Objectives but not Critical) and D (No Impact to Mission Primary or Secondary
Objectives). The SDR requires that a software management plan be developed. This plan describes how the software
will be managed including roles and responsibilities, reviews, design, development, testing, delivery,
documentation, etc. The plan must also deal with the budget, the work breakdown structure, risk management and
software acquisition, if needed. The software management plan can point to other documents, such as a risk
management plan, provided the other document contains the necessary information about software. The key is that
this information must be documented. Typically, the Agile Development methodology doesn’t describe
documentation, doesn’t deal with budgets, and mentions risk mostly in saying that the short cycle and user
involvement mitigates the risk by ensuring that the software remains on track. In addition, JPL didn’t have a process
that mapped Agile Development to the SDR.
 At this point in time when JPL is working on being CMMI compliant, there is a support group called the
Software Quality Improvement group. This group is to help each software development team to be compliant with
the SDR and CMMI. This group has been trained in software development processes, the SDR, NASA NPR’s and
CMMI. In addition to working with software developments teams for compliance they are working with each project
and line organization to develop a series of processes (including documentation) that describe software development
at JPL.

IV. Combining the Two Approaches
 The current task has become one of how to marry the two approaches. There have been meetings and efforts to
understand this new development model. The SQI group held a series of weekly meetings to understand how the
Ensemble group has implemented the Agile Development methodology. The System Engineers from the NGUPS
team and the Ensemble team have started work on documenting the implementation of Agile Development in a

American Institute of Aeronautics and Astronautics

5

Confluence document called the Ensemble Software Development Process. In the newly created document the basic
tenants of Agile Development have been stated with some modifications. Input from the SQI group has been
received and accommodated. In general, because the Ensemble work is part of a larger system there are additional
requirements on the development technique that must be met in the areas of planning, reviews, testing, etc.
 For example, the process discusses planning of the software. It talks about planning in weekly increments, but it
also deals with high level planning that creates a long-term agreement on release dates and general contents of the
software at a high level functional capability. The next level of planning covers the planning effort that takes place
after a delivery or a demonstration of the software. At this level of planning the detailed functional requirements are
defined with the aid and review of the customer. These requirements are planned to be documented in JIRA.
Additionally the division between core functions (project-independent ones) and project-specific functions is drawn.
The final level of planning is the normal weekly Agile Development planning that occurs as part of the Agile
Development Process. Typically the week of planning and implementation follows the outline listed below:

1) Determine Requirement/Issue/Functional Capability (typically can be completed in 1 week or less)
2) Discuss in weekly design team meeting
3) Document design in Confluence
4) Assign tasks for item 1 in weekly planning meeting
5) Enter tasks into JIRA
6) Software pairs design automatic tests
7) Software pairs implement item 4
8) Software pairs fix any defects
9) Software pairs integrate requirement
10) Software is rebuilt (Note: software is typically built several times a day)
11) Repeat weekly

There are adjustments to the process if needed. For example, if there needs to be investigative work done or a
prototypical task must be performed, often an individual software engineer takes on the task instead of working in
pairs. At the end of the process (item 10) the software is rebuilt using Cruise Control. All of these steps and their
description are part of the Ensemble Software Development Process document.
 In the area of reviews the Ensemble implementation of Agile Development calls for weekly status reviews that
compare plans versus accomplishments. These meetings use metrics of schedule deviance, team velocity and budget
variance to determine progress. The quality metrics of determining the number/kind of software anomalies and the
number/kind of requirements implemented are also assessed. The JIRA issue tracking system allows these metrics to
be accumulated. In addition to these reviews the group also participates in monthly manager reviews and typically
holds demonstrations at least twice a year for stakeholders. In addition, to regularly-scheduled reviews, the
Ensemble team participates in science team meetings, ground systems meetings and delivery meetings. At these
various meetings the team presents current progress either in the form or presentation materials or impromptu
demonstrations or both. However, the most effective review comes from the pair programming in that each
participant of the pair reviews the other person’s work. In this way there is an almost constant peer review of the
software. The number and types of reviews are also documented in the Ensemble Software Development Process.
 The Ensemble group performs the traditional life cycle for development. It includes requirements’ development,
both high level and detail level design, implementation, test and delivery. However, these steps are performed
weekly instead of once for each stage. There are always longer term goals that are available, but often they are
broken down into weekly chunks. Each automatic build results in a deliverable package. In addition, the Ensemble
team provides a more formal delivery to projects.
 Testing and delivery is handled in stages as well. For any level of delivery automatic tests are run as regression
testing. In addition, prior to delivery every developer is responsible for developing user tests and running them.
There are four stages in the delivery portion of the process. There is the stage where the developers deliver to an
area that they control. In this stage software can be delivered as frequently as the developers have finished the
implementation and have tested the new software. It is delivered to a loosely controlled configuration managed
system. The next stage is a more tightly controlled delivery area. This area is where the software is integrated
together and is used for preliminary acceptance testing. At some point in time the software then advances to a more
tightly controlled area for formal acceptance testing. Finally it is delivered to the project area for user acceptance
testing. This delivery scheme is typical of many of JPL software projects and has not been significantly changed
from the Waterfall methodology. In JPL legacy systems it is possible to test the core aspects of the software
separately from the project specific pieces because the core software is written in code and the adaptation is written
in an interpretive language. However, adaptation of the new software can now include actual code in addition to
portions in an interpretive language, so it is often not possible to test the two pieces separately. Figure 4 shows a

American Institute of Aeronautics and Astronautics

6

graphic representation of the delivery stages. This diagram also appears in the Ensemble Software Development
Process document.
 In addition to handling the normal aspects of planning, implementing, testing and delivery, the process also deals
with the other SDR required aspects such as software acquisition and software safety. Generally, software
acquisition is in the category of third-party commercial off-the-shelf and open source software. The Ensemble group
does not contract out software. However, part of their development team is at Ames Research Center. Those team
members participate in the same way as local team members attending the design and status meeting and adhering to
much the same process for planning, design, software implementation and testing as the rest of the team. The
Ensemble Software Development Process defines and explains how each of the SDR requirements is met.

American Institute of Aeronautics and Astronautics

7

Figure 4 shows the different stages of delivery from the initial delivery that is loosely controlled to the final stage
that is tightly controlled.

Project
Adaptation

Test & Integration
for Project

Project
Deployment

Project specific
component
extension
development.
Project specific core
adaptations.
The "agile"
development is done
with the ultimate
users providing
evolving
requirements as part
of the development
process.

System integration and test is done in
a dedicated staging area with two
levels of configuration control.
Developers may at any time place
code into the developer controlled
area for system testing.
At pre-announced times T&I will
snapshot what is in the developer area
and place it under strict I&T
configuration control
The Ensemble software is tested by
the user community.

Project deployment is in
a conventional
configuration controlled
environment.

Core & Component
Development

Multi-mission core
and component
development.
Developers work in
their own
environment,
develop, unit tests
and conduct
integration tests as
needed and
practical.
The "agile"
development is done
with the ultimate
users providing
evolving
requirements as part
of the development
process.

…

Proj. Act.
Modeling

Proj. Seq.
Modeling

Project
Ensemble

Proj Arm
Mobility

…

Proj. Seq.
Modeling

Project
Ensemble

Proj. Act.
Modeling

Proj. Arm
Mobility

…

Proj. Seq.
Modeling

Project
Ensemble

Proj. Act.
Modeling

Proj Arm
Mobility

Computational Environment
 Under Configuration Control

Developer
Control

Strict T&I
Control

Project
Adaptation

Arm
Mobility

Activity
Modeling

Project
Adaptation

Ensemble
Project
Extensions

Sequence
Modeling

Project
Adaptation

…
Adaptation

…

American Institute of Aeronautics and Astronautics

8

V. Conclusion
 Currently there are a few relatively small areas that still need to be worked in having the Ensemble Software
Development Process be completely compliant with the SDR. However, significant progress has been made in that
direction and it is expected that the Ensemble Software Development Process will be totally compliant soon. A path
has been created and the groups have been working their way to a resolution. Agile Development has become a
reality in a traditional system (with a few compromises).

Acknowledgments
 The work described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration. This work is funded by the
Mars Technology Program.

